1ova Citations

Crystal structure of uncleaved ovalbumin at 1.95 A resolution.

J Mol Biol 221 941-59 (1991)
Cited: 223 times
EuropePMC logo PMID: 1942038

Abstract

Ovalbumin, the major protein in avian egg-white, is a non-inhibitory member of the serine protease inhibitor (serpin) superfamily. The crystal structure of uncleaved, hen ovalbumin was solved by the molecular replacement method using the structure of plakalbumin, a proteolytically cleaved form of ovalbumin, as a starting model. The final refined model, including four ovalbumin molecules, 678 water molecules and a single metal ion, has a crystallographic R-factor of 17.4% for all reflections between 6.0 and 1.95 A resolution. The root-mean-square deviation from ideal values in bond lengths is 0.02 A and in bond angles is 2.9 degrees. This is the first crystal structure of a member of the serpin family in an uncleaved form. Surprisingly, the peptide that is homologous to the reactive centre of inhibitory serpins adopts an alpha-helical conformation. The implications for the mechanism of inhibition of the inhibitory members of the family is discussed.

Reviews - 1ova mentioned but not cited (4)

  1. Relevant B cell epitopes in allergic disease. Pomés A. Int Arch Allergy Immunol 152 1-11 (2010)
  2. Structure of allergens and structure based epitope predictions. Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Methods 66 3-21 (2014)
  3. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Cancer Cell 40 255-276 (2022)
  4. Thoroughly review the recent progresses in improving O/W interfacial properties of proteins through various strategies. Zhang H, Zhao X, Chen X, Xu X. Front Nutr 9 1043809 (2022)

Articles - 1ova mentioned but not cited (61)



Reviews citing this publication (24)

  1. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Harding SE. Prog Biophys Mol Biol 68 207-262 (1997)
  2. An atlas of serpin conformations. Whisstock J, Skinner R, Lesk AM. Trends Biochem Sci 23 63-67 (1998)
  3. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)
  4. The role of conformational change in serpin structure and function. Gettins P, Patston PA, Schapira M. Bioessays 15 461-467 (1993)
  5. Determination of the net charge (valence) of a protein: a fundamental but elusive parameter. Winzor DJ. Anal Biochem 325 1-20 (2004)
  6. Antithrombin and its inherited deficiencies. Perry DJ. Blood Rev 8 37-55 (1994)
  7. Molecular genetics of antithrombin deficiency. Lane DA, Kunz G, Olds RJ, Thein SL. Blood Rev 10 59-74 (1996)
  8. Structure and function of C1-inhibitor. Wagenaar-Bos IG, Hack CE. Immunol Allergy Clin North Am 26 615-632 (2006)
  9. Skin as a route of exposure to protein allergens. Smith Pease CK, White IR, Basketter DA. Clin Exp Dermatol 27 296-300 (2002)
  10. Egg proteins: fractionation, bioactive peptides and allergenicity. Chang C, Lahti T, Tanaka T, Nickerson MT. J Sci Food Agric 98 5547-5558 (2018)
  11. Serum Albumin Nanoparticles: Problems and Prospects. Hornok V. Polymers (Basel) 13 3759 (2021)
  12. ChSeq: A database of chameleon sequences. Li W, Kinch LN, Karplus PA, Grishin NV. Protein Sci 24 1075-1086 (2015)
  13. Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Costa J, Villa C, Verhoeckx K, Cirkovic-Velickovic T, Schrama D, Roncada P, Rodrigues PM, Piras C, Martín-Pedraza L, Monaci L, Molina E, Mazzucchelli G, Mafra I, Lupi R, Lozano-Ojalvo D, Larré C, Klueber J, Gelencser E, Bueno-Diaz C, Diaz-Perales A, Benedé S, Bavaro SL, Kuehn A, Hoffmann-Sommergruber K, Holzhauser T. Clin Rev Allergy Immunol 62 1-36 (2022)
  14. High pressure effects on allergen food proteins. Somkuti J, Smeller L. Biophys Chem 183 19-29 (2013)
  15. Egg serpins: The chicken and/or the egg dilemma. Dombre C, Guyot N, Moreau T, Monget P, Da Silva M, Gautron J, Réhault-Godbert S. Semin Cell Dev Biol 62 120-132 (2017)
  16. Serpins: implications of a mobile reactive centre. Crowther DC, Evans DL, Carrell RW. Curr Opin Biotechnol 3 399-407 (1992)
  17. How serpins transport hormones and regulate their release. Carrell RW, Read RJ. Semin Cell Dev Biol 62 133-141 (2017)
  18. The molecular genetics of antithrombin deficiency. Olds RJ, Lane DA, Thein SL. Br J Haematol 87 221-226 (1994)
  19. What we owe to alpha(1)-antitrypsin and to Carl-Bertil Laurell. Carrell RW. COPD 1 71-84 (2004)
  20. Antithrombin and heparin. Carrell R, Skinner R, Warden M, Whisstock J. Mol Med Today 1 226-231 (1995)
  21. Distinguishing features of fold-switching proteins. Chakravarty D, Schafer JW, Porter LL. Protein Sci 32 e4596 (2023)
  22. The mechanism by which serpins inhibit thrombin and other serine proteinases. Patston PA, Gettins PG, Schapira M. Ann N Y Acad Sci 714 13-20 (1994)
  23. "Troy-bodies": recombinant antibodies that target T cell epitopes to antigen presenting cells. Lund E, Rasmussen IB, Western KH, Eidem JK, Sandlie I, Bogen B. Int Rev Immunol 20 647-673 (2001)
  24. 1H- and 19F-NMR approaches to the study of the structure of proteins larger than 25 kDa. Gettins PG. Int J Biol Macromol 16 227-235 (1994)

Articles citing this publication (134)



Related citations provided by authors (1)