1pkg Citations

Structure of a c-kit product complex reveals the basis for kinase transactivation.

J Biol Chem 278 31461-4 (2003)
Cited: 166 times
EuropePMC logo PMID: 12824176

Abstract

The c-Kit proto-oncogene is a receptor protein-tyrosine kinase associated with several highly malignant human cancers. Upon binding its ligand, stem cell factor (SCF), c-Kit forms an active dimer that autophosphorylates itself and activates a signaling cascade that induces cell growth. Disease-causing human mutations that activate SCF-independent constitutive expression of c-Kit are found in acute myelogenous leukemia, human mast cell disease, and gastrointestinal stromal tumors. We report on the phosphorylation state and crystal structure of a c-Kit product complex. The c-Kit structure is in a fully active form, with ordered kinase activation and phosphate-binding loops. These results provide key insights into the molecular basis for c-Kit kinase transactivation to assist in the design of new competitive inhibitors targeting activated mutant forms of c-Kit that are resistant to current chemotherapy regimes.

Reviews - 1pkg mentioned but not cited (6)

  1. Novel approaches to treating advanced systemic mastocytosis. Gilreath JA, Tchertanov L, Deininger MW. Clin Pharmacol 11 77-92 (2019)
  2. Impact of the Protein Data Bank on antineoplastic approvals. Westbrook JD, Soskind R, Hudson BP, Burley SK. Drug Discov Today 25 837-850 (2020)
  3. Mechanism of activation and the rewired network: New drug design concepts. Nussinov R, Zhang M, Maloney R, Tsai CJ, Yavuz BR, Tuncbag N, Jang H. Med Res Rev 42 770-799 (2022)
  4. More than the sum of the parts: Toward full-length receptor tyrosine kinase structures. Diwanji D, Thaker T, Jura N. IUBMB Life 71 706-720 (2019)
  5. Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. Ezelarab HAA, Ali TFS, Abbas SH, Hassan HA, Beshr EAM. BMC Chem 17 73 (2023)
  6. Impact of structural biology and the protein data bank on us fda new drug approvals of low molecular weight antineoplastic agents 2019-2023. Burley SK, Wu-Wu A, Dutta S, Ganesan S, Zheng SXF. Oncogene 43 2229-2243 (2024)

Articles - 1pkg mentioned but not cited (44)

  1. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Chen H, Ma J, Li W, Eliseenkova AV, Xu C, Neubert TA, Miller WT, Mohammadi M. Mol Cell 27 717-730 (2007)
  2. Crenolanib is a selective type I pan-FLT3 inhibitor. Smith CC, Lasater EA, Lin KC, Wang Q, McCreery MQ, Stewart WK, Damon LE, Perl AE, Jeschke GR, Sugita M, Carroll M, Kogan SC, Kuriyan J, Shah NP. Proc Natl Acad Sci U S A 111 5319-5324 (2014)
  3. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Mori M, Kaneko N, Ueno Y, Yamada M, Tanaka R, Saito R, Shimada I, Mori K, Kuromitsu S. Invest New Drugs 35 556-565 (2017)
  4. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. Kufareva I, Abagyan R. J Med Chem 51 7921-7932 (2008)
  5. Structural basis for the recognition of c-Src by its inactivator Csk. Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Cell 134 124-134 (2008)
  6. Characterizing and Overriding the Structural Mechanism of the Quizartinib-Resistant FLT3 "Gatekeeper" F691L Mutation with PLX3397. Smith CC, Zhang C, Lin KC, Lasater EA, Zhang Y, Massi E, Damon LE, Pendleton M, Bashir A, Sebra R, Perl A, Kasarskis A, Shellooe R, Tsang G, Carias H, Powell B, Burton EA, Matusow B, Zhang J, Spevak W, Ibrahim PN, Le MH, Hsu HH, Habets G, West BL, Bollag G, Shah NP. Cancer Discov 5 668-679 (2015)
  7. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Cheung YH, Gayden T, Campeau PM, LeDuc CA, Russo D, Nguyen VH, Guo J, Qi M, Guan Y, Albrecht S, Moroz B, Eldin KW, Lu JT, Schwartzentruber J, Malkin D, Berghuis AM, Emil S, Gibbs RA, Burk DL, Vanstone M, Lee BH, Orchard D, Boycott KM, Chung WK, Jabado N. Am J Hum Genet 92 996-1000 (2013)
  8. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms. Laine E, Chauvot de Beauchêne I, Perahia D, Auclair C, Tchertanov L. PLoS Comput Biol 7 e1002068 (2011)
  9. Using multiple microenvironments to find similar ligand-binding sites: application to kinase inhibitor binding. Liu T, Altman RB. PLoS Comput Biol 7 e1002326 (2011)
