1p0z Citations

The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain.

J Biol Chem 278 39189-96 (2003)
Cited: 102 times
EuropePMC logo PMID: 12867417

Abstract

The integral membrane sensor kinase CitA of Klebsiella pneumoniae is part of a two-component signal transduction system that regulates the transport and metabolism of citrate in response to its environmental concentration. Two-component systems are widely used by bacteria for such adaptive processes, but the stereochemistry of periplasmic ligand binding and the mechanism of signal transduction across the membrane remain poorly understood. The crystal structure of the CitAP periplasmic sensor domain in complex with citrate reveals a PAS fold, a versatile ligand-binding structural motif that has not previously been observed outside the cytoplasm or implicated in the transduction of conformational signals across the membrane. Citrate is bound in a pocket that is shared among many PAS domains but that shows structural variation according to the nature of the bound ligand. In CitAP, some of the citrate contact residues are located in the final strand of the central beta-sheet, which is connected to the C-terminal transmembrane helix. These secondary structure elements thus provide a potential conformational link between the periplasmic ligand binding site and the cytoplasmic signaling domains of the receptor.

Reviews - 1p0z mentioned but not cited (5)

Articles - 1p0z mentioned but not cited (16)

  1. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R. Mol Microbiol 85 418-430 (2012)
  2. Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes. Upadhyay AA, Fleetwood AD, Adebali O, Finn RD, Zhulin IB. PLoS Comput Biol 12 e1004862 (2016)
  3. The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. Malone JG, Jaeger T, Manfredi P, Dötsch A, Blanka A, Bos R, Cornelis GR, Häussler S, Jenal U. PLoS Pathog 8 e1002760 (2012)
  4. Cys-scanning disulfide crosslinking and bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ. Molnar KS, Bonomi M, Pellarin R, Clinthorne GD, Gonzalez G, Goldberg SD, Goulian M, Sali A, DeGrado WF. Structure 22 1239-1251 (2014)
  5. Insight into the sporulation phosphorelay: crystal structure of the sensor domain of Bacillus subtilis histidine kinase, KinD. Wu R, Gu M, Wilton R, Babnigg G, Kim Y, Pokkuluri PR, Szurmant H, Joachimiak A, Schiffer M. Protein Sci 22 564-576 (2013)
  6. Investigating the allosteric regulation of YfiN from Pseudomonas aeruginosa: clues from the structure of the catalytic domain. Giardina G, Paiardini A, Fernicola S, Franceschini S, Rinaldo S, Stelitano V, Cutruzzolà F. PLoS One 8 e81324 (2013)
  7. Receptor properties and features of cytokinin signaling. Lomin SN, Krivosheev DM, Steklov MY, Osolodkin DI, Romanov GA. Acta Naturae 4 31-45 (2012)
  8. Citrate sensing by the C4-dicarboxylate/citrate sensor kinase DcuS of Escherichia coli: binding site and conversion of DcuS to a C4-dicarboxylate- or citrate-specific sensor. Krämer J, Fischer JD, Zientz E, Vijayan V, Griesinger C, Lupas A, Unden G. J Bacteriol 189 4290-4298 (2007)
  9. High-Performance Intensiometric Direct- and Inverse-Response Genetically Encoded Biosensors for Citrate. Zhao Y, Shen Y, Wen Y, Campbell RE. ACS Cent Sci 6 1441-1450 (2020)
  10. Polyoxometalates: more than a phasing tool in protein crystallography. Bijelic A, Rompel A. ChemTexts 4 10 (2018)
  11. Determination of the physiological dimer interface of the PhoQ sensor domain. Goldberg SD, Soto CS, Waldburger CD, Degrado WF. J Mol Biol 379 656-665 (2008)
  12. Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus. Shah N, Gaupp R, Moriyama H, Eskridge KM, Moriyama EN, Somerville GA. BMC Genomics 14 524 (2013)
  13. Agrobacterium fabrum atu0526-Encoding Protein Is the Only Chemoreceptor That Regulates Chemoattraction toward the Broad Antibacterial Agent Formic Acid. Wang H, Zhang M, Xu Y, Zong R, Xu N, Guo M. Biology (Basel) 10 1345 (2021)
  14. BCL::contact-low confidence fold recognition hits boost protein contact prediction and de novo structure determination. Karakaş M, Woetzel N, Meiler J. J Comput Biol 17 153-168 (2010)
  15. Expression, purification, crystallization and preliminary X-ray analysis of the extracellular sensory domain of DraK histidine kinase from Streptomyces coelicolor. Yeo KJ, Han YH, Eo Y, Cheong HK. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 909-911 (2013)
  16. Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Hutchin A, Cordery C, Walsh MA, Webb JS, Tews I. Microbiol Spectr 9 e0102621 (2021)


