1pic Citations

Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase.

EMBO J 15 3579-89 (1996)
Cited: 35 times
EuropePMC logo PMID: 8670861

Abstract

We have determined the solution structure of the C-terminal SH2 domain of the p85 alpha subunit of human phosphatidylinositol (PI) 3-kinase (EC 2.7.1.137) in complex with a phosphorylated tyrosine pentapeptide sequence from the platelet-derived growth factor receptor using heteronuclear nuclear magnetic resonance spectroscopy. Overall, the structure is similar to other SH2 domain complexes, but displays different detail interactions within the phosphotyrosine binding site and in the recognition site for the +3 methionine residue of the peptide, the side chain of which inserts into a particularly deep and narrow pocket which is displaced relative to that of other SH2 domains. The contacts made within this +3 pocket provide the structural basis for the strong selection for methionine at this position which characterizes the SH2 domains of PI3-kinase. Comparison with spectral and structural features of the uncomplexed domain shows that the long BG loop becomes less mobile in the presence of the bound peptide. In contrast, extreme resonance broadening encountered for most residues in the beta D', beta E and beta F strands and associated connecting loops of the domain in the absence of peptide persists in the complex, implying conformational averaging in this part of the molecule on a microsecond-to-millisecond time scale.

Reviews - 1pic mentioned but not cited (1)

  1. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim Biophys Acta 1804 533-540 (2010)

Articles - 1pic mentioned but not cited (3)

  1. Crystal structure and RNA binding of the Tex protein from Pseudomonas aeruginosa. Johnson SJ, Close D, Robinson H, Vallet-Gely I, Dove SL, Hill CP. J Mol Biol 377 1460-1473 (2008)
  2. Exome sequencing identifies a novel mutation in PIK3R1 as the cause of SHORT syndrome. Bárcena C, Quesada V, De Sandre-Giovannoli A, Puente DA, Fernández-Toral J, Sigaudy S, Baban A, Lévy N, Velasco G, López-Otín C. BMC Med Genet 15 51 (2014)
  3. Potential mechanisms of osthole against bladder cancer cells based on network pharmacology, molecular docking, and experimental validation. Jiang Y, Zhang M, Wang L, Zhang L, Ma M, Jing M, Li J, Song R, Zhang Y, Yang Z, Zhang Y, Pu Y, Qu X, Fan J. BMC Complement Med Ther 23 122 (2023)


Reviews citing this publication (3)

  1. Structure and function of phosphoinositide 3-kinases. Wymann MP, Pirola L. Biochim Biophys Acta 1436 127-150 (1998)
  2. Glycosylated and phosphorylated proteins--expression in yeast and oocytes of Xenopus: prospects and challenges--relevance to expression of thermostable proteins. Li P, Gao XG, Arellano RO, Renugopalakrishnan V. Protein Expr Purif 22 369-380 (2001)
  3. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin? Singh P, Dar MS, Dar MJ. FEBS Lett 590 3071-3082 (2016)

Articles citing this publication (28)