  10. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220). Zorn JA, Wang Q, Fujimura E, Barros T, Kuriyan J. PLoS One 10 e0121177 (2015)
  11. Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics. Lovera S, Morando M, Pucheta-Martinez E, Martinez-Torrecuadrada JL, Saladino G, Gervasio FL. PLoS Comput Biol 11 e1004578 (2015)
  12. Allosteric communication across the native and mutated KIT receptor tyrosine kinase. Laine E, Auclair C, Tchertanov L. PLoS Comput Biol 8 e1002661 (2012)
  13. Letter Recurrent PDGFRB mutations in unicentric Castleman disease. Li Z, Lan X, Li C, Zhang Y, Wang Y, Xue W, Lu L, Jin M, Zhou Z, Wang X, Li L, Zhang L, Li X, Fu X, Sun Z, Wu J, Zhang X, Yu H, Nan F, Chang Y, Yan J, Wu X, Wang G, Zhang D, Zhang Y, Young KH, Zhang M. Leukemia 33 1035-1038 (2019)
  14. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Xu Q, Malecka KL, Fink L, Jordan EJ, Duffy E, Kolander S, Peterson JR, Dunbrack RL. Sci Signal 8 rs13 (2015)
  15. DFGmodel: predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors. Ung PM, Schlessinger A. ACS Chem Biol 10 269-278 (2015)
  16. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture. Eswaran J, Bernad A, Ligos JM, Guinea B, Debreczeni JE, Sobott F, Parker SA, Najmanovich R, Turk BE, Knapp S. Structure 16 115-124 (2008)
  17. Automated antibody structure prediction using Accelrys tools: results and best practices. Fasnacht M, Butenhof K, Goupil-Lamy A, Hernandez-Guzman F, Huang H, Yan L. Proteins 82 1583-1598 (2014)
  18. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Kawase T, Nakazawa T, Eguchi T, Tsuzuki H, Ueno Y, Amano Y, Suzuki T, Mori M, Yoshida T. Oncotarget 10 6111-6123 (2019)
  19. Single agents with designed combination chemotherapy potential: synthesis and evaluation of substituted pyrimido[4,5-b]indoles as receptor tyrosine kinase and thymidylate synthase inhibitors and as antitumor agents. Gangjee A, Zaware N, Raghavan S, Ihnat M, Shenoy S, Kisliuk RL. J Med Chem 53 1563-1578 (2010)
  20. Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites. Cantor AJ, Shah NH, Kuriyan J. Proc Natl Acad Sci U S A 115 E7303-E7312 (2018)
  21. Selecting tyrosine kinase inhibitors for gastrointestinal stromal tumor with secondary KIT activation-loop domain mutations. Hsueh YS, Lin CL, Chiang NJ, Yen CC, Li CF, Shan YS, Ko CH, Shih NY, Wang LM, Chen TS, Chen LT. PLoS One 8 e65762 (2013)
  22. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. Xu M, Yu L, Wan B, Yu L, Huang Q. PLoS One 6 e22644 (2011)
  23. ATP-Competitive Inhibitors Midostaurin and Avapritinib Have Distinct Resistance Profiles in Exon 17-Mutant KIT. Apsel Winger B, Cortopassi WA, Garrido Ruiz D, Ding L, Jang K, Leyte-Vidal A, Zhang N, Esteve-Puig R, Jacobson MP, Shah NP. Cancer Res 79 4283-4292 (2019)
  24. Integrated Molecular Characterization of Gastrointestinal Stromal Tumors (GIST) Harboring the Rare D842V Mutation in PDGFRA Gene. Indio V, Astolfi A, Tarantino G, Urbini M, Patterson J, Nannini M, Saponara M, Gatto L, Santini D, do Valle IF, Castellani G, Remondini D, Fiorentino M, von Mehren M, Brandi G, Biasco G, Heinrich MC, Pantaleo MA. Int J Mol Sci 19 E732 (2018)
  25. Drug binding and resistance mechanism of KIT tyrosine kinase revealed by hydrogen/deuterium exchange FTICR mass spectrometry. Zhang HM, Yu X, Greig MJ, Gajiwala KS, Wu JC, Diehl W, Lunney EA, Emmett MR, Marshall AG. Protein Sci 19 703-715 (2010)
  26. Platelet-derived growth factor/vascular endothelial growth factor receptor inactivation by sunitinib results in Tsc1/Tsc2-dependent inhibition of TORC1. Tran TA, Kinch L, Peña-Llopis S, Kockel L, Grishin N, Jiang H, Brugarolas J. Mol Cell Biol 33 3762-3779 (2013)
  27. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication. Da Silva Figueiredo Celestino Gomes P, Panel N, Laine E, Pascutti PG, Solary E, Tchertanov L. PLoS One 9 e97519 (2014)
  28. The Irreversible FLT3 Inhibitor FF-10101 Is Active Against a Diversity of FLT3 Inhibitor Resistance Mechanisms. Ferng TT, Terada D, Ando M, Tarver TC, Chaudhary F, Lin KC, Logan AC, Smith CC. Mol Cancer Ther 21 844-854 (2022)
