1p2c Citations

Structural mechanism for affinity maturation of an anti-lysozyme antibody.

Proc Natl Acad Sci U S A 101 3539-44 (2004)
Cited: 54 times
EuropePMC logo PMID: 14988501

Abstract

In the immune response against a typical T cell-dependent protein antigen, the affinity maturation process is fast and is associated with the early class switch from IgM to IgG. As such, a comprehension of the molecular basis of affinity maturation could be of great importance in biomedical and biotechnological applications. Affinity maturation of anti-protein antibodies has been reported to be the result of small structural changes, mostly confined to the periphery of the antigen-combining site. However, little is understood about how these small structural changes account for the increase in the affinity toward the antigen. Herein, we present the three-dimensional structure of the Fab fragment from BALB/c mouse mAb F10.6.6 in complex with the antigen lysozyme. This antibody was obtained from a long-term exposure to the antigen. mAb F10.6.6, and the previously described antibody D44.1, are the result of identical or nearly identical somatic recombination events. However, different mutations in the framework and variable regions result in an approximately 10(3) higher affinity for the F10.6.6 antibody. The comparison of the three-dimensional structures of these Fab-lysozyme complexes reveals that the affinity maturation produces a fine tuning of the complementarity of the antigen-combining site toward the epitope, explaining at the molecular level how the immune system is able to increase the affinity of an anti-protein antibody to subnanomolar levels.

Articles - 1p2c mentioned but not cited (20)

  1. A structure-based benchmark for protein-protein binding affinity. Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA, Bonvin AM, Janin J. Protein Sci 20 482-491 (2011)
  2. Antibody-protein interactions: benchmark datasets and prediction tools evaluation. Ponomarenko JV, Bourne PE. BMC Struct Biol 7 64 (2007)
  3. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Zhu K, Day T, Warshaviak D, Murrett C, Friesner R, Pearlman D. Proteins 82 1646-1655 (2014)
  4. Improving B-cell epitope prediction and its application to global antibody-antigen docking. Krawczyk K, Liu X, Baker T, Shi J, Deane CM. Bioinformatics 30 2288-2294 (2014)
  5. Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces. Warszawski S, Borenstein Katz A, Lipsh R, Khmelnitsky L, Ben Nissan G, Javitt G, Dym O, Unger T, Knop O, Albeck S, Diskin R, Fass D, Sharon M, Fleishman SJ. PLoS Comput Biol 15 e1007207 (2019)
  6. Molecular determinants for antibody binding on group 1 house dust mite allergens. Chruszcz M, Pomés A, Glesner J, Vailes LD, Osinski T, Porebski PJ, Majorek KA, Heymann PW, Platts-Mills TA, Minor W, Chapman MD. J Biol Chem 287 7388-7398 (2012)
  7. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences. Lapidoth GD, Baran D, Pszolla GM, Norn C, Alon A, Tyka MD, Fleishman SJ. Proteins 83 1385-1406 (2015)
  8. Prediction of antigenic epitopes on protein surfaces by consensus scoring. Liang S, Zheng D, Zhang C, Zacharias M. BMC Bioinformatics 10 302 (2009)
  9. Structural mechanism for affinity maturation of an anti-lysozyme antibody. Cauerhff A, Goldbaum FA, Braden BC. Proc Natl Acad Sci U S A 101 3539-3544 (2004)
  10. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Babor M, Kortemme T. Proteins 75 846-858 (2009)
  11. Antibodies exhibit multiple paratope states influencing VH-VL domain orientations. Fernández-Quintero ML, Pomarici ND, Math BA, Kroell KB, Waibl F, Bujotzek A, Georges G, Liedl KR. Commun Biol 3 589 (2020)
  12. Local and Global Rigidification Upon Antibody Affinity Maturation. Fernández-Quintero ML, Loeffler JR, Bacher LM, Waibl F, Seidler CA, Liedl KR. Front Mol Biosci 7 182 (2020)
  13. Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another. Abdiche YN, Yeung AY, Ni I, Stone D, Miles A, Morishige W, Rossi A, Strop P. PLoS One 12 e0169535 (2017)
  14. Broad epitope coverage of a human in vitro antibody library. Sivasubramanian A, Estep P, Lynaugh H, Yu Y, Miles A, Eckman J, Schutz K, Piffath C, Boland N, Niles RH, Durand S, Boland T, Vásquez M, Xu Y, Abdiche Y. MAbs 9 29-42 (2017)
  15. Structure-based cross-docking analysis of antibody-antigen interactions. Kilambi KP, Gray JJ. Sci Rep 7 8145 (2017)
  16. Novel Structural Parameters of Ig-Ag Complexes Yield a Quantitative Description of Interaction Specificity and Binding Affinity. Marillet S, Lefranc MP, Boudinot P, Cazals F. Front Immunol 8 34 (2017)
  17. Conformational selection of allergen-antibody complexes-surface plasticity of paratopes and epitopes. Fernández-Quintero ML, Loeffler JR, Waibl F, Kamenik AS, Hofer F, Liedl KR. Protein Eng Des Sel 32 513-523 (2019)
  18. Direct-MS analysis of antibody-antigen complexes. Vimer S, Ben-Nissan G, Marty M, Fleishman SJ, Sharon M. Proteomics 21 e2000300 (2021)
  19. Cold spots are universal in protein-protein interactions. Gurusinghe SNS, Oppenheimer B, Shifman JM. Protein Sci 31 e4435 (2022)
  20. Maximum margin classifier working in a set of strings. Koyano H, Hayashida M, Akutsu T. Proc Math Phys Eng Sci 472 20150551 (2016)