Reviews citing this publication (16)

  1. Stimulus perception in bacterial signal-transducing histidine kinases. Mascher T, Helmann JD, Unden G. Microbiol Mol Biol Rev 70 910-938 (2006)
  2. Molecular Mechanisms of Two-Component Signal Transduction. Zschiedrich CP, Keidel V, Szurmant H. J Mol Biol 428 3752-3775 (2016)
  3. Bacterial sensor kinases: diversity in the recognition of environmental signals. Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL. Annu Rev Microbiol 64 539-559 (2010)
  4. Thermodynamics of protein-ligand interactions: history, presence, and future aspects. Perozzo R, Folkers G, Scapozza L. J Recept Signal Transduct Res 24 1-52 (2004)
  5. Sensor domains of two-component regulatory systems. Cheung J, Hendrickson WA. Curr Opin Microbiol 13 116-123 (2010)
  6. The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Prost LR, Miller SI. Cell Microbiol 10 576-582 (2008)
  7. Sensor complexes regulating two-component signal transduction. Szurmant H, White RA, Hoch JA. Curr Opin Struct Biol 17 706-715 (2007)
  8. Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Wuichet K, Alexander RP, Zhulin IB. Methods Enzymol 422 1-31 (2007)
  9. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Salah Ud-Din AIM, Roujeinikova A. Cell Mol Life Sci 74 3293-3303 (2017)
  10. Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Prost LR, Sanowar S, Miller SI. Immunol Rev 219 55-65 (2007)
  11. Bacterial histidine kinase as signal sensor and transducer. Khorchid A, Ikura M. Int J Biochem Cell Biol 38 307-312 (2006)
  12. Receptor domains of two-component signal transduction systems. Perry J, Koteva K, Wright G. Mol Biosyst 7 1388-1398 (2011)
  13. Use of two-component signal transduction systems in the construction of synthetic genetic networks. Ninfa AJ. Curr Opin Microbiol 13 240-245 (2010)
  14. Sensing by the membrane-bound sensor kinase DcuS: exogenous versus endogenous sensing of C(4)-dicarboxylates in bacteria. Scheu PD, Kim OB, Griesinger C, Unden G. Future Microbiol 5 1383-1402 (2010)
  15. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Antioxid Redox Signal 30 1651-1696 (2019)
  16. Regulation of Resistance in Vancomycin-Resistant Enterococci: The VanRS Two-Component System. Guffey AA, Loll PJ. Microorganisms 9 2026 (2021)

Articles citing this publication (65)