  29. Targeting kinases with precision. Gardino AK, Evans EK, Kim JL, Brooijmans N, Hodous BL, Wolf B, Lengauer C. Mol Cell Oncol 5 e1435183 (2018)
  30. Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7H-pyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors and antiangiogenic agents. Gangjee A, Zhao Y, Raghavan S, Ihnat MA, Disch BC. Bioorg Med Chem 18 5261-5273 (2010)
  31. N⁴-(3-Bromophenyl)-7-(substituted benzyl) pyrrolo[2,3-d]pyrimidines as potent multiple receptor tyrosine kinase inhibitors: design, synthesis, and in vivo evaluation. Gangjee A, Zaware N, Raghavan S, Yang J, Thorpe JE, Ihnat MA. Bioorg Med Chem 20 2444-2454 (2012)
  32. The First 3D Model of the Full-Length KIT Cytoplasmic Domain Reveals a New Look for an Old Receptor. Inizan F, Hanna M, Stolyarchuk M, Chauvot de Beauchêne I, Tchertanov L. Sci Rep 10 5401 (2020)
  33. Avapritinib-based SAR studies unveil a binding pocket in KIT and PDGFRA. Teuber A, Schulz T, Fletcher BS, Gontla R, Mühlenberg T, Zischinsky ML, Niggenaber J, Weisner J, Kleinbölting SB, Lategahn J, Sievers S, Müller MP, Bauer S, Rauh D. Nat Commun 15 63 (2024)
  34. GC-MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Naveed M, Ishfaq H, Rehman SU, Javed A, Waseem M, Makhdoom SI, Aziz T, Alharbi M, Alshammari A, Alasmari AF. Front Chem 11 1287599 (2023)
  35. The oncogenic FIP1L1-PDGFRα fusion protein displays skewed signaling properties compared to its wild-type PDGFRα counterpart. Haan S, Bahlawane C, Wang J, Nazarov PV, Muller A, Eulenfeld R, Haan C, Rolvering C, Vallar L, Satagopam VP, Sauter T, Wiesinger MY. JAKSTAT 4 e1062596 (2015)
  36. Exploring the Resistance Mechanisms of Distal D835V Mutation in FLT3 to Inhibitors. Wang Z, Hu B, An Y, Wang J. Oxid Med Cell Longev 2022 3720026 (2022)
  37. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT. Da Silva Figueiredo Celestino Gomes P, Chauvot De Beauchêne I, Panel N, Lopez S, De Sepulveda P, Geraldo Pascutti P, Solary E, Tchertanov L. PLoS One 11 e0160165 (2016)
  38. Novel Mechanism for an Old Drug: Phenazopyridine is a Kinase Inhibitor Affecting Autophagy and Cellular Differentiation. Preynat-Seauve O, Nguyen EB, Westermaier Y, Héritier M, Tardy S, Cambet Y, Feyeux M, Caillon A, Scapozza L, Krause KH. Front Pharmacol 12 664608 (2021)
  39. Stem Cell Factor-Inducible MITF-M Expression in Therapeutics for Acquired Skin Hyperpigmentation. Yun CY, Roh E, Kim SH, Han J, Lee J, Jung DE, Kim GH, Jung SH, Cho WJ, Han SB, Kim Y. Theranostics 10 340-352 (2020)
  40. The structural insights of stem cell factor receptor (c-Kit) interaction with tyrosine phosphatase-2 (Shp-2): an in silico analysis. Pati S, Gurudutta GU, Kalra OP, Mukhopadhyay A. BMC Res Notes 3 14 (2010)
  41. Assessing the Activation of Tyrosine Kinase KIT through Free Energy Calculations. Sandoval-Pérez A, Winger BA, Jacobson MP. J Chem Theory Comput 18 6251-6258 (2022)
  42. The Inherent Coupling of Intrinsically Disordered Regions in the Multidomain Receptor Tyrosine Kinase KIT. Ledoux J, Trouvé A, Tchertanov L. Int J Mol Sci 23 1589 (2022)
  43. research-article Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. Estevam GO, Linossi EM, Macdonald CB, Espinoza CA, Michaud JM, Coyote-Maestas W, Collisson EA, Jura N, Fraser JS. bioRxiv 2023.08.03.551866 (2024)
  44. Identifying the mechanism of polysaccharopeptide against breast cancer based on network pharmacology and experimental verification. Xu C, Sun L, Wang H, Sun J, Feng Y, Wang X, Song Z. BMC Cancer 24 726 (2024)


Reviews citing this publication (40)

  1. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol Cell 15 661-675 (2004)
  2. Gastrointestinal stromal tumours: origin and molecular oncology. Corless CL, Barnett CM, Heinrich MC. Nat Rev Cancer 11 865-878 (2011)
  3. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Lennartsson J, Rönnstrand L. Physiol Rev 92 1619-1649 (2012)
  4. The tyrosine kinase network regulating mast cell activation. Gilfillan AM, Rivera J. Immunol Rev 228 149-169 (2009)
  5. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  6. Structure and regulation of Kit protein-tyrosine kinase--the stem cell factor receptor. Roskoski R. Biochem Biophys Res Commun 338 1307-1315 (2005)
