1ob3 Citations

Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition.

Structure 11 1329-37 (2003)
Related entries: 1v0b, 1v0o, 1v0p

Cited: 49 times
EuropePMC logo PMID: 14604523

Abstract

Plasmodium falciparum cell cycle regulators are promising targets for antimalarial drug design. We have determined the structure of PfPK5, the first structure of a P. falciparum protein kinase and the first of a cyclin-dependent kinase (CDK) not derived from humans. The fold and the mechanism of inactivation of monomeric CDKs are highly conserved across evolution. ATP-competitive CDK inhibitors have been developed as potential leads for cancer therapeutics. These studies have identified regions of the CDK active site that can be exploited to achieve significant gains in inhibitor potency and selectivity. We have cocrystallized PfPK5 with three inhibitors that target such regions. The sequence differences between PfPK5 and human CDKs within these inhibitor binding sites suggest that selective inhibition is an attainable goal. Such compounds will be useful tools for P. falciparum cell cycle studies, and will provide lead compounds for antimalarial drug development.

Reviews - 1ob3 mentioned but not cited (3)

  1. Heterologous expression of plasmodial proteins for structural studies and functional annotation. Birkholtz LM, Blatch G, Coetzer TL, Hoppe HC, Human E, Morris EJ, Ngcete Z, Oldfield L, Roth R, Shonhai A, Stephens L, Louw AI. Malar J 7 197 (2008)
  2. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. Arendse LB, Wyllie S, Chibale K, Chibale K, Gilbert IH. ACS Infect Dis 7 518-534 (2021)
  3. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Ogungbe IV, Setzer WN. Molecules 21 E1389 (2016)

Articles - 1ob3 mentioned but not cited (3)

  1. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. Talevich E, Mirza A, Kannan N. BMC Evol Biol 11 321 (2011)
  2. The Cryptosporidium parvum kinome. Artz JD, Wernimont AK, Allali-Hassani A, Zhao Y, Amani M, Lin YH, Senisterra G, Wasney GA, Fedorov O, King O, Roos A, Lunin VV, Qiu W, Finerty P, Hutchinson A, Chau I, von Delft F, MacKenzie F, Lew J, Kozieradzki I, Vedadi M, Schapira M, Zhang C, Shokat K, Heightman T, Hui R. BMC Genomics 12 478 (2011)
  3. Update and elucidation of Plasmodium kinomes: Prioritization of kinases as potential drug targets for malaria. Borba JVVB, Silva ACE, do Nascimento MN, Ferreira LT, Rimoldi A, Starling L, Ramos PIP, Costa FTM, Andrade CH. Comput Struct Biotechnol J 20 3708-3717 (2022)


Reviews citing this publication (15)

  1. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. Ward P, Equinet L, Packer J, Doerig C. BMC Genomics 5 79 (2004)
  2. Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. Nakano H, Omura S. J Antibiot (Tokyo) 62 17-26 (2009)
  3. Protein kinases of malaria parasites: an update. Doerig C, Billker O, Haystead T, Sharma P, Tobin AB, Waters NC. Trends Parasitol 24 570-577 (2008)
  4. Antimalarial drug discovery: targeting protein kinases. Doerig C, Meijer L. Expert Opin Ther Targets 11 279-290 (2007)
  5. cAMP-dependent protein kinase from Plasmodium falciparum: an update. Wurtz N, Chapus C, Desplans J, Parzy D. Parasitology 138 1-25 (2011)
  6. The kinomes of apicomplexan parasites. Miranda-Saavedra D, Gabaldón T, Barton GJ, Langsley G, Doerig C. Microbes Infect 14 796-810 (2012)
  7. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  8. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Koyama FC, Chakrabarti D, Garcia CR. Mol Biochem Parasitol 165 1-7 (2009)
  9. An evolutionary perspective on the kinome of malaria parasites. Talevich E, Tobin AB, Kannan N, Doerig C. Philos Trans R Soc Lond B Biol Sci 367 2607-2618 (2012)
  10. Post-translational modifications in Plasmodium: more than you think! Chung DW, Ponts N, Cervantes S, Le Roch KG. Mol Biochem Parasitol 168 123-134 (2009)
  11. Drugging the Plasmodium kinome: the benefits of academia-industry synergy. Leroy D, Doerig C. Trends Pharmacol Sci 29 241-249 (2008)
  12. A framework for signaling throughout the life cycle of Babesia species. Elsworth B, Duraisingh MT. Mol Microbiol 115 882-890 (2021)
  13. Regulation of DNA replication proteins in parasitic protozoans: possible role of CDK-like kinases. Deshmukh AS, Agarwal M, Dhar SK. Curr Genet 62 481-486 (2016)
  14. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Moolman C, Sluis RV, Beteck RM, Legoabe LJ. Molecules 25 E5182 (2020)
  15. The transcriptome: malariologists ride the wave. Wilson RJ. Bioessays 26 339-342 (2004)

Articles citing this publication (28)

