1p8j Citations

The crystal structure of the proprotein processing proteinase furin explains its stringent specificity.

Nat Struct Biol 10 520-6 (2003)
Cited: 196 times
EuropePMC logo PMID: 12794637

Abstract

In eukaryotes, many essential secreted proteins and peptide hormones are excised from larger precursors by members of a class of calcium-dependent endoproteinases, the prohormone-proprotein convertases (PCs). Furin, the best-characterized member of the mammalian PC family, has essential functions in embryogenesis and homeostasis but is also implicated in various pathologies such as tumor metastasis, neurodegeneration and various bacterial and viral diseases caused by such pathogens as anthrax and pathogenic Ebola virus strains. Furin cleaves protein precursors with narrow specificity following basic Arg-Xaa-Lys/Arg-Arg-like motifs. The 2.6 A crystal structure of the decanoyl-Arg-Val-Lys-Arg-chloromethylketone (dec-RVKR-cmk)-inhibited mouse furin ectodomain, the first PC structure, reveals an eight-stranded jelly-roll P domain associated with the catalytic domain. Contoured surface loops shape the active site by cleft, thus explaining furin's stringent requirement for arginine at P1 and P4, and lysine at P2 sites by highly charge-complementary pockets. The structure also explains furin's preference for basic residues at P3, P5 and P6 sites. This structure will aid in the rational design of antiviral and antibacterial drugs.

Reviews - 1p8j mentioned but not cited (7)

  1. Cutting back on pro-protein convertases: the latest approaches to pharmacological inhibition. Fugère M, Day R. Trends Pharmacol. Sci. 26 294-301 (2005)
  2. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Millet JK, Whittaker GR. Virus Res. 202 120-134 (2015)
  3. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Shinde U, Thomas G. Methods Mol. Biol. 768 59-106 (2011)
  4. Genetically Engineered Mouse Models Reveal the Importance of Proteases as Osteoarthritis Drug Targets. Miller RE, Lu Y, Tortorella MD, Malfait AM. Curr Rheumatol Rep 15 350 (2013)
  5. Molecular targets and system biology approaches for drug repurposing against SARS-CoV-2. Singh RK, Yadav BS, Mohapatra TM. Bull Natl Res Cent 44 193 (2020)
  6. Why All the Fury over Furin? Osman EEA, Rehemtulla A, Neamati N. J Med Chem 65 2747-2784 (2022)
  7. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G, Fasciglione GF, Di Masi A, Di Pierro D, Bocedi A, Ascenzi P, Coletta M. Biochem Pharmacol 182 114225 (2020)

Articles - 1p8j mentioned but not cited (32)

  1. The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain. Hampton EN, Knuth MW, Li J, Harris JL, Lesley SA, Spraggon G. Proc. Natl. Acad. Sci. U.S.A. 104 14604-14609 (2007)
  2. Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Shiryaev SA, Ratnikov BI, Chekanov AV, Sikora S, Rozanov DV, Godzik A, Wang J, Smith JW, Huang Z, Lindberg I, Samuel MA, Diamond MS, Strongin AY. Biochem. J. 393 503-511 (2006)
  3. Structural basis for Ca2+-independence and activation by homodimerization of tomato subtilase 3. Ottmann C, Rose R, Huttenlocher F, Cedzich A, Hauske P, Kaiser M, Huber R, Schaller A. Proc. Natl. Acad. Sci. U.S.A. 106 17223-17228 (2009)
  4. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. Becker GL, Sielaff F, Than ME, Lindberg I, Routhier S, Day R, Lu Y, Garten W, Steinmetzer T. J. Med. Chem. 53 1067-1075 (2010)
  5. Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine. Jiao GS, Cregar L, Wang J, Millis SZ, Tang C, O'Malley S, Johnson AT, Sareth S, Larson J, Thomas G. Proc. Natl. Acad. Sci. U.S.A. 103 19707-19712 (2006)
  6. Identification of a pH sensor in the furin propeptide that regulates enzyme activation. Feliciangeli SF, Thomas L, Scott GK, Subbian E, Hung CH, Molloy SS, Jean F, Shinde U, Thomas G. J. Biol. Chem. 281 16108-16116 (2006)
  7. The Multi-Leu peptide inhibitor discriminates between PACE4 and furin and exhibits antiproliferative effects on prostate cancer cells. Levesque C, Fugère M, Kwiatkowska A, Couture F, Desjardins R, Routhier S, Moussette P, Prahl A, Lammek B, Appel JR, Houghten RA, D'Anjou F, Dory YL, Neugebauer W, Day R. J. Med. Chem. 55 10501-10511 (2012)
  8. Autocatalytic activation of the furin zymogen requires removal of the emerging enzyme's N-terminus from the active site. Gawlik K, Shiryaev SA, Zhu W, Motamedchaboki K, Desjardins R, Day R, Remacle AG, Stec B, Strongin AY. PLoS ONE 4 e5031 (2009)
  9. High-resolution analysis and functional mapping of cleavage sites and substrate proteins of furin in the human proteome. Shiryaev SA, Chernov AV, Golubkov VS, Thomsen ER, Chudin E, Chee MS, Kozlov IA, Strongin AY, Cieplak P. PLoS ONE 8 e54290 (2013)
  10. Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. Çakır B, Okuyan B, Şener G, Tunali-Akbay T. Eur J Pharmacol 891 173781 (2021)
  11. Selective and potent furin inhibitors protect cells from anthrax without significant toxicity. Remacle AG, Gawlik K, Golubkov VS, Cadwell GW, Liddington RC, Cieplak P, Millis SZ, Desjardins R, Routhier S, Yuan XW, Neugebauer WA, Day R, Strongin AY. Int. J. Biochem. Cell Biol. 42 987-995 (2010)