  7. Molecular pathobiology of gastrointestinal stromal sarcomas. Corless CL, Heinrich MC. Annu Rev Pathol 3 557-586 (2008)
  8. Normal and oncogenic forms of the receptor tyrosine kinase kit. Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R. Stem Cells 23 16-43 (2005)
  9. Juxtamembrane autoinhibition in receptor tyrosine kinases. Hubbard SR. Nat Rev Mol Cell Biol 5 464-471 (2004)
  10. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Reber L, Da Silva CA, Frossard N. Eur J Pharmacol 533 327-340 (2006)
  11. Protein kinase inhibitors: contributions from structure to clinical compounds. Johnson LN. Q Rev Biophys 42 1-40 (2009)
  12. Platelet-derived growth factors and their receptors: structural and functional perspectives. Chen PH, Chen X, He X. Biochim Biophys Acta 1834 2176-2186 (2013)
  13. Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Dibb NJ, Dilworth SM, Mol CD. Nat Rev Cancer 4 718-727 (2004)
  14. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. Biochim Biophys Acta 1834 1302-1321 (2013)
  15. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Heldin CH, Lennartsson J. Cold Spring Harb Perspect Biol 5 a009100 (2013)
  16. Therapeutic targeting of c-KIT in cancer. Ashman LK, Griffith R. Expert Opin Investig Drugs 22 103-115 (2013)
  17. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Masson K, Rönnstrand L. Cell Signal 21 1717-1726 (2009)
  18. Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Cruse G, Metcalfe DD, Olivera A. Immunol Allergy Clin North Am 34 219-237 (2014)
  19. Signal transduction of oncogenic Flt3. Choudhary C, Müller-Tidow C, Berdel WE, Serve H. Int J Hematol 82 93-99 (2005)
  20. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Verstraete K, Savvides SN. Nat Rev Cancer 12 753-766 (2012)
  21. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders. Jensen BM, Akin C, Gilfillan AM. Br J Pharmacol 154 1572-1582 (2008)
  22. Progenitor cell mobilization and recruitment: SDF-1, CXCR4, α4-integrin, and c-kit. Cheng M, Qin G. Prog Mol Biol Transl Sci 111 243-264 (2012)
  23. Molecular basis for primary and secondary tyrosine kinase inhibitor resistance in gastrointestinal stromal tumor. Gounder MM, Maki RG. Cancer Chemother Pharmacol 67 Suppl 1 S25-43 (2011)
  24. Masitinib for the treatment of mild to moderate Alzheimer's disease. Folch J, Petrov D, Ettcheto M, Pedrós I, Abad S, Beas-Zarate C, Lazarowski A, Marin M, Olloquequi J, Auladell C, Camins A. Expert Rev Neurother 15 587-596 (2015)
  25. Molecular diagnosis of mast cell disorders: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. Akin C. J Mol Diagn 8 412-419 (2006)
  26. Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. J R Soc Interface 9 1409-1437 (2012)
  27. Gastrointestinal stromal tumors: past, present, and future. Kitamura Y. J Gastroenterol 43 499-508 (2008)
  28. Role and significance of c-KIT receptor tyrosine kinase in cancer: A review. Sheikh E, Tran T, Vranic S, Levy A, Bonfil RD. Bosn J Basic Med Sci 22 683-698 (2022)
  29. Novel approaches in the treatment of systemic mastocytosis. Quintas-Cardama A, Aribi A, Cortes J, Giles FJ, Kantarjian H, Verstovsek S. Cancer 107 1429-1439 (2006)
  30. Differential signaling of Flt3 activating mutations in acute myeloid leukemia: a working model. Chan PM. Protein Cell 2 108-115 (2011)
  31. KIT mutations in mastocytosis and their potential as therapeutic targets. Gotlib J. Immunol Allergy Clin North Am 26 575-592 (2006)
  32. The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S. Mol Reprod Dev 81 1064-1079 (2014)
  33. Translational insights into gastrointestinal stromal tumor and current clinical advances. Hemming ML, Heinrich MC, Bauer S, George S. Ann Oncol 29 2037-2045 (2018)
  34. Advances and controversies in the diagnosis, pathogenesis, and treatment of systemic mastocytosis. Quintás-Cardama A, Jain N, Verstovsek S. Cancer 117 5439-5449 (2011)
  35. Cardiac stem cell research: an elephant in the room? Di Felice V, De Luca A, Colorito ML, Montalbano A, Ardizzone NM, Macaluso F, Gammazza AM, Cappello F, Zummo G. Anat Rec (Hoboken) 292 449-454 (2009)
