1nuu Citations

Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis.

J Biol Chem 278 13503-11 (2003)
Related entries: 1nup, 1nuq, 1nur, 1nus, 1nut

Cited: 75 times
EuropePMC logo PMID: 12574164

Abstract

Pyridine dinucleotides (NAD and NADP) are ubiquitous cofactors involved in hundreds of redox reactions essential for the energy transduction and metabolism in all living cells. In addition, NAD also serves as a substrate for ADP-ribosylation of a number of nuclear proteins, for silent information regulator 2 (Sir2)-like histone deacetylase that is involved in gene silencing regulation, and for cyclic ADP ribose (cADPR)-dependent Ca(2+) signaling. Pyridine nucleotide adenylyltransferase (PNAT) is an indispensable central enzyme in the NAD biosynthesis pathways catalyzing the condensation of pyridine mononucleotide (NMN or NaMN) with the AMP moiety of ATP to form NAD (or NaAD). Here we report the identification and structural characterization of a novel human PNAT (hsPNAT-3) that is located in the cytoplasm and mitochondria. Its subcellular localization and tissue distribution are distinct from the previously identified human nuclear PNAT-1 and PNAT-2. Detailed structural analysis of PNAT-3 in its apo form and in complex with its substrate(s) or product revealed the catalytic mechanism of the enzyme. The characterization of the cytosolic human PNAT-3 provided compelling evidence that the final steps of NAD biosynthesis pathways may exist in mammalian cytoplasm and mitochondria, potentially contributing to their NAD/NADP pool.

Articles - 1nuu mentioned but not cited (2)

  1. Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Brunetti L, Di Stefano M, Ruggieri S, Cimadamore F, Magni G. Protein Sci 19 2440-2450 (2010)
  2. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (29)

  1. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cantó C, Menzies KJ, Auwerx J. Cell Metab 22 31-53 (2015)
  2. NAD⁺ in aging, metabolism, and neurodegeneration. Verdin E. Science 350 1208-1213 (2015)
  3. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Hassa PO, Haenni SS, Elser M, Hottiger MO. Microbiol Mol Biol Rev 70 789-829 (2006)
  4. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Gupte R, Liu Z, Kraus WL. Genes Dev 31 101-126 (2017)
  5. NAD+ metabolism and its roles in cellular processes during ageing. Covarrubias AJ, Perrone R, Grozio A, Verdin E. Nat Rev Mol Cell Biol 22 119-141 (2021)
  6. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Xiao W, Wang RS, Handy DE, Loscalzo J. Antioxid Redox Signal 28 251-272 (2018)
  7. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Murphy MP. Antioxid Redox Signal 16 476-495 (2012)
  8. Reconstructing eukaryotic NAD metabolism. Rongvaux A, Andris F, Van Gool F, Leo O. Bioessays 25 683-690 (2003)
  9. Protein acetylation in metabolism - metabolites and cofactors. Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Nat Rev Endocrinol 12 43-60 (2016)
  10. Modulating NAD+ metabolism, from bench to bedside. Katsyuba E, Auwerx J. EMBO J 36 2670-2683 (2017)
  11. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Ryu KW, Kim DS, Kraus WL. Chem Rev 115 2453-2481 (2015)
  12. NAD and ADP-ribose metabolism in mitochondria. Dölle C, Rack JG, Ziegler M. FEBS J 280 3530-3541 (2013)
  13. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Zhai RG, Rizzi M, Garavaglia S. Cell Mol Life Sci 66 2805-2818 (2009)
  14. Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family. Cohen MS. Genes Dev 34 254-262 (2020)
  15. Diversification of NAD biological role: the importance of location. Di Stefano M, Conforti L. FEBS J 280 4711-4728 (2013)
  16. Location, Location, Location: Compartmentalization of NAD+ Synthesis and Functions in Mammalian Cells. Cambronne XA, Kraus WL. Trends Biochem Sci 45 858-873 (2020)
  17. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury. Owens K, Park JH, Schuh R, Kristian T. Transl Stroke Res 4 618-634 (2013)
  18. NAD and axon degeneration: from the Wlds gene to neurochemistry. Wang J, He Z. Cell Adh Migr 3 77-87 (2009)
  19. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. Bi J, Wang H, Xie J. J Cell Physiol 226 331-340 (2011)
  20. Wld(S), Nmnats and axon degeneration--progress in the past two decades. Feng Y, Yan T, He Z, Zhai Q. Protein Cell 1 237-245 (2010)
  21. Dealing with misfolded proteins: examining the neuroprotective role of molecular chaperones in neurodegeneration. Ali YO, Kitay BM, Zhai RG. Molecules 15 6859-6887 (2010)
  22. Regulation of Cancer and Cancer-Related Genes via NAD. Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Kennedy BE, Lee PWK, Gujar S. Antioxid Redox Signal 30 906-923 (2019)
  23. NAMPT as a Dedifferentiation-Inducer Gene: NAD+ as Core Axis for Glioma Cancer Stem-Like Cells Maintenance. Lucena-Cacace A, Umeda M, Navas LE, Carnero A. Front Oncol 9 292 (2019)
  24. NAD - new roles in signalling and gene regulation in plants. Hunt L, Lerner F, Ziegler M. New Phytol 163 31-44 (2004)
  25. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. Fortunato C, Mazzola F, Raffaelli N. IUBMB Life 74 562-572 (2022)
  26. The adenine nucleotide translocase--a carrier protein potentially required for mitochondrial generation of NAD. Ziegler M. Biochemistry (Mosc) 70 173-177 (2005)
  27. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Yang S, Park JH, Lu HC. Mol Neurodegener 18 49 (2023)
  28. Impact of NAD+ metabolism on ovarian aging. Liang J, Huang F, Song Z, Tang R, Zhang P, Chen R. Immun Ageing 20 70 (2023)
  29. Metabolic Regulation of Lysine Acetylation: Implications in Cancer. Singh S, Senapati P, Kundu TK. Subcell Biochem 100 393-426 (2022)