  1. Biological insights from structures of two-component proteins. Gao R, Stock AM. Annu Rev Microbiol 63 133-154 (2009)
  2. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Neiditch MB, Federle MJ, Miller ST, Bassler BL, Hughson FM. Mol Cell 18 507-518 (2005)
  3. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. Navarro MV, Newell PD, Krasteva PV, Chatterjee D, Madden DR, O'Toole GA, Sondermann H. PLoS Biol 9 e1000588 (2011)
  4. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. Wang C, Sang J, Wang J, Su M, Downey JS, Wu Q, Wang S, Cai Y, Xu X, Wu J, Senadheera DB, Cvitkovitch DG, Chen L, Goodman SD, Han A. PLoS Biol 11 e1001493 (2013)
  5. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Hefti MH, Françoijs KJ, de Vries SC, Dixon R, Vervoort J. Eur J Biochem 271 1198-1208 (2004)
  6. Structural characterization of the predominant family of histidine kinase sensor domains. Zhang Z, Hendrickson WA. J Mol Biol 400 335-353 (2010)
  7. Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling. Cho US, Bader MW, Amaya MF, Daley ME, Klevit RE, Miller SI, Xu W. J Mol Biol 356 1193-1206 (2006)
  8. A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA. Sevvana M, Vijayan V, Zweckstetter M, Reinelt S, Madden DR, Herbst-Irmer R, Sheldrick GM, Bott M, Griesinger C, Becker S. J Mol Biol 377 512-523 (2008)
  9. Structural analysis of ligand stimulation of the histidine kinase NarX. Cheung J, Hendrickson WA. Structure 17 190-201 (2009)
  10. Crystal structures of C4-dicarboxylate ligand complexes with sensor domains of histidine kinases DcuS and DctB. Cheung J, Hendrickson WA. J Biol Chem 283 30256-30265 (2008)
  11. Crystal structure of a functional dimer of the PhoQ sensor domain. Cheung J, Bingman CA, Reyngold M, Hendrickson WA, Waldburger CD. J Biol Chem 283 13762-13770 (2008)
  12. PAS-mediated dimerization of soluble guanylyl cyclase revealed by signal transduction histidine kinase domain crystal structure. Ma X, Sayed N, Baskaran P, Beuve A, van den Akker F. J Biol Chem 283 1167-1178 (2008)
  13. C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain. Zhou YF, Nan B, Nan J, Ma Q, Panjikar S, Liang YH, Wang Y, Su XD. J Mol Biol 383 49-61 (2008)
  14. Structure and proposed mechanism for the pH-sensing Helicobacter pylori chemoreceptor TlpB. Goers Sweeney E, Henderson JN, Goers J, Wreden C, Hicks KG, Foster JK, Parthasarathy R, Remington SJ, Guillemin K. Structure 20 1177-1188 (2012)
  15. Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M. J Bacteriol 188 724-732 (2006)
  16. PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis. Xie Z, Ulrich LE, Zhulin IB, Alexandre G. Proc Natl Acad Sci U S A 107 2235-2240 (2010)
  17. Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Busch A, Lacal J, Martos A, Ramos JL, Krell T. Proc Natl Acad Sci U S A 104 13774-13779 (2007)
  18. Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS. Moore JO, Hendrickson WA. Structure 17 1195-1204 (2009)
  19. A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis. Glekas GD, Foster RM, Cates JR, Estrella JA, Wawrzyniak MJ, Rao CV, Ordal GW. J Biol Chem 285 1870-1878 (2010)
  20. Probing bacterial transmembrane histidine kinase receptor-ligand interactions with natural and synthetic molecules. Ng WL, Wei Y, Perez LJ, Cong J, Long T, Koch M, Semmelhack MF, Wingreen NS, Bassler BL. Proc Natl Acad Sci U S A 107 5575-5580 (2010)
  21. Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. Brocker M, Schaffer S, Mack C, Bott M. J Bacteriol 191 3869-3880 (2009)
  22. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. Ewald JC, Reich S, Baumann S, Frommer WB, Zamboni N. PLoS One 6 e28245 (2011)
  23. Helicobacter pylori chemoreceptor TlpC mediates chemotaxis to lactate. Machuca MA, Johnson KS, Liu YC, Steer DL, Ottemann KM, Roujeinikova A. Sci Rep 7 14089 (2017)
  24. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. Chatterjee D, Cooley RB, Boyd CD, Mehl RA, O'Toole GA, Sondermann H. Elife 3 e03650 (2014)
  25. The PhoQ histidine kinases of Salmonella and Pseudomonas spp. are structurally and functionally different: evidence that pH and antimicrobial peptide sensing contribute to mammalian pathogenesis. Prost LR, Daley ME, Bader MW, Klevit RE, Miller SI. Mol Microbiol 69 503-519 (2008)