  36. Molecular regulation of receptor tyrosine kinases in hematopoietic malignancies. Correll PH, Paulson RF, Wei X. Gene 374 26-38 (2006)
  37. Molecular mechanisms of drug resistance in tyrosine kinases cAbl and cKit. DiNitto JP, Wu JC. Crit Rev Biochem Mol Biol 46 295-309 (2011)
  38. Molecular response prediction in gastrointestinal stromal tumors. Cassier PA, Blay JY. Target Oncol 5 29-37 (2010)
  39. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. Cell Commun Signal 22 153 (2024)
  40. Surgical resection in metastatic gastrointestinal stromal tumors. Choi EA, Feig BW. Curr Oncol Rep 9 303-308 (2007)

Articles citing this publication (76)

  1. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP. Nature 485 260-263 (2012)
  2. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, Lippke J, Saxena K. Mol Cell 13 169-178 (2004)
  3. The juxtamembrane region of the EGF receptor functions as an activation domain. Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, Carpenter G. Mol Cell 34 641-651 (2009)
  4. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Gajiwala KS, Wu JC, Christensen J, Deshmukh GD, Diehl W, DiNitto JP, English JM, Greig MJ, He YA, Jacques SL, Lunney EA, McTigue M, Molina D, Quenzer T, Wells PA, Yu X, Zhang Y, Zou A, Emmett MR, Marshall AG, Zhang HM, Demetri GD. Proc Natl Acad Sci U S A 106 1542-1547 (2009)
  5. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K, Wisner L, Iorio M, Shakalya K, Garewal H, Nagle R, Bearss D, Bearss D. Oncogene 26 3909-3919 (2007)
  6. Comprehensive genomic analysis reveals clinically relevant molecular distinctions between thymic carcinomas and thymomas. Girard N, Shen R, Guo T, Zakowski MF, Heguy A, Riely GJ, Huang J, Lau C, Lash AE, Ladanyi M, Viale A, Antonescu CR, Travis WD, Rusch VW, Kris MG, Pao W. Clin Cancer Res 15 6790-6799 (2009)
  7. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP. Structure 14 1835-1844 (2006)
  8. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, Cho YJ, Kern D. Elife 3 e02667 (2014)
  9. A precision therapy against cancers driven by KIT/PDGFRA mutations. Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, Zhu XJ, Schmidt-Kittler O, Wilson D, Wilson K, DiPietro L, Zhang Y, Brooijmans N, LaBranche TP, Wozniak A, Gebreyohannes YK, Schöffski P, Heinrich MC, DeAngelo DJ, Miller S, Wolf B, Kohl N, Guzi T, Lydon N, Boral A, Lengauer C. Sci Transl Med 9 eaao1690 (2017)
  10. BRAF and c-kit gene copy number in mutation-positive malignant melanoma. Willmore-Payne C, Holden JA, Hirschowitz S, Layfield LJ. Hum Pathol 37 520-527 (2006)
  11. Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients. Tamborini E, Pricl S, Negri T, Lagonigro MS, Miselli F, Greco A, Gronchi A, Casali PG, Ferrone M, Fermeglia M, Carbone A, Pierotti MA, Pilotti S. Oncogene 25 6140-6146 (2006)
  12. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. Purohit R. J Biomol Struct Dyn 32 1033-1046 (2014)
  13. Letter Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Yan L, Ma Y, Liu D, Wei X, Sun Y, Chen X, Zhao H, Zhou J, Wang Z, Shui W, Lou Z. Cell Res 22 1304-1308 (2012)
  14. A crystallographic snapshot of tyrosine trans-phosphorylation in action. Chen H, Xu CF, Ma J, Eliseenkova AV, Li W, Pollock PM, Pitteloud N, Miller WT, Neubert TA, Mohammadi M. Proc Natl Acad Sci U S A 105 19660-19665 (2008)
  15. Function of activation loop tyrosine phosphorylation in the mechanism of c-Kit auto-activation and its implication in sunitinib resistance. DiNitto JP, Deshmukh GD, Zhang Y, Jacques SL, Coli R, Worrall JW, Diehl W, English JM, Wu JC. J Biochem 147 601-609 (2010)
  16. Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages. Kimura Y, Jones N, Klüppel M, Hirashima M, Tachibana K, Cohn JB, Wrana JL, Pawson T, Bernstein A. Proc Natl Acad Sci U S A 101 6015-6020 (2004)
  17. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. Zadjali F, Pike AC, Vesterlund M, Sun J, Wu C, Li SS, Rönnstrand L, Knapp S, Bullock AN, Flores-Morales A. J Biol Chem 286 480-490 (2011)
  18. c-kit and its related genes in spermatogonial differentiation. Zhang L, Tang J, Haines CJ, Feng HL, Lai L, Teng X, Han Y. Spermatogenesis 1 186-194 (2011)