Articles citing this publication (44)

  1. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Nakagawa T, Lomb DJ, Haigis MC, Guarente L. Cell 137 560-570 (2009)
  2. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. Gilley J, Coleman MP. PLoS Biol 8 e1000300 (2010)
  3. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. Sasaki Y, Araki T, Milbrandt J. J Neurosci 26 8484-8491 (2006)
  4. NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ. Nature 452 887-891 (2008)
  5. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B, Soppina P, Wu C, Hume RI, Collins CA. PLoS Biol 10 e1001440 (2012)
  6. Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. Zhai RG, Cao Y, Hiesinger PR, Zhou Y, Mehta SQ, Schulze KL, Verstreken P, Bellen HJ. PLoS Biol 4 e416 (2006)
  7. Nicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration. Yahata N, Yuasa S, Araki T. J Neurosci 29 6276-6284 (2009)
  8. A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Liu F, Arias-Vásquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, Feng BJ, Bertoli-Avella AM, van Swieten J, Axenovich TI, Heutink P, van Broeckhoven C, Oostra BA, van Duijn CM. Am J Hum Genet 81 17-31 (2007)
  9. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Ljungberg MC, Ali YO, Zhu J, Wu CS, Oka K, Zhai RG, Lu HC. Hum Mol Genet 21 251-267 (2012)
  10. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. Mori V, Amici A, Mazzola F, Di Stefano M, Conforti L, Magni G, Ruggieri S, Raffaelli N, Orsomando G. PLoS One 9 e113939 (2014)
  11. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Wang G, Pichersky E. Plant J 49 1020-1029 (2007)
  12. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. Burgos ES, Schramm VL. Biochemistry 47 11086-11096 (2008)
  13. Expression, localization, and biochemical characterization of nicotinamide mononucleotide adenylyltransferase 2. Mayer PR, Huang N, Dewey CM, Dries DR, Zhang H, Yu G. J Biol Chem 285 40387-40396 (2010)
  14. Insight into molecular and functional properties of NMNAT3 reveals new hints of NAD homeostasis within human mitochondria. Felici R, Lapucci A, Ramazzotti M, Chiarugi A. PLoS One 8 e76938 (2013)
  15. Targeting NAD biosynthesis in bacterial pathogens: Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD. Sorci L, Pan Y, Eyobo Y, Rodionova I, Huang N, Kurnasov O, Zhong S, MacKerell AD, Zhang H, Osterman AL. Chem Biol 16 849-861 (2009)
  16. Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. Lau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M. J Biol Chem 285 18868-18876 (2010)
  17. Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. Rodionova IA, Schuster BM, Guinn KM, Sorci L, Scott DA, Li X, Kheterpal I, Shoen C, Cynamon M, Locher C, Rubin EJ, Osterman AL. mBio 5 e00747-13 (2014)