Reviews citing this publication (4)

  1. Computer-aided antibody design. Kuroda D, Shirai H, Jacobson MP, Nakamura H. Protein Eng Des Sel 25 507-521 (2012)
  2. Survey of the year 2004 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 18 431-478 (2005)
  3. Generation of recombinant antibodies and means for increasing their affinity. Altshuler EP, Serebryanaya DV, Katrukha AG. Biochemistry (Mosc) 75 1584-1605 (2010)
  4. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Riley TP, Baker BM. Semin Cell Dev Biol 84 30-41 (2018)

Articles citing this publication (30)

  1. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L. Proc Natl Acad Sci U S A 103 4586-4591 (2006)
  2. COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Vangone A, Spinelli R, Scarano V, Cavallo L, Oliva R. Bioinformatics 27 2915-2916 (2011)
  3. Evolution of a designed retro-aldolase leads to complete active site remodeling. Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, Hilvert D. Nat Chem Biol 9 494-498 (2013)
  4. High-affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by X-ray crystallography. Padavattan S, Flicker S, Schirmer T, Madritsch C, Randow S, Reese G, Vieths S, Lupinek C, Ebner C, Valenta R, Markovic-Housley Z. J Immunol 182 2141-2151 (2009)
  5. Affinity maturation of antibodies assisted by in silico modeling. Barderas R, Desmet J, Timmerman P, Meloen R, Casal JI. Proc Natl Acad Sci U S A 105 9029-9034 (2008)
  6. Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. Stanfield RL, Dooley H, Verdino P, Flajnik MF, Wilson IA. J Mol Biol 367 358-372 (2007)
  7. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Dooley H, Stanfield RL, Brady RA, Flajnik MF. Proc Natl Acad Sci U S A 103 1846-1851 (2006)
  8. Structure of IL-17A in complex with a potent, fully human neutralizing antibody. Gerhardt S, Abbott WM, Hargreaves D, Pauptit RA, Davies RA, Needham MR, Langham C, Barker W, Aziz A, Snow MJ, Dawson S, Welsh F, Wilkinson T, Vaugan T, Beste G, Bishop S, Popovic B, Rees G, Sleeman M, Tuske SJ, Coales SJ, Hamuro Y, Russell C. J Mol Biol 394 905-921 (2009)
  9. Toll-like receptor 9 antagonizes antibody affinity maturation. Akkaya M, Akkaya B, Kim AS, Miozzo P, Sohn H, Pena M, Roesler AS, Theall BP, Henke T, Kabat J, Lu J, Dorward DW, Dahlstrom E, Skinner J, Miller LH, Pierce SK. Nat Immunol 19 255-266 (2018)
  10. Structural basis of T-cell specificity and activation by the bacterial superantigen TSST-1. Moza B, Varma AK, Buonpane RA, Zhu P, Herfst CA, Nicholson MJ, Wilbuer AK, Seth NP, Wucherpfennig KW, McCormick JK, Kranz DM, Sundberg EJ. EMBO J 26 1187-1197 (2007)
  11. Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. Rathanaswami P, Roalstad S, Roskos L, Su QJ, Lackie S, Babcook J. Biochem Biophys Res Commun 334 1004-1013 (2005)
  12. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis. Tiller KE, Chowdhury R, Li T, Ludwig SD, Sen S, Maranas CD, Tessier PM. Front Immunol 8 986 (2017)
  13. Transition towards antigen-binding promiscuity of a monospecific antibody. Dimitrov JD, Lacroix-Desmazes S, Kaveri SV, Vassilev TL. Mol Immunol 44 1854-1863 (2007)
  14. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration. Koenig P, Lee CV, Sanowar S, Wu P, Stinson J, Harris SF, Fuh G. J Biol Chem 290 21773-21786 (2015)
  15. Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies. Acierno JP, Braden BC, Klinke S, Goldbaum FA, Cauerhff A. J Mol Biol 374 130-146 (2007)
  16. Epitope diversity of hepatitis B virus capsids: quasi-equivalent variations in spike epitopes and binding of different antibodies to the same epitope. Harris A, Belnap DM, Watts NR, Conway JF, Cheng N, Stahl SJ, Vethanayagam JG, Wingfield PT, Steven AC. J Mol Biol 355 562-576 (2006)