  19. Automated sample mounting and alignment system for biological crystallography at a synchrotron source. Snell G, Cork C, Nordmeyer R, Cornell E, Meigs G, Yegian D, Jaklevic J, Jin J, Stevens RC, Earnest T. Structure 12 537-545 (2004)
  20. Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Reboll MR, Klede S, Taft MH, Cai CL, Field LJ, Lavine KJ, Koenig AL, Fleischauer J, Meyer J, Schambach A, Niessen HW, Kosanke M, van den Heuvel J, Pich A, Bauersachs J, Wu X, Zheng L, Wang Y, Korf-Klingebiel M, Polten F, Wollert KC. Science 376 1343-1347 (2022)
  21. c-KIT and PDGFRA in breast phyllodes tumours: overexpression without mutations? Carvalho S, e Silva AO, Milanezi F, Ricardo S, Leitão D, Amendoeira I, Schmitt FC, Schmitt FC. J Clin Pathol 57 1075-1079 (2004)
  22. Molecular basis of the constitutive activity and STI571 resistance of Asp816Val mutant KIT receptor tyrosine kinase. Foster R, Griffith R, Ferrao P, Ashman L. J Mol Graph Model 23 139-152 (2004)
  23. Structure, domain organization, and different conformational states of stem cell factor-induced intact KIT dimers. Opatowsky Y, Lax I, Tomé F, Bleichert F, Unger VM, Schlessinger J. Proc Natl Acad Sci U S A 111 1772-1777 (2014)
  24. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Nguyen B, Williams AB, Young DJ, Ma H, Li L, Levis M, Brown P, Small D. Oncotarget 8 10931-10944 (2017)
  25. The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer. Cardoso HJ, Figueira MI, Socorro S. J Cell Commun Signal 11 297-307 (2017)
  26. Pigment pattern formation in the guppy, Poecilia reticulata, involves the Kita and Csf1ra receptor tyrosine kinases. Kottler VA, Fadeev A, Weigel D, Dreyer C. Genetics 194 631-646 (2013)
  27. Production of selenomethionyl-derivatized proteins in baculovirus-infected insect cells. Cronin CN, Lim KB, Rogers J. Protein Sci 16 2023-2029 (2007)
  28. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. Chauvot de Beauchêne I, Allain A, Panel N, Laine E, Trouvé A, Dubreuil P, Tchertanov L. PLoS Comput Biol 10 e1003749 (2014)
  29. KIT regulates tyrosine phosphorylation and nuclear localization of beta-catenin in mast cell leukemia. Kajiguchi T, Lee S, Lee MJ, Trepel JB, Neckers L. Leuk Res 32 761-770 (2008)
  30. Two transmembrane dimers of the bovine papillomavirus E5 oncoprotein clamp the PDGF β receptor in an active dimeric conformation. Karabadzhak AG, Petti LM, Barrera FN, Edwards APB, Moya-Rodríguez A, Polikanov YS, Freites JA, Tobias DJ, Engelman DM, DiMaio D. Proc Natl Acad Sci U S A 114 E7262-E7271 (2017)
  31. Update on imatinib for gastrointestinal stromal tumors: duration of treatment. Linch M, Claus J, Benson C. Onco Targets Ther 6 1011-1023 (2013)
  32. Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. He L, Hristova K. Sci Rep 2 854 (2012)
  33. Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation. Agarwal S, Kazi JU, Rönnstrand L. J Biol Chem 288 22460-22468 (2013)
  34. The strength and cooperativity of KIT ectodomain contacts determine normal ligand-dependent stimulation or oncogenic activation in cancer. Reshetnyak AV, Opatowsky Y, Boggon TJ, Folta-Stogniew E, Tome F, Lax I, Schlessinger J. Mol Cell 57 191-201 (2015)
  35. Letter Analysis of KIT, SCF, and initial screening of SLUG in patients with piebaldism. Murakami T, Hosomi N, Oiso N, Giovannucci-Uzielli ML, Aquaron R, Mizoguchi M, Kato A, Ishii M, Bitner-Glindzicz M, Barnicoat A, Wilson L, Tsukamoto K, Ueda H, Mancini AJ, Suzuki T, Riley J, Miertus J, Camargo M, Santoro-Zea A, Atkin J, Fukai K. J Invest Dermatol 124 670-672 (2005)
  36. Detailed conformational dynamics of juxtamembrane region and activation loop in c-Kit kinase activation process. Zou J, Wang YD, Ma FX, Xiang ML, Shi B, Wei YQ, Yang SY. Proteins 72 323-332 (2008)
  37. Structural basis for KIT receptor tyrosine kinase inhibition by antibodies targeting the D4 membrane-proximal region. Reshetnyak AV, Nelson B, Shi X, Boggon TJ, Pavlenco A, Mandel-Bausch EM, Tome F, Suzuki Y, Sidhu SS, Lax I, Schlessinger J. Proc Natl Acad Sci U S A 110 17832-17837 (2013)