  18. Nmnat3 Is Dispensable in Mitochondrial NAD Level Maintenance In Vivo. Yamamoto M, Hikosaka K, Mahmood A, Tobe K, Shojaku H, Inohara H, Nakagawa T. PLoS One 11 e0147037 (2016)
  19. Comparative genomics of NAD biosynthesis in cyanobacteria. Gerdes SY, Kurnasov OV, Shatalin K, Polanuyer B, Sloutsky R, Vonstein V, Overbeek R, Osterman AL. J Bacteriol 188 3012-3023 (2006)
  20. Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth. Hashida SN, Takahashi H, Kawai-Yamada M, Uchimiya H. Plant J 49 694-703 (2007)
  21. Overexpression of Wld(S) or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live zebrafish. Feng Y, Yan T, Zheng J, Ge X, Mu Y, Zhang Y, Wu D, Du JL, Zhai Q. J Neurosci Res 88 3319-3327 (2010)
  22. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW. Exp Neurol 320 112961 (2019)
  23. Identification of a critical site in Wld(s): essential for Nmnat enzyme activity and axon-protective function. Jia H, Yan T, Feng Y, Zeng C, Shi X, Zhai Q. Neurosci Lett 413 46-51 (2007)
  24. Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism. Huang N, Sorci L, Zhang X, Brautigam CA, Li X, Raffaelli N, Magni G, Grishin NV, Osterman AL, Zhang H. Structure 16 196-209 (2008)
  25. Simultaneous single-sample determination of NMNAT isozyme activities in mouse tissues. Orsomando G, Cialabrini L, Amici A, Mazzola F, Ruggieri S, Conforti L, Janeckova L, Coleman MP, Magni G. PLoS One 7 e53271 (2012)
  26. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its Apo and substrate-complexed forms reveals a fully open conformation. Yoon HJ, Kim HL, Mikami B, Suh SW. J Mol Biol 351 258-265 (2005)
  27. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Staphyloccocus aureus: structural basis for NaAD interaction in functional dimer. Han S, Forman MD, Loulakis P, Rosner MH, Xie Z, Wang H, Danley DE, Yuan W, Schafer J, Xu Z. J Mol Biol 360 814-825 (2006)
  28. Subcellular NAMPT-mediated NAD+ salvage pathways and their roles in bioenergetics and neuronal protection after ischemic injury. Wang X, Zhang Z, Zhang N, Li H, Zhang L, Baines CP, Ding S. J Neurochem 151 732-748 (2019)
  29. Impaired Nicotinamide Adenine Dinucleotide Biosynthesis in the Kidney of Chronic Kidney Disease. Liu X, Luo D, Huang S, Liu S, Zhang B, Wang F, Lu J, Chen J, Li S. Front Physiol 12 723690 (2021)
  30. Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues. Di Martino C, Pallotta ML. Planta 234 657-670 (2011)
  31. A panoramic overview of mitochondria and mitochondrial redox biology. Kim A. Toxicol Res 30 221-234 (2014)
  32. Unraveling the genes implicated in Alzheimer's disease. Giri M, Shah A, Upreti B, Rai JC. Biomed Rep 7 105-114 (2017)
  33. Nicotinamide mononucleotide adenylyltransferase uses its NAD+ substrate-binding site to chaperone phosphorylated Tau. Ma X, Zhu Y, Lu J, Xie J, Li C, Shin WS, Qiang J, Liu J, Dou S, Xiao Y, Wang C, Jia C, Long H, Yang J, Fang Y, Jiang L, Zhang Y, Zhang S, Zhai RG, Liu C, Li D. Elife 9 e51859 (2020)
