1p3w Citations

Crystal structure of IscS, a cysteine desulfurase from Escherichia coli.

J Mol Biol 330 1049-59 (2003)
Cited: 109 times
EuropePMC logo PMID: 12860127

Abstract

IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1A. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a=73.70A, b=101.97A, c=108.62A (alpha=beta=gamma=90 degrees ). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R=20.6% (R(free)=23.6%) with two molecules per asymmetric unit. The structure of E.coli IscS is similar to that of T.maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4A. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17A from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within approximately 3A of the pyridoxal phosphate cofactor.

Reviews - 1p3w mentioned but not cited (5)

  1. The mononuclear molybdenum enzymes. Hille R, Hall J, Basu P. Chem Rev 114 3963-4038 (2014)
  2. Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets? Du Q, Wang H, Xie J. Int J Biol Sci 7 41-52 (2011)
  3. The Blueprint of a Minimal Cell: MiniBacillus. Reuß DR, Commichau FM, Gundlach J, Zhu B, Stülke J. Microbiol Mol Biol Rev 80 955-987 (2016)
  4. Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies. Kim JH, Bothe JR, Alderson TR, Markley JL. Biochim Biophys Acta 1853 1416-1428 (2015)
  5. Hybrid Methods in Iron-Sulfur Cluster Biogenesis. Prischi F, Pastore A. Front Mol Biosci 4 12 (2017)

Articles - 1p3w mentioned but not cited (15)

  1. Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, Matte A, Armengod ME, Cygler M. PLoS Biol 8 e1000354 (2010)
  2. The implications of alternative splicing in the ENCODE protein complement. Tress ML, Martelli PL, Frankish A, Reeves GA, Wesselink JJ, Yeats C, Olason PI, Albrecht M, Hegyi H, Giorgetti A, Raimondo D, Lagarde J, Laskowski RA, López G, Sadowski MI, Watson JD, Fariselli P, Rossi I, Nagy A, Kai W, Størling Z, Orsini M, Assenov Y, Blankenburg H, Huthmacher C, Ramírez F, Schlicker A, Denoeud F, Jones P, Kerrien S, Orchard S, Antonarakis SE, Reymond A, Birney E, Brunak S, Casadio R, Guigo R, Harrow J, Hermjakob H, Jones DT, Lengauer T, Orengo CA, Patthy L, Thornton JM, Tramontano A, Valencia A. Proc Natl Acad Sci U S A 104 5495-5500 (2007)
  3. Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A. Nat Commun 1 95 (2010)
  4. Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS. Yan R, Konarev PV, Iannuzzi C, Adinolfi S, Roche B, Kelly G, Simon L, Martin SR, Py B, Barras F, Svergun DI, Pastore A. J Biol Chem 288 24777-24787 (2013)
  5. dndDB: a database focused on phosphorothioation of the DNA backbone. Ou HY, He X, Shao Y, Tai C, Rajakumar K, Deng Z. PLoS One 4 e5132 (2009)
  6. Role of IscX in iron-sulfur cluster biogenesis in Escherichia coli. Kim JH, Bothe JR, Frederick RO, Holder JC, Markley JL. J Am Chem Soc 136 7933-7942 (2014)
  7. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  8. Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N. J Biol Chem 285 12133-12139 (2010)
  9. Structural alterations of the cysteine desulfurase IscS of Salmonella enterica serovar Typhimurium reveal substrate specificity of IscS in tRNA thiolation. Lundgren HK, Björk GR. J Bacteriol 188 3052-3062 (2006)
  10. Biochemical discrimination between selenium and sulfur 1: a single residue provides selenium specificity to human selenocysteine lyase. Collins R, Johansson AL, Karlberg T, Markova N, van den Berg S, Olesen K, Hammarström M, Flores A, Schüler H, Schiavone LH, Brzezinski P, Arnér ES, Högbom M. PLoS One 7 e30581 (2012)
  11. Crystal structure of the cysteine desulfurase DndA from Streptomyces lividans which is involved in DNA phosphorothioation. Chen F, Zhang Z, Lin K, Qian T, Zhang Y, You D, He X, Wang Z, Liang J, Deng Z, Wu G. PLoS One 7 e36635 (2012)
  12. X-ray structures of Nfs2, the plastidial cysteine desulfurase from Arabidopsis thaliana. Roret T, Pégeot H, Couturier J, Mulliert G, Rouhier N, Didierjean C. Acta Crystallogr F Struct Biol Commun 70 1180-1185 (2014)
  13. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. Beliaeva MA, Seebeck FP. JACS Au 2 2098-2107 (2022)
  14. Structural Analysis of an l-Cysteine Desulfurase from an Ssp DNA Phosphorothioation System. Liu L, Jiang S, Xing M, Chen C, Lai C, Li N, Liu G, Wu D, Gao H, Hong L, Tan P, Chen S, Deng Z, Wu G, Wang L. mBio 11 e00488-20 (2020)
  15. Structural evidence for a latch mechanism regulating access to the active site of SufS-family cysteine desulfurases. Dunkle JA, Bruno MR, Frantom PA. Acta Crystallogr D Struct Biol 76 291-301 (2020)