  12. Source of high pathogenicity of an avian influenza virus H5N1: why H5 is better cleaved by furin. Decha P, Rungrotmongkol T, Intharathep P, Malaisree M, Aruksakunwong O, Laohpongspaisan C, Parasuk V, Sompornpisut P, Pianwanit S, Kokpol S, Hannongbua S. Biophys. J. 95 128-134 (2008)
  13. Beauty is in the eye of the beholder: proteins can recognize binding sites of homologous proteins in more than one way. Martin J. PLoS Comput. Biol. 6 e1000821 (2010)
  14. Energetic and structural basis for activation of the epithelial sodium channel by matriptase. Kota P, García-Caballero A, Dang H, Gentzsch M, Stutts MJ, Dokholyan NV. Biochemistry 51 3460-3469 (2012)
  15. A novel enediynyl peptide inhibitor of furin that blocks processing of proPDGF-A, B and proVEGF-C. Basak A, Khatib AM, Mohottalage D, Basak S, Kolajova M, Bag SS, Basak A. PLoS ONE 4 e7700 (2009)
  16. Identification of proprotein convertase substrates using genome-wide expression correlation analysis. Turpeinen H, Kukkurainen S, Pulkkinen K, Kauppila T, Ojala K, Hytönen VP, Pesu M. BMC Genomics 12 618 (2011)
  17. Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism. Dahms SO, Arciniega M, Steinmetzer T, Huber R, Than ME. Proc. Natl. Acad. Sci. U.S.A. 113 11196-11201 (2016)
  18. Proprotein convertase subtilisin/kexin type 7 (PCSK7) is essential for the zebrafish development and bioavailability of transforming growth factor β1a (TGFβ1a). Turpeinen H, Oksanen A, Kivinen V, Kukkurainen S, Uusimäki A, Rämet M, Parikka M, Hytönen VP, Nykter M, Pesu M. J. Biol. Chem. 288 36610-36623 (2013)
  19. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Dev. Cell 43 418-435.e13 (2017)
  20. BacMam production and crystal structure of nonglycosylated apo human furin at 1.89 Å resolution. Pearce KH, Overton LK, Gampe RT, Barrett GB, Taylor JD, McKee DD, Campobasso N, Nolte RT, Reid RA. Acta Crystallogr F Struct Biol Commun 75 239-245 (2019)
  21. Differential recognition of Old World and New World arenavirus envelope glycoproteins by subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Burri DJ, da Palma JR, Seidah NG, Zanotti G, Cendron L, Pasquato A, Kunz S. J. Virol. 87 6406-6414 (2013)
  22. Structural basis for dual-inhibition mechanism of a non-classical Kazal-type serine protease inhibitor from horseshoe crab in complex with subtilisin. Shenoy RT, Thangamani S, Velazquez-Campoy A, Ho B, Ding JL, Sivaraman J. PLoS ONE 6 e18838 (2011)
  23. Structure of Furin Protease Binding to SARS-CoV-2 Spike Glycoprotein and Implications for Potential Targets and Virulence. Vankadari N. J Phys Chem Lett 11 6655-6663 (2020)
  24. Identification of serpin determinants of specificity and selectivity for furin inhibition through studies of α1PDX (α1-protease inhibitor Portland)-serpin B8 and furin active-site loop chimeras. Izaguirre G, Qi L, Lima M, Olson ST. J. Biol. Chem. 288 21802-21814 (2013)
  25. Crystal structure of inhibitor-bound human MSPL that can activate high pathogenic avian influenza. Ohno A, Maita N, Tabata T, Nagano H, Arita K, Ariyoshi M, Uchida T, Nakao R, Ulla A, Sugiura K, Kishimoto K, Teshima-Kondo S, Okumura Y, Nikawa T. Life Sci Alliance 4 e202000849 (2021)
  26. Identification of a small molecule that selectively inhibits mouse PC2 over mouse PC1/3: a computational and experimental study. Yongye AB, Vivoli M, Lindberg I, Appel JR, Houghten RA, Martinez-Mayorga K. PLoS ONE 8 e56957 (2013)
  27. Structure of Salmonella FlhE, conserved member of a flagellar type III secretion operon. Lee J, Monzingo AF, Keatinge-Clay AT, Harshey RM. J. Mol. Biol. 427 1254-1262 (2015)
  28. The polybasic insert, the RBD of the SARS-CoV-2 spike protein, and the feline coronavirus - evolved or yet to evolve. Budhraja A, Pandey S, Kannan S, Verma CS, Venkatraman P. Biochem Biophys Rep 25 100907 (2021)
  29. Therapeutic strategies for Covid-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins. Khattab ESAEH, Ragab A, Abol-Ftouh MA, Elhenawy AA. J Biomol Struct Dyn 1-19 (2021)
  30. Capturing a Crucial 'Disorder-to-Order Transition' at the Heart of the Coronavirus Molecular Pathology-Triggered by Highly Persistent, Interchangeable Salt-Bridges. Roy S, Ghosh P, Bandyopadhyay A, Basu S. Vaccines (Basel) 10 301 (2022)
  31. Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022). Miner JC, Fenimore PW, Fischer WM, McMahon BH, Sanbonmatsu KY, Tung CS. Curr Res Struct Biol 4 220-230 (2022)
  32. Prediction of the Effects of Variants and Differential Expression of Key Host Genes ACE2, TMPRSS2, and FURIN in SARS-CoV-2 Pathogenesis: An In Silico Approach. Hossain MS, Tonmoy MIQ, Fariha A, Islam MS, Roy AS, Islam MN, Kar K, Alam MR, Rahaman MM. Bioinform Biol Insights 15 11779322211054684 (2021)


Reviews citing this publication (25)

  1. The biology and therapeutic targeting of the proprotein convertases. Seidah NG, Prat A. Nat Rev Drug Discov 11 367-383 (2012)
  2. Fusion protein linkers: property, design and functionality. Chen X, Zaro JL, Shen WC. Adv. Drug Deliv. Rev. 65 1357-1369 (2013)
  3. Cadherin-mediated cell-cell adhesion: sticking together as a family. Patel SD, Chen CP, Bahna F, Honig B, Shapiro L. Curr. Opin. Struct. Biol. 13 690-698 (2003)