  38. A novel FIP1L1-PDGFRA mutant destabilizing the inactive conformation of the kinase domain in chronic eosinophilic leukemia/hypereosinophilic syndrome. Salemi S, Yousefi S, Simon D, Schmid I, Moretti L, Scapozza L, Simon HU. Allergy 64 913-918 (2009)
  39. KIT is required for hepatic function during mouse post-natal development. Magnol L, Chevallier MC, Nalesso V, Retif S, Fuchs H, Klempt M, Pereira P, Riottot M, Andrzejewski S, Doan BT, Panthier JJ, Puech A, Beloeil JC, de Angelis MH, Hérault Y. BMC Dev Biol 7 81 (2007)
  40. Repurposing Ponatinib as a Potent Agent against KIT Mutant Melanomas. Han Y, Gu Z, Wu J, Huang X, Zhou R, Shi C, Tao W, Wang L, Wang Y, Zhou G, Li J, Zhang Z, Sun S. Theranostics 9 1952-1964 (2019)
  41. Sunitinib: from charge-density studies to interaction with proteins. Malińska M, Jarzembska KN, Goral AM, Kutner A, Woźniak K, Dominiak PM. Acta Crystallogr D Biol Crystallogr 70 1257-1270 (2014)
  42. Insights into the characteristics of mammalian cardiomyocyte terminal differentiation shown through the study of mice with a dysfunctional c-kit. Naqvi N, Li M, Yahiro E, Graham RM, Husain A. Pediatr Cardiol 30 651-658 (2009)
  43. Mechanism of activation of human c-KIT kinase by internal tandem duplications of the juxtamembrane domain and point mutations at aspartic acid 816. Kim SY, Kang JJ, Lee HH, Kang JJ, Kim B, Kim CG, Park TK, Kang H. Biochem Biophys Res Commun 410 224-228 (2011)
  44. T670X KIT mutations in gastrointestinal stromal tumors: making sense of missense. Negri T, Pavan GM, Virdis E, Greco A, Fermeglia M, Sandri M, Pricl S, Pierotti MA, Pilotti S, Tamborini E. J Natl Cancer Inst 101 194-204 (2009)
  45. Tyrosine kinase inhibition: Ligand binding and conformational change in c-Kit and c-Abl. Healy EF, Johnson S, Hauser CR, King PJ. FEBS Lett 583 2899-2906 (2009)
  46. Combining Mutational Signatures, Clonal Fitness, and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer. Kaserer T, Blagg J. Cell Chem Biol 25 1359-1371.e2 (2018)
  47. Niche anchorage and signaling through membrane-bound Kit-ligand/c-kit receptor are kinase independent and imatinib insensitive. Tabone-Eglinger S, Calderin-Sollet Z, Pinon P, Aebischer N, Wehrle-Haller M, Jacquier MC, Boettiger D, Wehrle-Haller B. FASEB J 28 4441-4456 (2014)
  48. Therapeutic Efficacy Assessment of CK6, a Monoclonal KIT Antibody, in a Panel of Gastrointestinal Stromal Tumor Xenograft Models. Van Looy T, Wozniak A, Floris G, Li H, Wellens J, Vanleeuw U, Sciot R, Debiec-Rychter M, Schöffski P. Transl Oncol 8 112-118 (2015)
  49. I787 provides signals for c-Kit receptor internalization and functionality that control mast cell survival and development. Orinska Z, Föger N, Huber M, Marschall J, Mirghomizadeh F, Du X, Scheller M, Rosenstiel P, Goldmann T, Bollinger A, Beutler BA, Bulfone-Paus S. Blood 116 2665-2675 (2010)
  50. Sensitivity of human cells bearing oncogenic mutant kit isoforms to the novel tyrosine kinase inhibitor INNO-406. Pan J, Quintás-Cardama A, Manshouri T, Cortes J, Kantarjian H, Verstovsek S. Cancer Sci 98 1223-1225 (2007)
  51. A Role for Hydration in Interleukin-2 Inducible T Cell Kinase (Itk) Selectivity. Knegtel RM, Robinson DD. Mol Inform 30 950-959 (2011)
  52. Genetic variation at KIT locus may predispose to melanoma. Bourillon A, Hu HH, Hetet G, Lacapere JJ, André J, Descamps V, Basset-Seguin N, Ogbah Z, Puig S, Saiag P, Bagot M, Bensussan A, Grandchamp B, Dumaz N, Soufir N. Pigment Cell Melanoma Res 26 88-96 (2013)
  53. Synthesis and biological evaluation of analogues of the kinase inhibitor nilotinib as Abl and Kit inhibitors. Duveau DY, Hu X, Walsh MJ, Shukla S, Skoumbourdis AP, Boxer MB, Ambudkar SV, Shen M, Thomas CJ. Bioorg Med Chem Lett 23 682-686 (2013)
  54. Two-step release of kinase autoinhibition in discoidin domain receptor 1. Sammon D, Hohenester E, Leitinger B. Proc Natl Acad Sci U S A 117 22051-22060 (2020)
  55. Analysis of the activating mutations within the activation loop of leukemia targets Flt-3 and c-Kit based on protein homology modeling. Torrent M, Rickert K, Pan BS, Sepp-Lorenzino L. J Mol Graph Model 23 153-165 (2004)
  56. Insights into ligand stimulation effects on gastro-intestinal stromal tumors signalling. Bahlawane C, Schmitz M, Letellier E, Arumugam K, Nicot N, Nazarov PV, Haan S. Cell Signal 29 138-149 (2017)