Reviews citing this publication (24)

  1. Structure, function, and formation of biological iron-sulfur clusters. Johnson DC, Dean DR, Smith AD, Johnson MK. Annu Rev Biochem 74 247-281 (2005)
  2. Function and biogenesis of iron-sulphur proteins. Lill R. Nature 460 831-838 (2009)
  3. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Lill R, Mühlenhoff U. Annu Rev Biochem 77 669-700 (2008)
  4. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Mueller EG. Nat Chem Biol 2 185-194 (2006)
  5. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Lill R, Mühlenhoff U. Annu Rev Cell Dev Biol 22 457-486 (2006)
  6. Fe-S cluster assembly pathways in bacteria. Ayala-Castro C, Saini A, Outten FW. Microbiol Mol Biol Rev 72 110-25, table of contents (2008)
  7. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Biochim Biophys Acta 1827 455-469 (2013)
  8. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. Kessler D. FEMS Microbiol Rev 30 825-840 (2006)
  9. Iron cofactor assembly in plants. Balk J, Schaedler TA. Annu Rev Plant Biol 65 125-153 (2014)
  10. Iron-sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Fontecave M, Ollagnier-de-Choudens S. Arch Biochem Biophys 474 226-237 (2008)
  11. Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway. Boyd ES, Thomas KM, Dai Y, Boyd JM, Outten FW. Biochemistry 53 5834-5847 (2014)
  12. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Hidese R, Mihara H, Esaki N. Appl Microbiol Biotechnol 91 47-61 (2011)
  13. Metamorphic protein IscU alternates conformations in the course of its role as the scaffold protein for iron-sulfur cluster biosynthesis and delivery. Markley JL, Kim JH, Dai Z, Bothe JR, Cai K, Frederick RO, Tonelli M. FEBS Lett 587 1172-1179 (2013)
  14. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. Wang L, Jiang S, Deng Z, Dedon PC, Chen S. FEMS Microbiol Rev 43 109-122 (2019)
  15. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Xu XM, Møller SG. Antioxid Redox Signal 15 271-307 (2011)
  16. Recent advances in the Suf Fe-S cluster biogenesis pathway: Beyond the Proteobacteria. Outten FW. Biochim Biophys Acta 1853 1464-1469 (2015)
  17. Fe-S cluster biogenesis by the bacterial Suf pathway. Blahut M, Sanchez E, Fisher CE, Outten FW. Biochim Biophys Acta Mol Cell Res 1867 118829 (2020)
  18. Iron-sulfur cluster biosynthesis in photosynthetic organisms. Kessler D, Papenbrock J. Photosynth Res 86 391-407 (2005)
  19. Assembly and Transfer of Iron-Sulfur Clusters in the Plastid. Lu Y. Front Plant Sci 9 336 (2018)
  20. Iron-sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding. Pérard J, Ollagnier de Choudens S. J Biol Inorg Chem 23 581-596 (2018)
  21. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria. Yokoyama K, Leimkühler S. Biochim Biophys Acta 1853 1335-1349 (2015)
  22. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Das M, Dewan A, Shee S, Singh A. Antioxidants (Basel) 10 997 (2021)
  23. Fe-S Protein Synthesis in Green Algae Mitochondria. Gomez-Casati DF, Busi MV, Barchiesi J, Pagani MA, Marchetti-Acosta NS, Terenzi A. Plants (Basel) 10 200 (2021)
  24. NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Cai K, Markley JL. Molecules 23 E2213 (2018)