  26. Extracytoplasmic PAS-like domains are common in signal transduction proteins. Chang C, Tesar C, Gu M, Babnigg G, Joachimiak A, Pokkuluri PR, Szurmant H, Schiffer M. J Bacteriol 192 1156-1159 (2010)
  27. CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo. Scheu PD, Witan J, Rauschmeier M, Graf S, Liao YF, Ebert-Jung A, Basché T, Erker W, Unden G. J Bacteriol 194 636-645 (2012)
  28. Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens: implications for signal transduction. Pokkuluri PR, Pessanha M, Londer YY, Wood SJ, Duke NE, Wilton R, Catarino T, Salgueiro CA, Schiffer M. J Mol Biol 377 1498-1517 (2008)
  29. Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Vincent F, Round A, Reynaud A, Bordi C, Filloux A, Bourne Y. Environ Microbiol 12 1775-1786 (2010)
  30. DNA interaction and phosphotransfer of the C4-dicarboxylate-responsive DcuS-DcuR two-component regulatory system from Escherichia coli. Abo-Amer AE, Munn J, Jackson K, Aktas M, Golby P, Kelly DJ, Andrews SC. J Bacteriol 186 1879-1889 (2004)
  31. Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics. Seixas JD, Mukhopadhyay A, Santos-Silva T, Otterbein LE, Gallo DJ, Rodrigues SS, Guerreiro BH, Gonçalves AM, Penacho N, Marques AR, Coelho AC, Reis PM, Romão MJ, Romão CC. Dalton Trans 42 5985-5998 (2013)
  32. The crystal structure of Bacillus subtilis YycI reveals a common fold for two members of an unusual class of sensor histidine kinase regulatory proteins. Santelli E, Liddington RC, Mohan MA, Hoch JA, Szurmant H. J Bacteriol 189 3290-3295 (2007)
  33. Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO. Blancato VS, Repizo GD, Suárez CA, Magni C. J Bacteriol 190 7419-7430 (2008)
  34. Identification of a High-Affinity Pyruvate Receptor in Escherichia coli. Behr S, Kristoficova I, Witting M, Breland EJ, Eberly AR, Eberly AR, Sachs C, Schmitt-Kopplin P, Hadjifrangiskou M, Jung K. Sci Rep 7 1388 (2017)
  35. Crystal structure of a histidine kinase sensor domain with similarity to periplasmic binding proteins. Cheung J, Le-Khac M, Hendrickson WA. Proteins 77 235-241 (2009)
  36. Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor. Lacal J, García-Fontana C, Callejo-García C, Ramos JL, Krell T. J Mol Recognit 24 378-385 (2011)
  37. The hybrid sensor kinase RscS integrates positive and negative signals to modulate biofilm formation in Vibrio fischeri. Geszvain K, Visick KL. J Bacteriol 190 4437-4446 (2008)
  38. Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. Foo YH, Gao Y, Zhang H, Kenney LJ. Prog Biophys Mol Biol 118 119-129 (2015)
  39. Mechanism of metal ion-induced activation of a two-component sensor kinase. Affandi T, McEvoy MM. Biochem J 476 115-135 (2019)
  40. Structure prediction, evolution and ligand interaction of CHASE domain. Pas J, von Grotthuss M, Wyrwicz LS, Rychlewski L, Barciszewski J. FEBS Lett 576 287-290 (2004)
  41. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2. Monzel C, Unden G. Proc Natl Acad Sci U S A 112 11042-11047 (2015)
  42. MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems. Anantharaman V, Aravind L. Bioinformatics 21 2805-2811 (2005)
  43. Mutational analysis of the signal-sensing domain of ResE histidine kinase from Bacillus subtilis. Baruah A, Lindsey B, Zhu Y, Nakano MM. J Bacteriol 186 1694-1704 (2004)
  44. The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy. Meiler J, Baker D. J Magn Reson 173 310-316 (2005)
  45. From signal perception to signal transduction: ligand-induced dimeric switch of DctB sensory domain in solution. Nan B, Liu X, Zhou Y, Liu J, Zhang L, Wen J, Zhang X, Su XD, Wang YP. Mol Microbiol 75 1484-1494 (2010)
  46. Signal perception by the secretion stress-responsive CssRS two-component system in Bacillus subtilis. Noone D, Botella E, Butler C, Hansen A, Jende I, Devine KM. J Bacteriol 194 1800-1814 (2012)
  47. YycH and YycI Regulate Expression of Staphylococcus aureus Autolysins by Activation of WalRK Phosphorylation. Gajdiss M, Monk IR, Bertsche U, Kienemund J, Funk T, Dietrich A, Hort M, Sib E, Stinear TP, Bierbaum G. Microorganisms 8 E870 (2020)