  57. Molecular modeling and structure-based drug discovery approach reveals protein kinases as off-targets for novel anticancer drug RH1. Gupta PP, Bastikar VA, Kuciauskas D, Kothari SL, Cicenas J, Valius M. Med Oncol 34 176 (2017)
  58. Novel thiazole amine class tyrosine kinase inhibitors induce apoptosis in human mast cells expressing D816V KIT mutation. Jin Y, Ding K, Ding K, Wang D, Shen M, Pan J. Cancer Lett 353 115-123 (2014)
  59. Reprogramming signal transduction through a designer receptor tyrosine kinase. Kongkrongtong T, Sumigama Y, Nagamune T, Kawahara M. Commun Biol 4 752 (2021)
  60. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling. Mori Y, Hirokawa T, Aoki K, Satomi H, Takeda S, Aburada M, Miyamoto K. Chem Pharm Bull (Tokyo) 56 682-687 (2008)
  61. Discovery of amido-benzisoxazoles as potent c-Kit inhibitors. Kunz RK, Rumfelt S, Chen N, Zhang D, Tasker AS, Bürli R, Hungate R, Yu V, Nguyen Y, Whittington DA, Meagher KL, Plant M, Tudor Y, Schrag M, Xu Y, Ng GY, Hu E. Bioorg Med Chem Lett 18 5115-5117 (2008)
  62. Folding and Intrinsic Disorder of the Receptor Tyrosine Kinase KIT Insert Domain Seen by Conventional Molecular Dynamics Simulations. Ledoux J, Trouvé A, Tchertanov L. Int J Mol Sci 22 7375 (2021)
  63. Neutralization of KIT Oncogenic Signaling in Leukemia with Antibodies Targeting KIT Membrane Proximal Domain 5. Le Gall M, Crépin R, Neiveyans M, Auclair C, Fan Y, Zhou Y, Marks JD, Pèlegrin A, Poul MA. Mol Cancer Ther 14 2595-2605 (2015)
  64. Structure-based de novo design and identification of D816V mutant-selective c-KIT inhibitors. Park H, Lee S, Lee S, Hong S. Org Biomol Chem 12 4644-4655 (2014)
  65. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Mol Cell Proteomics 22 100503 (2023)
  66. Letter A novel mutation in the kinase domain of KIT in an Indian family with a mild piebaldism phenotype. Chong KL, Common JE, Lane EB, Goh BK. J Dermatol Sci 59 206-209 (2010)
  67. Lung-specific MCEMP1 functions as an adaptor for KIT to promote SCF-mediated mast cell proliferation. Choi YJ, Yoo JS, Jung K, Rice L, Kim D, Zlojutro V, Frimel M, Madden E, Choi UY, Foo SS, Choi Y, Jiang Z, Johnson H, Kwak MJ, Kang S, Hong B, Seo GJ, Kim S, Lee SA, Amini-Bavil-Olyaee S, Maazi H, Akbari O, Asosingh K, Jung JU. Nat Commun 14 2045 (2023)
  68. Phosphorylation in the activation loop as the finishing touch in c-Kit activation. Miyazawa K. J Biochem 151 457-459 (2012)
  69. Secondary C-kit mutation is a cause of acquired resistance to imatinib in gastrointestinal stromal tumor. Zheng S, Pan YL, Tao DY, Wang JL, Huang KE. Scand J Gastroenterol 44 760-763 (2009)
  70. Selective KIT inhibitor KI-328 and HSP90 inhibitor show different potency against the type of KIT mutations recurrently identified in acute myeloid leukemia. Tsujimura A, Kiyoi H, Shiotsu Y, Ishikawa Y, Mori Y, Ishida H, Toki T, Ito E, Naoe T. Int J Hematol 92 624-633 (2010)
  71. Bioinformatic analysis of KIT juxtamembrane domain mutations in Syrian GIST patients: jigsaw puzzle completed. Pharaon N, Habbal W, Monem F. J Egypt Natl Canc Inst 35 25 (2023)
  72. Mast cell leukemia: an extremely rare disease. Lu DY, Gau JP, Hong YC, Liu CY, Yu YB, Hsiao LT, Liu JH, Chen PM, Chiou TJ, Tzeng CH. J Chin Med Assoc 77 446-449 (2014)
  73. Structural and functional analysis of KIT gene encoding receptor tyrosine kinase and its interaction with sunitinib and HDAC inhibitors: an in silico approach. Vanajothi R, Rajamanikandan S, Sudha A, Srinivasan P. Pak J Biol Sci 15 121-131 (2012)
  74. Geraniin Promotes Recovery of Hematopoietic Cells after Radiation Injury. Bing SJ, Cho J, Kim A, Herath KHINM, Ahn G, Lee NH, Park JW, Jee Y. Am J Chin Med 45 1003-1016 (2017)
  75. Productive induced metastability in allosteric modulation of kinase function. Montes de Oca J, Rodriguez Fris A, Appignanesi G, Fernández A. FEBS J 281 3079-3091 (2014)
  76. Letter Protein modelling of a novel KIT mutation (N567Y) in the gastrointestinal stromal tumour. Alyuruk H, Calibasi G, Cavas L, Baskin Y, Oztop I, Ellidokuz H, Yilmaz U. Eur J Cancer 49 2449-2452 (2013)