  1. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Béraud C, Henzel WJ, Baeuerle PA. Proc Natl Acad Sci U S A 96 429-434 (1999)
  2. Focal adhesion kinase promotes phospholipase C-gamma1 activity. Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, Hanks SK. Proc Natl Acad Sci U S A 96 9021-9026 (1999)
  3. Identification of a high-affinity phosphopeptide inhibitor of Stat3. Ren Z, Cabell LA, Schaefer TS, McMurray JS. Bioorg Med Chem Lett 13 633-636 (2003)
  4. The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Tsai FT, Singh OM, Skarzynski T, Wonacott AJ, Weston S, Tucker A, Pauptit RA, Breeze AL, Poyser JP, O'Brien R, Ladbury JE, Wigley DB. Proteins 28 41-52 (1997)
  5. TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, Hollander JG, Filippov DV, Hajduk PJ, Siegal G. Chem Biol 12 207-216 (2005)
  6. A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Hörtner M, Nielsch U, Mayr LM, Heinrich PC, Haan S. Eur J Biochem 269 2516-2526 (2002)
  7. Dynamic steps in receptor tyrosine kinase mediated activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D exchange (HDX-MS). Burke JE, Williams RL. Adv Biol Regul 53 97-110 (2013)
  8. Structural basis for the requirement of two phosphotyrosine residues in signaling mediated by Syk tyrosine kinase. Groesch TD, Zhou F, Mattila S, Geahlen RL, Post CB. J Mol Biol 356 1222-1236 (2006)
  9. Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85alpha Src homology-2 domains. Lee JY, Chiu YH, Asara J, Cantley LC. Proc Natl Acad Sci U S A 108 14157-14162 (2011)
  10. Specificity and affinity motifs for Grb2 SH2-ligand interactions. Kessels HW, Ward AC, Schumacher TN. Proc Natl Acad Sci U S A 99 8524-8529 (2002)
  11. Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase. Siegal G, Davis B, Kristensen SM, Sankar A, Linacre J, Stein RC, Panayotou G, Waterfield MD, Driscoll PC. J Mol Biol 276 461-478 (1998)
  12. Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3: Evaluation and molecular modeling. Mandal PK, Limbrick D, Coleman DR, Dyer GA, Ren Z, Birtwistle JS, Xiong C, Chen X, Briggs JM, McMurray JS. J Med Chem 52 2429-2442 (2009)
  13. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Zhou Y, Abagyan R. Fold Des 3 513-522 (1998)
  14. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. Sheinerman FB, Al-Lazikani B, Honig B. J Mol Biol 334 823-841 (2003)
  15. Structural basis for the binding of high affinity phosphopeptides to Stat3. McMurray JS. Biopolymers 90 69-79 (2008)
  16. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2. Ivancic M, Daly RJ, Lyons BA. J Biomol NMR 27 205-219 (2003)
  17. Two closely spaced tyrosines regulate NFAT signaling in B cells via Syk association with Vav. Chen CH, Martin VA, Gorenstein NM, Geahlen RL, Post CB. Mol Cell Biol 31 2984-2996 (2011)
  18. Specificity and regulation of phosphotyrosine signaling through SH2 domains. Marasco M, Carlomagno T. J Struct Biol X 4 100026 (2020)
  19. Alternative modes of binding of proteins with tandem SH2 domains. O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE. Protein Sci 9 570-579 (2000)
  20. Using a phage display library to identify basic residues in A-Raf required to mediate binding to the Src homology 2 domains of the p85 subunit of phosphatidylinositol 3'-kinase. King TR, Fang Y, Mahon ES, Anderson DH. J Biol Chem 275 36450-36456 (2000)
  21. Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate. Hoedemaeker FJ, Siegal G, Roe SM, Driscoll PC, Abrahams JP. J Mol Biol 292 763-770 (1999)
  22. Backbone dynamics of the C-terminal SH2 domain of the p85alpha subunit of phosphoinositide 3-kinase: effect of phosphotyrosine-peptide binding and characterization of slow conformational exchange processes. Kristensen SM, Siegal G, Sankar A, Driscoll PC. J Mol Biol 299 771-788 (2000)
  23. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Biochem Biophys Res Commun 269 124-130 (2000)
  24. Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes: a hydrogen exchange mass spectrometry study. Catalina MI, Fischer MJ, Dekker FJ, Liskamp RM, Heck AJ. J Am Soc Mass Spectrom 16 1039-1051 (2005)
  25. Conformation of an Shc-derived phosphotyrosine-containing peptide complexed with the Grb2 SH2 domain. Ogura K, Tsuchiya S, Terasawa H, Yuzawa S, Hatanaka H, Mandiyan V, Schlessinger J, Inagaki F. J Biomol NMR 10 273-278 (1997)
  26. Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Wang G, Zhang M, Jang H, Lu S, Lin S, Chen G, Nussinov R, Zhang J, Gaponenko V. Biochemistry 57 1917-1928 (2018)
  27. Identifying protein domains by global analysis of soluble fragment data. Bulloch EM, Kingston RL. Anal Biochem 465 53-62 (2014)
  28. Molecular dissection of PI3Kβ synergistic activation by receptor tyrosine kinases, GβGγ, and Rho-family GTPases. Duewell BR, Wilson NE, Bailey GM, Peabody SE, Hansen SD. Elife 12 RP88991 (2024)