Articles citing this publication (65)

  1. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T. Mol Cell 21 97-108 (2006)
  2. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Jang S, Imlay JA. Mol Microbiol 78 1448-1467 (2010)
  3. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Boniecki MT, Freibert SA, Mühlenhoff U, Lill R, Cygler M. Nat Commun 8 1287 (2017)
  4. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP. Biochemistry 53 4904-4913 (2014)
  5. Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site. Ramelot TA, Cort JR, Goldsmith-Fischman S, Kornhaber GJ, Xiao R, Shastry R, Acton TB, Honig B, Montelione GT, Kennedy MA. J Mol Biol 344 567-583 (2004)
  6. Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H. J Biol Chem 279 12363-12368 (2004)
  7. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions. Cory SA, Van Vranken JG, Brignole EJ, Patra S, Winge DR, Drennan CL, Rutter J, Barondeau DP. Proc Natl Acad Sci U S A 114 E5325-E5334 (2017)
  8. (IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Marinoni EN, de Oliveira JS, Nicolet Y, Raulfs EC, Amara P, Dean DR, Fontecilla-Camps JC. Angew Chem Int Ed Engl 51 5439-5442 (2012)
  9. In vivo iron-sulfur cluster formation. Raulfs EC, O'Carroll IP, Dos Santos PC, Unciuleac MC, Dean DR. Proc Natl Acad Sci U S A 105 8591-8596 (2008)
  10. Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Ding H, Clark RJ. Biochem J 379 433-440 (2004)
  11. IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Tan G, Lu J, Bitoun JP, Huang H, Ding H. Biochem J 420 463-472 (2009)
  12. Disordered form of the scaffold protein IscU is the substrate for iron-sulfur cluster assembly on cysteine desulfurase. Kim JH, Tonelli M, Markley JL. Proc Natl Acad Sci U S A 109 454-459 (2012)
  13. A sulfurtransferase is essential for activity of formate dehydrogenases in Escherichia coli. Thomé R, Gust A, Toci R, Mendel R, Bittner F, Magalon A, Walburger A. J Biol Chem 287 4671-4678 (2012)
  14. Mechanism of activation of the human cysteine desulfurase complex by frataxin. Patra S, Barondeau DP. Proc Natl Acad Sci U S A 116 19421-19430 (2019)
  15. Persulfide formation on mitochondrial cysteine desulfurase: enzyme activation by a eukaryote-specific interacting protein and Fe-S cluster synthesis. Pandey A, Golla R, Yoon H, Dancis A, Pain D. Biochem J 448 171-187 (2012)
  16. Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Biochim Biophys Acta 1827 923-937 (2013)
  17. Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron-sulfur cluster scaffold protein (ISCU). Cai K, Frederick RO, Kim JH, Reinen NM, Tonelli M, Markley JL. J Biol Chem 288 28755-28770 (2013)
  18. Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation. Araiso Y, Palioura S, Ishitani R, Sherrer RL, O'Donoghue P, Yuan J, Oshikane H, Domae N, Defranco J, Söll D, Nureki O. Nucleic Acids Res 36 1187-1199 (2008)
  19. Structure of human J-type co-chaperone HscB reveals a tetracysteine metal-binding domain. Bitto E, Bingman CA, Bittova L, Kondrashov DA, Bannen RM, Fox BG, Markley JL, Phillips GN. J Biol Chem 283 30184-30192 (2008)