  48. Genetic and Mechanistic Analyses of the Periplasmic Domain of the Enterohemorrhagic Escherichia coli QseC Histidine Sensor Kinase. Parker CT, Russell R, Njoroge JW, Jimenez AG, Taussig R, Sperandio V. J Bacteriol 199 e00861-16 (2017)
  49. Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications. Kim T, Choi J, Lee S, Yeo KJ, Cheong HK, Kim KK. J Mol Biol 428 3074-3089 (2016)
  50. Site-directed mutagenesis identifies a molecular switch involved in copper sensing by the histidine kinase CinS in Pseudomonas putida KT2440. Quaranta D, McEvoy MM, Rensing C. J Bacteriol 191 5304-5311 (2009)
  51. Identification of ligand specificity determinants in lantibiotic bovicin HJ50 and the receptor BovK, a multitransmembrane histidine kinase. Teng K, Zhang J, Zhang X, Ge X, Gao Y, Wang J, Lin Y, Zhong J. J Biol Chem 289 9823-9832 (2014)
  52. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: structure of one sensor domain from a histidine kinase and another from a chemotaxis protein. Pokkuluri PR, Dwulit-Smith J, Duke NE, Wilton R, Mack JC, Bearden J, Rakowski E, Babnigg G, Szurmant H, Joachimiak A, Schiffer M. Microbiologyopen 2 766-777 (2013)
  53. Sensor domain of histidine kinase KinB of Pseudomonas: a helix-swapped dimer. Tan K, Chhor G, Binkowski TA, Jedrzejczak RP, Makowska-Grzyska M, Joachimiak A. J Biol Chem 289 12232-12244 (2014)
  54. Structural and functional insights into the periplasmic detector domain of the GacS histidine kinase controlling biofilm formation in Pseudomonas aeruginosa. Ali-Ahmad A, Fadel F, Sebban-Kreuzer C, Ba M, Pélissier GD, Bornet O, Guerlesquin F, Bourne Y, Bordi C, Vincent F. Sci Rep 7 11262 (2017)
  55. Conversion of the sensor kinase DcuS of Escherichia coli of the DcuB/DcuS sensor complex to the C4 -dicarboxylate responsive form by the transporter DcuB. Wörner S, Strecker A, Monzel C, Zeltner M, Witan J, Ebert-Jung A, Unden G. Environ Microbiol 18 4920-4930 (2016)
  56. Identification of Key Residues in the NisK Sensor Region for Nisin Biosynthesis Regulation. Ge X, Teng K, Wang J, Zhao F, Zhang J, Zhong J. Front Microbiol 8 106 (2017)
  57. Generation of circularly permuted fluorescent-protein-based indicators for in vitro and in vivo detection of citrate. Honda Y, Kirimura K. PLoS One 8 e64597 (2013)
  58. The Escherichia coli two-component signal sensor BarA binds protonated acetate via a conserved hydrophobic-binding pocket. Alvarez AF, Rodríguez C, González-Chávez R, Georgellis D. J Biol Chem 297 101383 (2021)
  59. Letter Crystal structure of the EnvZ periplasmic domain with CHAPS. Hwang E, Cheong HK, Kim SY, Kwon O, Blain KY, Choe S, Yeo KJ, Jung YW, Jeon YH, Cheong C. FEBS Lett 591 1419-1428 (2017)
  60. A combination of mutational and computational scanning guides the design of an artificial ligand-binding controlled lipase. Kaschner M, Schillinger O, Fettweiss T, Nutschel C, Krause F, Fulton A, Strodel B, Stadler A, Jaeger KE, Krauss U. Sci Rep 7 42592 (2017)
  61. CitA (citrate) and DcuS (C4-dicarboxylate) sensor kinases in thermophilic Geobacillus kaustophilus and Geobacillus thermodenitrificans. Graf S, Broll C, Wissig J, Strecker A, Parowatkin M, Unden G. Microbiology (Reading) 162 127-137 (2016)
  62. A network of net-workers: report of the Euresco conference on 'Bacterial Neural Networks' held at San Feliu (Spain) from 8 to 14 May 2004. Hellingwerf KJ. Mol Microbiol 54 2-13 (2004)
  63. Crystal structure of the sensor domain of BaeS from Serratia marcescens FS14. Zhang Y, Qiu S, Jia S, Xu D, Ran T, Wang W. Proteins 85 1784-1790 (2017)
  64. Molybdenum imidazole citrate and bipyridine homocitrate in different oxidation states - balance between coordinated α-hydroxy and α-alkoxy groups. Wang SY, Zhou ZH. RSC Adv 9 519-528 (2018)
  65. Structural and functional evaluation of recombinant histidine phosphokinase NisK and response regulator NisR: in silico and experimental approach. Heidari S, Hamedi J, Olad G, Amani J, Rastegar Shariat Panahi M, Najafi A. World J Microbiol Biotechnol 35 169 (2019)