  4. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. Annu. Rev. Pharmacol. Toxicol. 48 393-423 (2008)
  5. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Doucet A, Butler GS, Rodríguez D, Prudova A, Overall CM. Mol. Cell Proteomics 7 1925-1951 (2008)
  6. Proprotein convertases in health and disease. Artenstein AW, Opal SM. N. Engl. J. Med. 365 2507-2518 (2011)
  7. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. Saeki K, Ozaki K, Kobayashi T, Ito S. J. Biosci. Bioeng. 103 501-508 (2007)
  8. The kindest cuts of all: crystal structures of Kex2 and furin reveal secrets of precursor processing. Rockwell NC, Thorner JW. Trends Biochem. Sci. 29 80-87 (2004)
  9. Processing of peptide and hormone precursors at the dibasic cleavage sites. Rholam M, Fahy C. Cell. Mol. Life Sci. 66 2075-2091 (2009)
  10. Regulation of TGFβ and related signals by precursor processing. Constam DB. Semin. Cell Dev. Biol. 32 85-97 (2014)
  11. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JW. Endocr Rev 37 347-371 (2016)
  12. Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels. Stawowy P, Fleck E. J. Mol. Med. 83 865-875 (2005)
  13. Targeting bacterial toxins. Ivarsson ME, Leroux JC, Castagner B. Angew. Chem. Int. Ed. Engl. 51 4024-4045 (2012)
  14. Processing of cocaine- and amphetamine-regulated transcript (CART) precursor proteins by prohormone convertases (PCs) and its implications. Stein J, Steiner DF, Dey A. Peptides 27 1919-1925 (2006)
  15. The proprotein convertase furin in tumour progression. Jaaks P, Bernasconi M. Int. J. Cancer 141 654-663 (2017)
  16. Therapeutic uses of furin and its inhibitors: a patent review. Couture F, Kwiatkowska A, Dory YL, Day R. Expert Opin Ther Pat 25 379-396 (2015)
  17. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Luczo JM, Stambas J, Durr PA, Michalski WP, Bingham J. Rev. Med. Virol. 25 406-430 (2015)
  18. Identification of novel endometrial targets for contraception. Nie G, Findlay JK, Salamonsen LA. Contraception 71 272-281 (2005)
  19. Alirocumab: PCSK9 inhibitor for LDL cholesterol reduction. Tavori H, Melone M, Rashid S. Expert Rev Cardiovasc Ther 12 1137-1144 (2014)
  20. Mouse Models of Human Proprotein Convertase Insufficiency. Shakya M, Lindberg I. Endocr Rev 42 259-294 (2021)
  21. Subtilisin-like proteases in nematodes. Poole CB, Jin J, McReynolds LA. Mol. Biochem. Parasitol. 155 1-8 (2007)
  22. Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Edenfield RC, Easley CA. Nat Rev Urol 19 116-127 (2022)
  23. Furin-mediated protein processing in infectious diseases and cancer. Braun E, Sauter D. Clin Transl Immunology 8 e1073 (2019)
  24. The Path to Therapeutic Furin Inhibitors: From Yeast Pheromones to SARS-CoV-2. Thomas G, Couture F, Kwiatkowska A. Int J Mol Sci 23 3435 (2022)
  25. The relevant information about the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the five-question approach (when, where, what, why, and how) and its impact on the environment. AlMalki FA, Albukhaty S, Alyamani AA, Khalaf MN, Thomas S. Environ Sci Pollut Res Int (2022)

Articles citing this publication (132)

  1. Prediction of proprotein convertase cleavage sites. Duckert P, Brunak S, Blom N. Protein Eng. Des. Sel. 17 107-112 (2004)
  2. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG. Science 319 1830-1834 (2008)
  3. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, Mansour MN, McGrath KM, Seddon AP, Shenolikar S, Stutzman-Engwall KJ, Warren LC, Xia D, Qiu X. Nat. Struct. Mol. Biol. 14 413-419 (2007)
  4. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Liang G, Ren H, Rao J. Nat Chem 2 54-60 (2010)
  5. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. Jackson RS, Creemers JW, Farooqi IS, Raffin-Sanson ML, Varro A, Dockray GJ, Holst JJ, Brubaker PL, Corvol P, Polonsky KS, Ostrega D, Becker KL, Bertagna X, Hutton JC, White A, Dattani MT, Hussain K, Middleton SJ, Nicole TM, Milla PJ, Lindley KJ, O'Rahilly S. J. Clin. Invest. 112 1550-1560 (2003)
  6. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S, Thibault ST, Shan B, Walker NP. Structure 15 545-552 (2007)
  7. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. Farooqi IS, Volders K, Stanhope R, Heuschkel R, White A, Lank E, Keogh J, O'Rahilly S, Creemers JW. J Clin Endocrinol Metab 92 3369-3373 (2007)
  8. Functional characterization of Narc 1, a novel proteinase related to proteinase K. Naureckiene S, Ma L, Sreekumar K, Purandare U, Lo CF, Huang Y, Chiang LW, Grenier JM, Ozenberger BA, Jacobsen JS, Kennedy JD, DiStefano PS, Wood A, Bingham B. Arch. Biochem. Biophys. 420 55-67 (2003)
  9. Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. Henrich S, Lindberg I, Bode W, Than ME. J. Mol. Biol. 345 211-227 (2005)
  10. VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Szumska D, Pieles G, Essalmani R, Bilski M, Mesnard D, Kaur K, Franklyn A, El Omari K, Jefferis J, Bentham J, Taylor JM, Schneider JE, Arnold SJ, Johnson P, Tymowska-Lalanne Z, Stammers D, Clarke K, Neubauer S, Morris A, Brown SD, Shaw-Smith C, Cama A, Capra V, Ragoussis J, Constam D, Seidah NG, Prat A, Bhattacharya S. Genes Dev. 22 1465-1477 (2008)