  17. Thermodynamic signatures of the antigen binding site of mAb 447-52D targeting the third variable region of HIV-1 gp120. Killikelly A, Zhang HT, Spurrier B, Williams C, Gorny MK, Zolla-Pazner S, Kong XP. Biochemistry 52 6249-6257 (2013)
  18. A Combination of Structural and Empirical Analyses Delineates the Key Contacts Mediating Stability and Affinity Increases in an Optimized Biotherapeutic Single-chain Fv (scFv). Tu C, Terraube V, Tam AS, Stochaj W, Fennell BJ, Lin L, Stahl M, LaVallie ER, Somers W, Finlay WJ, Mosyak L, Bard J, Cunningham O. J Biol Chem 291 1267-1276 (2016)
  19. Surprisingly Fast Interface and Elbow Angle Dynamics of Antigen-Binding Fragments. Fernández-Quintero ML, Kroell KB, Heiss MC, Loeffler JR, Quoika PK, Waibl F, Bujotzek A, Moessner E, Georges G, Liedl KR. Front Mol Biosci 7 609088 (2020)
  20. A study of the structural correlates of affinity maturation: antibody affinity as a function of chemical interactions, structural plasticity and stability. David MP, Asprer JJ, Ibana JS, Concepcion GP, Padlan EA. Mol Immunol 44 1342-1351 (2007)
  21. Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Jiao L, Liu Y, Zhang X, Liu B, Zhang C, Liu X. Appl Microbiol Biotechnol 101 6071-6082 (2017)
  22. Probing binding mechanism of interleukin-6 and olokizumab: in silico design of potential lead antibodies for autoimmune and inflammatory diseases. Verma R, Yadav M, Pradhan D, Bhuyan R, Aggarwal S, Nayek A, Jain AK. J Recept Signal Transduct Res 36 601-616 (2016)
  23. Deciphering evolution of immune recognition in antibodies. Kaur H, Sain N, Mohanty D, Salunke DM. BMC Struct Biol 18 19 (2018)
  24. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing. Valdés-Alemán J, Téllez-Sosa J, Ovilla-Muñoz M, Godoy-Lozano E, Velázquez-Ramírez D, Valdovinos-Torres H, Gómez-Barreto RE, Martinez-Barnetche J. MAbs 6 493-501 (2014)
  25. Structural Comparison of Human Anti-HIV-1 gp120 V3 Monoclonal Antibodies of the Same Gene Usage Induced by Vaccination and Chronic Infection. Chan KW, Pan R, Costa M, Gorny MK, Wang S, Lu S, Kong XP. J Virol 92 e00641-18 (2018)
  26. Analysis of interleukin 23 and 7G10 interactions for computational design of lead antibodies against immune-mediated inflammatory diseases. Saba Khan N, Verma R, Pradhan D, Nayek A, Bhuyan R, Kumar Sahu T, Kumar Jain A. J Recept Signal Transduct Res 38 327-334 (2018)
  27. Structural Basis of Antibody Conformation and Stability Modulation by Framework Somatic Hypermutation. Sheng Z, Bimela JS, Katsamba PS, Patel SD, Guo Y, Zhao H, Guo Y, Kwong PD, Shapiro L. Front Immunol 12 811632 (2021)
  28. Structure and Dynamics of Stacking Interactions in an Antibody Binding Site. Adhikary R, Zimmermann J, Stanfield RL, Wilson IA, Yu W, Oda M, Romesberg FE. Biochemistry 58 2987-2995 (2019)
  29. Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen. Hutchinson M, Ruffolo JA, Haskins N, Iannotti M, Vozza G, Pham T, Mehzabeen N, Shandilya H, Rickert K, Croasdale-Wood R, Damschroder M, Fu Y, Dippel A, Gray JJ, Kaplan G. MAbs 16 2362775 (2024)
  30. Structural mechanism of Fab domain dissociation as a measure of interface stability. Pomarici ND, Waibl F, Quoika PK, Bujotzek A, Georges G, Fernández-Quintero ML, Liedl KR. J Comput Aided Mol Des 37 201-215 (2023)


Related citations provided by authors (1)

  1. Lack of significant differences in association rates and affinities of antibodies from short-term and long-term responses to hen egg lysozyme. Goldbaum FA, Cauerhff A, Velikovsky CA, Llera AS, Riottot MM, Poljak RJ J. Immunol. 162 6040-6045 (1999)