  20. YfhJ, a molecular adaptor in iron-sulfur cluster formation or a frataxin-like protein? Pastore C, Adinolfi S, Huynen MA, Rybin V, Martin S, Mayer M, Bukau B, Pastore A. Structure 14 857-867 (2006)
  21. Structure and catalytic mechanism of eukaryotic selenocysteine synthase. Ganichkin OM, Xu XM, Carlson BA, Mix H, Hatfield DL, Gladyshev VN, Wahl MC. J Biol Chem 283 5849-5865 (2008)
  22. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Tan G, Yang J, Li T, Zhao J, Sun S, Li X, Lin C, Li J, Zhou H, Lyu J, Ding H. Appl Environ Microbiol 83 e00867-17 (2017)
  23. The cell's cookbook for iron--sulfur clusters: recipes for fool's gold? Balk J, Lill R. Chembiochem 5 1044-1049 (2004)
  24. Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration. Kim S, Park S. J Biol Chem 288 27172-27180 (2013)
  25. Iron-binding activity of human iron-sulfur cluster assembly protein hIscA1. Lu J, Bitoun JP, Tan G, Wang W, Min W, Ding H. Biochem J 428 125-131 (2010)
  26. Of the vulnerability of orphan complex proteins: the case study of the E. coli IscU and IscS proteins. Prischi F, Pastore C, Carroni M, Iannuzzi C, Adinolfi S, Temussi P, Pastore A. Protein Expr Purif 73 161-166 (2010)
  27. Escherichia coli FtnA acts as an iron buffer for re-assembly of iron-sulfur clusters in response to hydrogen peroxide stress. Bitoun JP, Wu G, Ding H. Biometals 21 693-703 (2008)
  28. Structural and functional studies of the mitochondrial cysteine desulfurase from Arabidopsis thaliana. Turowski VR, Busi MV, Gomez-Casati DF. Mol Plant 5 1001-1010 (2012)
  29. Structural, Mechanistic and Coordination Chemistry of Relevance to the Biosynthesis of Iron-Sulfur and Related Iron Cofactors. Qi W, Cowan JA. Coord Chem Rev 255 688-699 (2011)
  30. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Marelja Z, Leimkühler S, Missirlis F. Front Physiol 9 50 (2018)
  31. Crystal structure of Escherichia coli YfhJ protein, a member of the ISC machinery involved in assembly of iron-sulfur clusters. Shimomura Y, Takahashi Y, Kakuta Y, Fukuyama K. Proteins 60 566-569 (2005)
  32. Mitochondrial Cysteine Desulfurase and ISD11 Coexpressed in Escherichia coli Yield Complex Containing Acyl Carrier Protein. Cai K, Frederick RO, Tonelli M, Markley JL. ACS Chem Biol 12 918-921 (2017)
  33. Molecular Mechanism of ISC Iron-Sulfur Cluster Biogenesis Revealed by High-Resolution Native Mass Spectrometry. Lin CW, McCabe JW, Russell DH, Barondeau DP. J Am Chem Soc 142 6018-6029 (2020)
  34. The cysteine desulfurase IscS of Mycobacterium tuberculosis is involved in iron-sulfur cluster biogenesis and oxidative stress defence. Rybniker J, Pojer F, Marienhagen J, Kolly GS, Chen JM, van Gumpel E, Hartmann P, Cole ST. Biochem J 459 467-478 (2014)
  35. Zinc Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Li J, Ren X, Fan B, Huang Z, Wang W, Zhou H, Lou Z, Ding H, Lyu J, Tan G. Appl Environ Microbiol 85 e01967-18 (2019)