  11. In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate. Essalmani R, Zaid A, Marcinkiewicz J, Chamberland A, Pasquato A, Seidah NG, Prat A. Proc. Natl. Acad. Sci. U.S.A. 105 5750-5755 (2008)
  12. Cleavages within the prodomain direct intracellular trafficking and degradation of mature bone morphogenetic protein-4. Degnin C, Jean F, Thomas G, Christian JL. Mol. Biol. Cell 15 5012-5020 (2004)
  13. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. Ericsson DJ, Kasrayan A, Johansson P, Bergfors T, Sandström AG, Bäckvall JE, Mowbray SL. J. Mol. Biol. 376 109-119 (2008)
  14. Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. Junjhon J, Lausumpao M, Supasa S, Noisakran S, Songjaeng A, Saraithong P, Chaichoun K, Utaipat U, Keelapang P, Kanjanahaluethai A, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. J. Virol. 82 10776-10791 (2008)
  15. Polyductin undergoes notch-like processing and regulated release from primary cilia. Kaimori JY, Nagasawa Y, Menezes LF, Garcia-Gonzalez MA, Deng J, Imai E, Onuchic LF, Guay-Woodford LM, Germino GG. Hum. Mol. Genet. 16 942-956 (2007)
  16. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system. Limaye A, Koya V, Samsam M, Daniell H. FASEB J. 20 959-961 (2006)
  17. Protection against anthrax toxemia by hexa-D-arginine in vitro and in vivo. Sarac MS, Peinado JR, Leppla SH, Lindberg I. Infect. Immun. 72 602-605 (2004)
  18. Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. Becker GL, Lu Y, Hardes K, Strehlow B, Levesque C, Lindberg I, Sandvig K, Bakowsky U, Day R, Garten W, Steinmetzer T. J. Biol. Chem. 287 21992-22003 (2012)
  19. A systematic study of site-specific GalNAc-type O-glycosylation modulating proprotein convertase processing. Schjoldager KT, Vester-Christensen MB, Goth CK, Petersen TN, Brunak S, Bennett EP, Levery SB, Clausen H. J. Biol. Chem. 286 40122-40132 (2011)
  20. Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of ranvier formation. Maertens B, Hopkins D, Franzke CW, Keene DR, Bruckner-Tuderman L, Greenspan DS, Koch M. J Biol Chem 282 10647-10659 (2007)
  21. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Creemers JW, Choquet H, Stijnen P, Vatin V, Pigeyre M, Beckers S, Meulemans S, Than ME, Yengo L, Tauber M, Balkau B, Elliott P, Jarvelin MR, Van Hul W, Van Gaal L, Horber F, Pattou F, Froguel P, Meyre D. Diabetes 61 383-390 (2012)
  22. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD, Duhamel GE, Whittaker GR. Emerging Infect. Dis. 19 1066-1073 (2013)
  23. 1.2 A crystal structure of the serine carboxyl proteinase pro-kumamolisin; structure of an intact pro-subtilase. Comellas-Bigler M, Maskos K, Huber R, Oyama H, Oda K, Bode W. Structure 12 1313-1323 (2004)
  24. Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. Du F, Hui Y, Zhang M, Linton MF, Fazio S, Fan D. J. Biol. Chem. 286 43054-43061 (2011)
  25. Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Louagie E, Taylor NA, Flamez D, Roebroek AJ, Bright NA, Meulemans S, Quintens R, Herrera PL, Schuit F, Van de Ven WJ, Creemers JW. Proc. Natl. Acad. Sci. U.S.A. 105 12319-12324 (2008)
  26. The proprotein convertase SKI-1/S1P. In vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors. Pasquato A, Pullikotil P, Asselin MC, Vacatello M, Paolillo L, Ghezzo F, Basso F, Di Bello C, Dettin M, Seidah NG. J Biol Chem 281 23471-23481 (2006)
  27. Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules. Komiyama T, Coppola JM, Larsen MJ, van Dort ME, Ross BD, Day R, Rehemtulla A, Fuller RS. J. Biol. Chem. 284 15729-15738 (2009)
  28. Short polybasic peptide sequences are potent inhibitors of PC5/6 and PC7: Use of positional scanning-synthetic peptide combinatorial libraries as a tool for the optimization of inhibitory sequences. Fugere M, Appel J, Houghten RA, Lindberg I, Day R. Mol Pharmacol 71 323-332 (2007)
  29. Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin. Schroeder NE, Androwski RJ, Rashid A, Lee H, Lee J, Barr MM. Curr. Biol. 23 1527-1535 (2013)
  30. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Dragulescu-Andrasi A, Liang G, Rao J. Bioconjug. Chem. 20 1660-1666 (2009)
  31. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Couture F, D'Anjou F, Day R. Biomol Concepts 2 421-438 (2011)
  32. Prediction of neuropeptide cleavage sites in insects. Southey BR, Sweedler JV, Rodriguez-Zas SL. Bioinformatics 24 815-825 (2008)
  33. Insulin augments matrix metalloproteinase-9 expression in monocytes. Fischoeder A, Meyborg H, Stibenz D, Fleck E, Graf K, Stawowy P. Cardiovasc. Res. 73 841-848 (2007)
  34. A single amino acid change, Q114R, in the cleavage-site sequence of Newcastle disease virus fusion protein attenuates viral replication and pathogenicity. Samal S, Kumar S, Khattar SK, Samal SK. J. Gen. Virol. 92 2333-2338 (2011)
  35. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. Bader O, Krauke Y, Hube B. BMC Microbiol. 8 116 (2008)
  36. Inhibiting uterine PC6 blocks embryo implantation: an obligatory role for a proprotein convertase in fertility. Nie G, Li Y, Wang M, Liu YX, Findlay JK, Salamonsen LA. Biol. Reprod. 72 1029-1036 (2005)