  1. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Tewari R, Straschil U, Bateman A, Böhme U, Cherevach I, Gong P, Pain A, Billker O. Cell Host Microbe 8 377-387 (2010)
  2. A new Apicomplexa-specific protein kinase family: multiple members in Plasmodium falciparum, all with an export signature. Schneider AG, Mercereau-Puijalon O. BMC Genomics 6 30 (2005)
  3. Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. Donald RG, Zhong T, Wiersma H, Nare B, Yao D, Lee A, Allocco J, Liberator PA. Mol Biochem Parasitol 149 86-98 (2006)
  4. Soluble 3',6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase -3 alter circadian period. Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y, Johnson CH, Magiatis P, Skaltsounis AL, Mikros E, Meijer L. J Med Chem 51 6421-6431 (2008)
  5. 7-Bromoindirubin-3'-oxime induces caspase-independent cell death. Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofé-Ochoa X, Totzke F, Schächtele C, Mester J, Polychronopoulos P, Magiatis P, Skaltsounis AL, Boix J, Meijer L. Oncogene 25 6304-6318 (2006)
  6. Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis AL, Zographos SE, Oikonomakos NG. Proteins 79 703-719 (2011)
  7. Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, Gutteridge CE, Waters NC. Bioorg Med Chem Lett 19 1982-1985 (2009)
  8. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum. Reilly Ayala HB, Wacker MA, Siwo G, Ferdig MT. BMC Genomics 11 577 (2010)
  9. A Plasmodium falciparum transcriptional cyclin-dependent kinase-related kinase with a crucial role in parasite proliferation associates with histone deacetylase activity. Halbert J, Ayong L, Equinet L, Le Roch K, Hardy M, Goldring D, Reininger L, Waters N, Chakrabarti D, Doerig C. Eukaryot Cell 9 952-959 (2010)
  10. Characterization of two T. gondii CK1 isoforms. Donald RG, Zhong T, Meijer L, Liberator PA. Mol Biochem Parasitol 141 15-27 (2005)
  11. The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum. Robbins JA, Absalon S, Streva VA, Dvorin JD. mBio 8 e00605-17 (2017)
  12. Chemical interrogation of the malaria kinome. Derbyshire ER, Zuzarte-Luís V, Magalhães AD, Kato N, Sanschagrin PC, Wang J, Zhou W, Miduturu CV, Mazitschek R, Sliz P, Mota MM, Gray NS, Clardy J. Chembiochem 15 1920-1930 (2014)
  13. Multivariate phase combination improves automated crystallographic model building. Skubák P, Waterreus WJ, Pannu NS. Acta Crystallogr D Biol Crystallogr 66 783-788 (2010)
  14. Molecular models of protein kinase 6 from Plasmodium falciparum. Manhani KK, Arcuri HA, da Silveira NJ, Uchôa HB, de Azevedo WF, Canduri F. J Mol Model 12 42-48 (2005)
  15. Structural model of the Plasmodium CDK, Pfmrk, a novel target for malaria therapeutics. Peng Y, Keenan SM, Welsh WJ. J Mol Graph Model 24 72-80 (2005)
  16. Probing the Azaaurone Scaffold against the Hepatic and Erythrocytic Stages of Malaria Parasites. Carrasco MP, Machado M, Gonçalves L, Sharma M, Gut J, Lukens AK, Wirth DF, André V, Duarte MT, Guedes RC, Dos Santos DJ, Rosenthal PJ, Mazitschek R, Prudêncio M, Moreira R. ChemMedChem 11 2194-2204 (2016)
  17. Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. Engels K, Beyer C, Suárez Fernández ML, Bender F, Gassel M, Unden G, Marhöfer RJ, Mottram JC, Selzer PM. ChemMedChem 5 1259-1271 (2010)
  18. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents. Houzé S, Hoang NT, Lozach O, Le Bras J, Meijer L, Galons H, Demange L. Molecules 19 15237-15257 (2014)
  19. Comparative insight into nucleotide excision repair components of Plasmodium falciparum. Tajedin L, Anwar M, Gupta D, Tuteja R. DNA Repair (Amst) 28 60-72 (2015)
  20. Comparative analysis of the kinomes of Plasmodium falciparum, Plasmodium vivax and their host Homo sapiens. Adderley J, Doerig C. BMC Genomics 23 237 (2022)
  21. Antimalarial activity of kinase inhibitor, nilotinib, in vitro and in vivo. Ishiyama A, Iwatsuki M, Hokari R, Sawa M, Ōmura S, Otoguro K. J Antibiot (Tokyo) 68 469-472 (2015)
  22. In silico Screening and Evaluation of Plasmodium falciparum Protein Kinase 5 (PK5) Inhibitors. Eubanks AL, Perkins MM, Sylvester K, Ganley JG, Posfai D, Sanschargrin PC, Hong J, Sliz P, Derbyshire ER. ChemMedChem 13 2479-2483 (2018)
  23. Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones. Lande DH, Nasereddin A, Alder A, Gilberger TW, Dzikowski R, Grünefeld J, Kunick C. Molecules 26 4739 (2021)
  24. News [Mediterranean purple indirubins: a source of GSK-3 inhibitors]. Meijer L. Med Sci (Paris) 20 516-518 (2004)
  25. Comment Can mosquitoes be bitten? A new hope for anti-malarial drug design. Brinen LS, Stout TJ. Structure 11 1309-1310 (2003)
  26. Effects of cyclin-dependent kinase inhibitor Purvalanol B application on protein expression and developmental progression in intra-erythrocytic Plasmodium falciparum parasites. Bullard KM, Broccardo C, Keenan SM. Malar J 14 147 (2015)
  27. Structure-based virtual screening against multiple Plasmodium falciparum kinases reveals antimalarial compounds. Godara P, Reddy KS, Sahu W, Naik B, Srivastava V, Das R, Mahor A, Kumar P, Giri R, Anirudh J, Tak H, Banavath HN, Bhatt TK, Goyal AK, Prusty D. Mol Divers (2023)
  28. In silico three-dimensional pharmacophores for aiding the discovery of the Pfmrk (Plasmodium cyclin-dependent protein kinases) specific inhibitors for the therapeutic treatment of malaria. Bhattacharjee AK. Expert Opin Drug Discov 2 1115-1127 (2007)