  36. Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU. Blauenburg B, Mielcarek A, Altegoer F, Fage CD, Linne U, Bange G, Marahiel MA. PLoS One 11 e0158749 (2016)
  37. Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Lehrke M, Rump S, Heidenreich T, Wissing J, Mendel RR, Bittner F. Biochem J 441 823-832 (2012)
  38. Iron sulfur cluster biosynthesis. Human NFU mediates sulfide delivery to ISU in the final step of [2Fe-2S] cluster assembly. Liu Y, Cowan JA. Chem Commun (Camb) 3192-3194 (2007)
  39. Mapping Key Residues of ISD11 Critical for NFS1-ISD11 Subcomplex Stability: IMPLICATIONS IN THE DEVELOPMENT OF MITOCHONDRIAL DISORDER, COXPD19. Saha PP, Srivastava S, Kumar S K P, Sinha D, D'Silva P. J Biol Chem 290 25876-25890 (2015)
  40. The scaffold protein IscU retains a structured conformation in the Fe-S cluster assembly complex. Yan R, Kelly G, Pastore A. Chembiochem 15 1682-1686 (2014)
  41. Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. Bhubhanil S, Niamyim P, Sukchawalit R, Mongkolsuk S. Microbiology (Reading) 160 79-90 (2014)
  42. Key players and their role during mitochondrial iron-sulfur cluster biosynthesis. Rawat S, Stemmler TL. Chemistry 17 746-753 (2011)
  43. The effect of the adaptor protein Isd11 on the quaternary structure of the eukaryotic cysteine desulphurase Nfs1. Terali K, Beavil RL, Pickersgill RW, van der Giezen M. Biochem Biophys Res Commun 440 235-240 (2013)
  44. The metal core structures in the recombinant Escherichia coli transcriptional factor SoxR. Lo FC, Lee JF, Liaw WF, Hsu IJ, Tsai YF, Chan SI, Yu SS. Chemistry 18 2565-2577 (2012)
  45. Crystal structure and functional studies of an unusual L-cysteine desulfurase from Archaeoglobus fulgidus. Yamanaka Y, Zeppieri L, Nicolet Y, Marinoni EN, de Oliveira JS, Odaka M, Dean DR, Fontecilla-Camps JC. Dalton Trans 42 3092-3099 (2013)
  46. Iron-sulfur cluster biosynthesis: characterization of IscU-IscS complex formation and a structural model for sulfide delivery to the [2Fe-2S] assembly site. Nuth M, Cowan JA. J Biol Inorg Chem 14 829-839 (2009)
  47. Reactive oxygen species regulates expression of iron-sulfur cluster assembly protein IscS of Leishmania donovani. Pratap Singh K, Zaidi A, Anwar S, Bimal S, Das P, Ali V. Free Radic Biol Med 75 195-209 (2014)
  48. SufE D74R Substitution Alters Active Site Loop Dynamics To Further Enhance SufE Interaction with the SufS Cysteine Desulfurase. Dai Y, Kim D, Dong G, Busenlehner LS, Frantom PA, Outten FW. Biochemistry 54 4824-4833 (2015)
  49. Architectural Features of Human Mitochondrial Cysteine Desulfurase Complexes from Crosslinking Mass Spectrometry and Small-Angle X-Ray Scattering. Cai K, Frederick RO, Dashti H, Markley JL. Structure 26 1127-1136.e4 (2018)
  50. Deletion of the Proposed Iron Chaperones IscA/SufA Results in Accumulation of a Red Intermediate Cysteine Desulfurase IscS in Escherichia coli. Yang J, Tan G, Zhang T, White RH, Lu J, Ding H. J Biol Chem 290 14226-14234 (2015)