  34. Kinetic and X-ray structural evidence for negative cooperativity in substrate binding to nicotinate mononucleotide adenylyltransferase (NMAT) from Bacillus anthracis. Sershon VC, Santarsiero BD, Mesecar AD. J Mol Biol 385 867-888 (2009)
  35. NAD metabolism in aging and cancer. Kincaid JW, Berger NA. Exp Biol Med (Maywood) 245 1594-1614 (2020)
  36. Nicotinamide mononucleotide adenylyltransferase2 overexpression enhances colorectal cancer cell-kill by Tiazofurin. Kusumanchi P, Zhang Y, Jani MB, Jayaram NH, Khan RA, Tang Y, Antony AC, Jayaram HN. Cancer Gene Ther 20 403-412 (2013)
  37. Stereoselective synthesis of nicotinamide beta-riboside and nucleoside analogs. Franchetti P, Pasqualini M, Petrelli R, Ricciutelli M, Vita P, Cappellacci L. Bioorg Med Chem Lett 14 4655-4658 (2004)
  38. Methods for Using a Genetically Encoded Fluorescent Biosensor to Monitor Nuclear NAD. Cohen MS, Stewart ML, Goodman RH, Cambronne XA. Methods Mol Biol 1813 391-414 (2018)
  39. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT). Forero-Baena N, Sánchez-Lancheros D, Buitrago JC, Bustos V, Ramírez-Hernández MH. Biochim Open 1 61-69 (2015)
  40. Anterograde regulation of mitochondrial genes and FGF21 signaling by hepatic LSD1. Cao Y, Tang L, Du K, Paraiso K, Sun Q, Liu Z, Ye X, Fang Y, Yuan F, Chen H, Chen Y, Wang X, Yu C, Blitz IL, Wang PH, Huang L, Cheng H, Lu X, Cho KW, Seldin M, Fang Z, Yang Q. JCI Insight 6 147692 (2021)
  41. Structural insights into Plasmodium falciparum nicotinamide mononucleotide adenylyltransferase: oligomeric assembly. Contreras-Rodríguez LE, Marin-Mogollon CY, Sánchez-Mejía LM, Ramírez-Hernández MH. Mem Inst Oswaldo Cruz 113 e180073 (2018)
  42. Nicotinamide mononucleotide ameliorates adriamycin-induced renal damage by epigenetically suppressing the NMN/NAD consumers mediated by Twist2. Hasegawa K, Sakamaki Y, Tamaki M, Wakino S. Sci Rep 12 13712 (2022)
  43. Synthesis and biological evaluation of NAD analogs as human pyridine nucleotide adenylyltransferase inhibitors. Franchetti P, Petrelli R, Cappellacci L, Pasqualini M, Vita P, Sorci L, Mazzola F, Raffaelli N, Magni G. Nucleosides Nucleotides Nucleic Acids 24 477-479 (2005)
  44. The mouse nicotinamide mononucleotide adenylyltransferase chaperones diverse pathological amyloid client proteins. Huang C, Lu J, Ma X, Qiang J, Wang C, Liu C, Fang Y, Zhang Y, Jiang L, Li D, Zhang S. J Biol Chem 298 101912 (2022)


Related citations provided by authors (1)

  1. STRUCTURE OF HUMAN NICOTINAMIDE/NICOTONIC ACID MONONUCLEOTIDE ADENYLYLTRANSFERASE BASIS FOR THE DUAL SUBSTRATE SPECIFICITY AND ACTIVATION OF THE ONCOLYTIC AGENT TIAZOFURIN. ZHOU T, KURNASOV O, TOMCHICK DR, BINNS DD, GRISHIN NV, MARQUEZ VE, OSTERMAN AL, ZHANG H J. Biol. Chem. 277 13148-13154 (2002)