  37. The CDX2 transcription factor regulates furin expression during intestinal epithelial cell differentiation. Gendron FP, Mongrain S, Laprise P, McMahon S, Dubois CM, Blais M, Asselin C, Rivard N. Am. J. Physiol. Gastrointest. Liver Physiol. 290 G310-8 (2006)
  38. Biosynthesis and secretion of insect lipoprotein: involvement of furin in cleavage of the apoB homolog, apolipophorin-II/I. Smolenaars MM, Kasperaitis MA, Richardson PE, Rodenburg KW, Van der Horst DJ. J. Lipid Res. 46 412-421 (2005)
  39. Controlling intracellular macrocyclization for the imaging of protease activity. Ye D, Liang G, Ma ML, Rao J. Angew. Chem. Int. Ed. Engl. 50 2275-2279 (2011)
  40. Prediction of neuropeptide prohormone cleavages with application to RFamides. Southey BR, Rodriguez-Zas SL, Sweedler JV. Peptides 27 1087-1098 (2006)
  41. Inhibition of furin by serpin Spn4A from Drosophila melanogaster. Oley M, Letzel MC, Ragg H. FEBS Lett. 577 165-169 (2004)
  42. The highly pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an extended cleavage site through recombination with host 28S rRNA. Maurer-Stroh S, Lee RT, Gunalan V, Eisenhaber F. Virol. J. 10 139 (2013)
  43. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. Gorski JP, Huffman NT, Chittur S, Midura RJ, Black C, Oxford J, Seidah NG. J. Biol. Chem. 286 1836-1849 (2011)
  44. Cross-inhibition between furin and lethal factor inhibitors. Peinado JR, Kacprzak MM, Leppla SH, Lindberg I. Biochem. Biophys. Res. Commun. 321 601-605 (2004)
  45. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability. Foophow T, Tanaka S, Angkawidjaja C, Koga Y, Takano K, Kanaya S. J. Mol. Biol. 400 865-877 (2010)
  46. Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. Tegge AN, Southey BR, Sweedler JV, Rodriguez-Zas SL. Mamm. Genome 19 106-120 (2008)
  47. Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Dey A, Norrbom C, Zhu X, Stein J, Zhang C, Ueda K, Steiner DF. Endocrinology 145 1961-1971 (2004)
  48. Proprotein convertases as therapeutic targets. Chrétien M, Seidah NG, Basak A, Mbikay M. Expert Opin. Ther. Targets 12 1289-1300 (2008)
  49. Letter X-ray structures of human furin in complex with competitive inhibitors. Dahms SO, Hardes K, Becker GL, Steinmetzer T, Brandstetter H, Than ME. ACS Chem. Biol. 9 1113-1118 (2014)
  50. Significance of prohormone convertase 2, PC2, mediated initial cleavage at the proglucagon interdomain site, Lys70-Arg71, to generate glucagon. Dey A, Lipkind GM, Rouillé Y, Norrbom C, Stein J, Zhang C, Carroll R, Steiner DF. Endocrinology 146 713-727 (2005)
  51. Unique insertions within Plasmodium falciparum subtilisin-like protease-1 are crucial for enzyme maturation and activity. Jean L, Withers-Martinez C, Hackett F, Blackman MJ. Mol. Biochem. Parasitol. 144 187-197 (2005)
  52. Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Guo XL, Li L, Wei DQ, Zhu YS, Chou KC. Amino Acids 35 375-382 (2008)
  53. Structural basis for the kexin-like serine protease from Aeromonas sobria as sepsis-causing factor. Kobayashi H, Utsunomiya H, Yamanaka H, Sei Y, Katunuma N, Okamoto K, Tsuge H. J. Biol. Chem. 284 27655-27663 (2009)
  54. A study of human furin specificity using synthetic peptides derived from natural substrates, and effects of potassium ions. Izidoro MA, Gouvea IE, Santos JA, Assis DM, Oliveira V, Judice WA, Juliano MA, Lindberg I, Juliano L. Arch. Biochem. Biophys. 487 105-114 (2009)
  55. Model for substrate interactions in C5a peptidase from Streptococcus pyogenes: A 1.9 A crystal structure of the active form of ScpA. Kagawa TF, O'Connell MR, Mouat P, Paoli M, O'Toole PW, Cooney JC. J. Mol. Biol. 386 754-772 (2009)
  56. Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3. Dillon SL, Williamson DM, Elferich J, Radler D, Joshi R, Thomas G, Shinde U. J. Mol. Biol. 423 47-62 (2012)
  57. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection. Egerer L, Volk A, Kahle J, Kimpel J, Brauer F, Hermann FG, von Laer D. Mol. Ther. 19 1236-1244 (2011)
  58. The proprotein convertase KPC-1/furin controls branching and self-avoidance of sensory dendrites in Caenorhabditis elegans. Salzberg Y, Ramirez-Suarez NJ, Bülow HE. PLoS Genet. 10 e1004657 (2014)
  59. Comparative study of the binding pockets of mammalian proprotein convertases and its implications for the design of specific small molecule inhibitors. Tian S, Jianhua W. Int. J. Biol. Sci. 6 89-95 (2010)
  60. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. Hsieh SC, Wu YC, Zou G, Nerurkar VR, Shi PY, Wang WK. J. Biol. Chem. 289 33149-33160 (2014)
  61. Characterization of the molecular basis of the Drosophila mutations in carboxypeptidase D. Effect on enzyme activity and expression. Sidyelyeva G, Baker NE, Fricker LD. J. Biol. Chem. 281 13844-13852 (2006)
  62. Domain flexibility modulates the heterogeneous assembly mechanism of anthrax toxin protective antigen. Feld GK, Kintzer AF, Tang II, Thoren KL, Krantz BA. J. Mol. Biol. 415 159-174 (2012)