  51. Isd11p protein activates the mitochondrial cysteine desulfurase Nfs1p protein. Pandey A, Yoon H, Lyver ER, Dancis A, Pain D. J Biol Chem 286 38242-38252 (2011)
  52. A New Tessera into the Interactome of the isc Operon: A Novel Interaction between HscB and IscS. Puglisi R, Yan R, Adinolfi S, Pastore A. Front Mol Biosci 3 48 (2016)
  53. Modulation of MagR magnetic properties via iron-sulfur cluster binding. Guo Z, Xu S, Chen X, Wang C, Yang P, Qin S, Zhao C, Fei F, Zhao X, Tan PH, Wang J, Xie C. Sci Rep 11 23941 (2021)
  54. Cysteine desulfurase is regulated by phosphorylation of Nfs1 in yeast mitochondria. Rocha AG, Knight SAB, Pandey A, Yoon H, Pain J, Pain D, Dancis A. Mitochondrion 40 29-41 (2018)
  55. Expression, purification and characterization of a cysteine desulfurase, IscS, from Acidithiobacillus ferrooxidans. Zeng J, Zhang Y, Liu Y, Zhang X, Xia L, Liu J, Qiu G. Biotechnol Lett 29 1983-1990 (2007)
  56. Regulation of Escherichia coli IscS desulfurase activity by ferrous iron and cysteine. Wu G, Li P, Wu X. Biochem Biophys Res Commun 374 399-404 (2008)
  57. Same but different: Comparison of two system-specific molecular chaperones for the maturation of formate dehydrogenases. Schwanhold N, Iobbi-Nivol C, Lehmann A, Leimkühler S. PLoS One 13 e0201935 (2018)
  58. Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis. Fujishiro T, Nakamura R, Kunichika K, Takahashi Y. Biophys Physicobiol 19 1-18 (2022)
  59. The alr2505 (osiS) gene from Anabaena sp. strain PCC7120 encodes a cysteine desulfurase induced by oxidative stress. Ruiz M, Bettache A, Janicki A, Vinella D, Zhang CC, Latifi A. FEBS J 277 3715-3725 (2010)
  60. Localization and characterization of a putative cysteine desulfurase in Chlamydia psittaci. Wen Y, Chen Y, Li L, Xu M, Tan Y, Li Y, Wang C, Chen Q, Kuang X, Wu Y. J Cell Biochem 120 4409-4422 (2019)
  61. Mechanistic Insights into IscU Conformation Regulation for Fe-S Cluster Biogenesis Revealed by Variable Temperature Electrospray Ionization Native Ion Mobility Mass Spectrometry. Lin CW, Oney-Hawthorne SD, Kuo ST, Barondeau DP, Russell DH. Biochemistry 61 2733-2741 (2022)
  62. The Cysteine Desulfurase IscS Is a Significant Target of 2-Aminoacrylate Damage in Pseudomonas aeruginosa. Fulton RL, Irons J, Downs DM. mBio 13 e0107122 (2022)
  63. Structural and Biochemical Characterization of Staphylococcus aureus Cysteine Desulfurase Complex SufSU. Hudspeth JD, Boncella AE, Sabo ET, Andrews T, Boyd JM, Morrison CN. ACS Omega 7 44124-44133 (2022)
  64. Roles of conserved active site residues in the IscS cysteine desulfurase reaction. Pang Y, Wang J, Gao X, Jiang M, Zhu L, Liang F, Liang M, Wu X, Xu X, Ren X, Xie T, Wang W, Sun Q, Xiong X, Lyu J, Li J, Tan G. Front Microbiol 14 1084205 (2023)
  65. Thiamine-Mediated Microbial Interaction between Auxotrophic Rhodococcus ruber ZM07 and Prototrophic Cooperators in the Tetrahydrofuran-Degrading Microbial Community H-1. Huang H, Wu H, Qi M, Wang H, Lu Z. Microbiol Spectr 11 e0454122 (2023)