  63. Functional insight into the C-terminal extension of halolysin SptA from haloarchaeon Natrinema sp. J7. Xu Z, Du X, Li T, Gan F, Tang B, Tang XF. PLoS ONE 6 e23562 (2011)
  64. Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cheng YW, Chao TL, Li CL, Chiu MF, Kao HC, Wang SH, Pang YH, Lin CH, Tsai YM, Lee WH, Tao MH, Ho TC, Wu PY, Jang LT, Chen PJ, Chang SY, Yeh SH. Cell Rep 33 108254 (2020)
  65. Identification of furin pro-region determinants involved in folding and activation. Bissonnette L, Charest G, Longpré JM, Lavigne P, Leduc R. Biochem. J. 379 757-763 (2004)
  66. Novel Furin Inhibitors with Potent Anti-infectious Activity. Hardes K, Becker GL, Lu Y, Dahms SO, Köhler S, Beyer W, Sandvig K, Yamamoto H, Lindberg I, Walz L, von Messling V, Than ME, Garten W, Steinmetzer T. ChemMedChem 10 1218-1231 (2015)
  67. Opposite roles of furin and PC5A in N-cadherin processing. Maret D, Sadr MS, Sadr ES, Colman DR, Del Maestro RF, Seidah NG. Neoplasia 14 880-892 (2012)
  68. PSMA specific single chain antibody-mediated targeted knockdown of Notch1 inhibits human prostate cancer cell proliferation and tumor growth. Su Y, Yu L, Liu N, Guo Z, Wang G, Zheng J, Wei M, Wang H, Yang AG, Qin W, Wen W. Cancer Lett. 338 282-291 (2013)
  69. Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2. Wheatley JL, Holyoak T. Proc. Natl. Acad. Sci. U.S.A. 104 6626-6631 (2007)
  70. K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin. Szláma G, Trexler M, Buday L, Patthy L. FEBS Lett. 589 295-301 (2015)
  71. Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furin. Rozan L, Krysan DJ, Rockwell NC, Fuller RS. J. Biol. Chem. 279 35656-35663 (2004)
  72. Recombinant expression, purification, and kinetic and inhibitor characterisation of human site-1-protease. Bodvard K, Mohlin J, Knecht W. Protein Expr. Purif. 51 308-319 (2007)
  73. Selective killing of Burkitt's lymphoma cells by mBAFF-targeted delivery of PinX1. Zhang L, Jiang Y, Zheng Y, Zeng Y, Yang Z, Huang G, Liu D, Gao M, Shen X, Wu G, Yan X, He F. Leukemia 25 331-340 (2011)
  74. Single amino acid substitution in the PC1/3 propeptide can induce significant modifications of its inhibitory profile toward its cognate enzyme. Rabah N, Gauthier D, Wilkes BC, Gauthier DJ, Lazure C. J Biol Chem 281 7556-7567 (2006)
  75. Inhibition of prohormone convertases PC1/3 and PC2 by 2,5-dideoxystreptamine derivatives. Vivoli M, Caulfield TR, Martínez-Mayorga K, Johnson AT, Jiao GS, Lindberg I. Mol. Pharmacol. 81 440-454 (2012)
  76. Insights into the maturation of hyperthermophilic pyrolysin and the roles of its N-terminal propeptide and long C-terminal extension. Dai Z, Fu H, Zhang Y, Zeng J, Tang B, Tang XF. Appl. Environ. Microbiol. 78 4233-4241 (2012)
  77. Biochemical and cell biological properties of the human prohormone convertase 1/3 Ser357Gly mutation: a PC1/3 hypermorph. Blanco EH, Peinado JR, Martín MG, Lindberg I. Endocrinology 155 3434-3447 (2014)
  78. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Zhang Y, Ultsch M, Skelton NJ, Burdick DJ, Beresini MH, Li W, Kong-Beltran M, Peterson A, Quinn J, Chiu C, Wu Y, Shia S, Moran P, Di Lello P, Eigenbrot C, Kirchhofer D. Nat. Struct. Mol. Biol. 24 848-856 (2017)
  79. Ebola virus envelope glycoprotein derived peptide in human Furin-bound state: computational studies. Omotuyi IO. J. Biomol. Struct. Dyn. 33 461-470 (2015)
  80. Furin: A Potential Therapeutic Target for COVID-19. Wu C, Zheng M, Yang Y, Gu X, Yang K, Li M, Liu Y, Zhang Q, Zhang P, Wang Y, Wang Q, Xu Y, Zhou Y, Zhang Y, Chen L, Li H. iScience 23 101642 (2020)
  81. Editorial Should we discount the laboratory origin of COVID-19? Segreto R, Deigin Y, McCairn K, Sousa A, Sirotkin D, Sirotkin K, Couey JJ, Jones A, Zhang D. Environ Chem Lett 1-15 (2021)
  82. A small-molecule FRET reporter for the real-time visualization of cell-surface proteolytic enzyme functions. Mu J, Liu F, Rajab MS, Shi M, Li S, Goh C, Lu L, Xu QH, Liu B, Ng LG, Xing B. Angew. Chem. Int. Ed. Engl. 53 14357-14362 (2014)
  83. Stability of mutant serpin/furin complexes: dependence on pH and regulation at the deacylation step. Dufour EK, Désilets A, Longpré JM, Leduc R. Protein Sci. 14 303-315 (2005)
  84. Conformational analyses of a partially-folded bioactive prodomain of human furin. Bhattacharjya S, Xu P, Wang P, Osborne MJ, Ni F. Biopolymers 86 329-344 (2007)
  85. Engineering of alpha1-antitrypsin variants selective for subtilisin-like proprotein convertases PACE4 and PC6: importance of the P2' residue in stable complex formation of the serpin with proprotein convertase. Tsuji A, Kanie H, Makise H, Yuasa K, Nagahama M, Matsuda Y. Protein Eng. Des. Sel. 20 163-170 (2007)
  86. Formation of HERV-K and HERV-Fc1 Envelope Family Members is Suppressed on Transcriptional and Translational Level. Gröger V, Wieland L, Naumann M, Meinecke AC, Meinhardt B, Rossner S, Ihling C, Emmer A, Staege MS, Cynis H. Int J Mol Sci 21 E7855 (2020)
  87. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis. Wei P, Yang Y, Liu Z, Huang J, Gong Y, Sun H. Drug Deliv 23 2058-2064 (2016)
  88. Promising anti-SARS-CoV-2 drugs by effective dual targeting against the viral and host proteases. Elseginy SA, Fayed B, Hamdy R, Mahrous N, Mostafa A, Almehdi AM, S M Soliman S. Bioorg Med Chem Lett 43 128099 (2021)
  89. The potent inhibitory activity of histone H1.2 C-terminal fragments on furin. Han J, Zhang L, Shao X, Shi J, Chi C. FEBS J. 273 4459-4469 (2006)
  90. Purification of the proprotein convertase furin by affinity chromatography based on PC-specific inhibitors. Kuester M, Becker GL, Hardes K, Lindberg I, Steinmetzer T, Than ME. Biol. Chem. 392 973-981 (2011)
  91. The structure of a furin-antibody complex explains non-competitive inhibition by steric exclusion of substrate conformers. Dahms SO, Creemers JW, Schaub Y, Bourenkov GP, Zögg T, Brandstetter H, Than ME. Sci Rep 6 34303 (2016)
  92. Unexpected similarity between the cytosolic West Nile virus NS3 and the secretory furin-like serine proteinases. Seidah NG. Biochem. J. 393 e1-3 (2006)
  93. A Multiplexed Cell-Based Assay for the Identification of Modulators of Pre-Membrane Processing as a Target against Dengue Virus. Stolp ZD, Smurthwaite CA, Reed C, Williams W, Dharmawan A, Djaballah H, Wolkowicz R. J Biomol Screen 20 616-626 (2015)
  94. Engineering a Constrained Peptidic Scaffold towards Potent and Selective Furin Inhibitors. Fittler H, Depp A, Avrutina O, Dahms SO, Than ME, Empting M, Kolmar H. Chembiochem 16 2441-2444 (2015)
  95. Isolation and characterization of a subtilisin-like proteinase of Bacillus intermedius secreted by the Bacillus subtilis recombinant strain AJ73 at different growth stages. Mikhailova EO, Mardanova AM, Balaban NP, Rudenskaya GN, Sharipova MR. Biochemistry (Mosc) 72 192-198 (2007)
  96. New furin inhibitors based on weakly basic amidinohydrazones. Sielaff F, Than ME, Bevec D, Lindberg I, Steinmetzer T. Bioorg. Med. Chem. Lett. 21 836-840 (2011)
  97. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking. Vishwanatha KS, Bäck N, Lam TT, Mains RE, Eipper BA. J. Biol. Chem. 291 9835-9850 (2016)
  98. Proprotein convertases play an important role in regulating PKGI endoproteolytic cleavage and nuclear transport. Kato S, Zhang R, Roberts JD. Am. J. Physiol. Lung Cell Mol. Physiol. 305 L130-40 (2013)
  99. Structural investigation of the HIV-1 envelope glycoprotein gp160 cleavage site 3: role of site-specific mutations. Falcigno L, Oliva R, D'Auria G, Maletta M, Dettin M, Pasquato A, Di Bello C, Paolillo L. Chembiochem 5 1653-1661 (2004)
  100. A Novel Potentially Recombinant Rodent Coronavirus with a Polybasic Cleavage Site in the Spike Protein. Li X, Wang L, Liu P, Li H, Huo S, Zong K, Zhu S, Guo Y, Zhang L, Hu B, Lan Y, Chmura A, Wu G, Daszak P, Liu WJ, Gao GF. J Virol 95 e0117321 (2021)
  101. A second functional furin site in the SARS-CoV-2 spike protein. Zhang Y, Zhang L, Wu J, Yu Y, Liu S, Li T, Li Q, Ding R, Wang H, Nie J, Cui Z, Wang Y, Huang W, Wang Y. Emerg Microbes Infect 11 182-194 (2022)
  102. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host. El Najjar F, Lampe L, Baker ML, Wang LF, Dutch RE. PLoS ONE 10 e0115736 (2015)
  103. Engineering, and production of functionally active human Furin in N. benthamiana plant: In vivo post-translational processing of target proteins by Furin in plants. Mamedov T, Musayeva I, Acsora R, Gun N, Gulec B, Mammadova G, Cicek K, Hasanova G. PLoS ONE 14 e0213438 (2019)
  104. Plasmodium berghei PIMMS2 Promotes Ookinete Invasion of the Anopheles gambiae Mosquito Midgut. Ukegbu CV, Akinosoglou KA, Christophides GK, Vlachou D. Infect. Immun. 85 (2017)
  105. Spread of Gamma (P.1) Sub-Lineages Carrying Spike Mutations Close to the Furin Cleavage Site and Deletions in the N-Terminal Domain Drives Ongoing Transmission of SARS-CoV-2 in Amazonas, Brazil. Naveca FG, Nascimento V, Souza V, Corado AL, Nascimento F, Silva G, Mejía MC, Brandão MJ, Costa Á, Duarte D, Pessoa K, Jesus M, Gonçalves L, Fernandes C, Mattos T, Abdalla L, Santos JH, Martins A, Chui FM, Val FF, de Melo GC, Xavier MS, Sampaio VS, Mourão MP, Lacerda MV, Batista ÉLR, Magalhães ALÁ, Dábilla N, Pereira LCG, Vinhal F, Miyajima F, Dias FBS, Dos Santos ER, Coêlho D, Ferraz M, Lins R, Wallau GL, Delatorre E, Gräf T, Siqueira MM, Resende PC, Bello G, Fiocruz COVID-19 Genomic Surveillance Network. Microbiol Spectr 10 e0236621 (2022)
  106. Subtleties among subtilases. The structural biology of Kex2 and furin-related prohormone convertases. Brenner C. EMBO Rep. 4 937-938 (2003)
  107. A high performance liquid chromatography assay for monitoring proprotein convertase activity. Hall T, Fok KF, Liu MM, Zobel JF, Marino MH, Malfait AM, Tortorella MD, Tomasselli AG. J Chromatogr A 1148 46-54 (2007)
  108. A novel eight amino acid insertion contributes to the hemagglutinin cleavability and the virulence of a highly pathogenic avian influenza A (H7N3) virus in mice. Sun X, Belser JA, Tumpey TM. Virology 488 120-128 (2016)
  109. Combined QM/MM mechanistic study of the acylation process in furin complexed with the H5N1 avian influenza virus hemagglutinin's cleavage site. Rungrotmongkol T, Decha P, Sompornpisut P, Malaisree M, Intharathep P, Nunthaboot N, Udommaneethanakit T, Aruksakunwong O, Hannongbua S. Proteins 76 62-71 (2009)
  110. Design of peptide inhibitors for furin based on the C-terminal fragment of histone H1.2. Wang S, Han J, Wang Y, Lu W, Chi C. Acta Biochim. Biophys. Sin. (Shanghai) 40 848-854 (2008)
  111. Prolonged circulation and increased tumor accumulation of liposomal vincristine in a mouse model of rhabdomyosarcoma. Roveri M, Pfohl A, Jaaks P, Alijaj N, Leroux JC, Luciani P, Bernasconi M. Nanomedicine (Lond) 12 1135-1151 (2017)
  112. Solution NMR structure of a sheddase inhibitor prodomain from the malarial parasite Plasmodium falciparum. He Y, Chen Y, Oganesyan N, Ruan B, O'Brochta D, Bryan PN, Orban J. Proteins 80 2810-2817 (2012)
  113. Study of protease-mediated processes initiating viral infection and cell-cell viral spreading of SARS-CoV-2. Thaingtamtanha T, Baeurle SA. J Mol Model 28 224 (2022)
  114. Template-assisted rational design of peptide inhibitors of furin using the lysine fragment of the mung bean trypsin inhibitor. Tao H, Zhang Z, Shi J, Shao XX, Cui D, Chi CW. FEBS J. 273 3907-3914 (2006)
  115. The motif EXEXXXL in the cytosolic tail of the secretory human proprotein convertase PC7 regulates its trafficking and cleavage activity. Durand L, Duval S, Evagelidis A, Guillemot J, Dianati V, Sikorska E, Schu P, Day R, Seidah NG. J Biol Chem 295 2068-2083 (2020)
  116. 7,8-Dihydroxyflavone alleviates apoptosis and inflammation induced by retinal ischemia-reperfusion injury via activating TrkB/Akt/NF-kB signaling pathway. Yu A, Wang S, Xing Y, Han M, Shao K. Int J Med Sci 19 13-24 (2022)
  117. Activation by cleavage of the epithelial Na+ channel α and γ subunits independently coevolved with the vertebrate terrestrial migration. Wang XP, Balchak DM, Gentilcore C, Clark NL, Kashlan OB. Elife 11 e75796 (2022)
  118. Analysis of the molecular determinants for furin cleavage of the spike protein S1/S2 site in defined strains of the prototype coronavirus murine hepatitis virus (MHV). Choi A, Kots ED, Singleton DT, Weinstein H, Whittaker GR. Virus Res 340 199283 (2024)
  119. Cardiac protection by pirfenidone after myocardial infarction: a bioinformatic analysis. Aimo A, Iborra-Egea O, Martini N, Galvez-Monton C, Burchielli S, Panichella G, Passino C, Emdin M, Bayes-Genis A. Sci Rep 12 4691 (2022)
  120. Cationic Geminoid Peptide Amphiphiles Inhibit DENV2 Protease, Furin, and Viral Replication. Damen M, Izidoro MA, Okamoto DN, Oliveira LCG, Amatdjais-Groenen HIV, van Dongen SFM, van Cleef KWR, van Rij RP, Dieteren CEJ, Gironés D, van Buuren BNM, Martina BEE, Osterhaus ADME, Juliano L, Scholte BJ, Feiters MC. Molecules 27 3217 (2022)
  121. Characterization of the Biosynthetic Gene Cluster for the Ribosomally Synthesized Cyclic Peptide Epichloëcyclins in Epichloë festucae. Zhang W, Forester NT, Chettri P, Heilijgers M, Mace WJ, Maes E, Morozova Y, Applegate ER, Johnson RD, Johnson LJ. J Agric Food Chem 71 13965-13978 (2023)
  122. Comment on "Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin" [Amino Acids 2008, January 31, Doi: 10.1007/s00726-007-0611-3]. Rungrotmongkol T, Decha P, Malaisree M, Sompornpisut P, Hannongbua S. Amino Acids 35 511-512 (2008)
  123. Convertase-dependent regulation of membrane-tethered and secreted ligands tunes dendrite adhesion. Ramirez-Suarez NJ, Belalcazar HM, Rahman M, Trivedi M, Tang LTH, Bülow HE. Development 150 dev201208 (2023)
  124. Dichlorophenylpyridine-Based Molecules Inhibit Furin through an Induced-Fit Mechanism. Dahms SO, Schnapp G, Winter M, Büttner FH, Schlepütz M, Gnamm C, Pautsch A, Brandstetter H. ACS Chem Biol 17 816-821 (2022)
  125. Human furin Cys198 imposes dihedral and positional restraints on His194 for optimal Ser386-proton transfer. Omotuyi OI, Hamada T. J. Biomol. Struct. Dyn. 33 2442-2451 (2015)
  126. Modulation of PC1/3 activity by a rare double-site homozygous mutation. Ni Y, Chen X, Sun Y, Pan J, Tang C, Yuan T. Front Pediatr 10 1026707 (2022)
  127. Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin. Tang T, Jaimes JA, Bidon MK, Straus MR, Daniel S, Whittaker GR. ACS Infect Dis 7 264-272 (2021)
  128. Reduced Stability and pH-Dependent Activity of a Common Obesity-Linked PCSK1 Polymorphism, N221D. Jarvela TS, Shakya M, Bachor T, White A, Low MJ, Lindberg I. Endocrinology 160 2630-2645 (2019)
  129. SARS-CoV-2 S Mutations: A Lesson from the Viral World to Understand How Human Furin Works. Cassari L, Pavan A, Zoia G, Chinellato M, Zeni E, Grinzato A, Rothenberger S, Cendron L, Dettin M, Pasquato A. Int J Mol Sci 24 4791 (2023)
  130. Spatiotemporal-Controlled Reporter for Cell-Surface Proteolytic Enzyme Activity Visualization. Cheong H, Kim J, Mu J, Zhang W, Li J, Yang H, Xing B. Chembiochem 20 561-567 (2019)
  131. Letter Structure-based evidence for the enhanced transmissibility of the dominant SARS-CoV-2 B.1.1.7 variant (Alpha). Xia S, Wen Z, Wang L, Lan Q, Jiao F, Tai L, Wang Q, Sun F, Jiang S, Lu L, Zhu Y. Cell Discov 7 109 (2021)
  132. The interactions of folate with the enzyme furin: a computational study. Sheybani Z, Heydari Dokoohaki M, Negahdaripour M, Dehdashti M, Zolghadr H, Moghadami M, Masoompour SM, Zolghadr AR. RSC Adv 11 23815-23824 (2021)