1po5 Citations

An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution.

Proc Natl Acad Sci U S A 100 13196-201 (2003)
Cited: 229 times
EuropePMC logo PMID: 14563924

Abstract

The xenobiotic metabolizing cytochromes P450 (P450s) are among the most versatile biological catalysts known, but knowledge of the structural basis for their broad substrate specificity has been limited. P450 2B4 has been frequently used as an experimental model for biochemical and biophysical studies of these membrane proteins. A 1.6-A crystal structure of P450 2B4 reveals a large open cleft that extends from the protein surface directly to the heme iron between the alpha-helical and beta-sheet domains without perturbing the overall P450 fold. This cleft is primarily formed by helices B' to C and F to G. The conformation of these regions is dramatically different from that of the other structurally defined mammalian P450, 2C5/3LVdH, in which the F to G and B' to C regions encapsulate one side of the active site to produce a closed form of the enzyme. The open conformation of 2B4 is trapped by reversible formation of a homodimer in which the residues between helices F and G of one molecule partially fill the open cleft of a symmetry-related molecule, and an intermolecular coordinate bond occurs between H226 and the heme iron. This dimer is observed both in solution and in the crystal. Differences between the structures of 2C5 and 2B4 suggest that defined regions of xenobiotic metabolizing P450s may adopt a substantial range of energetically accessible conformations without perturbing the overall fold. This conformational flexibility is likely to facilitate substrate access, metabolic versatility, and product egress.

Reviews - 1po5 mentioned but not cited (4)

  1. Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR. Gay SC, Roberts AG, Halpert JR. Future Med Chem 2 1451-1468 (2010)
  2. Plasticity of CYP2B enzymes: structural and solution biophysical methods. Wilderman PR, Halpert JR. Curr Drug Metab 13 167-176 (2012)
  3. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. Pharmacol Ther 215 107601 (2020)
  4. Physical Studies of P450-P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures. Reed JR, Backes WL. Front Pharmacol 8 28 (2017)

Articles - 1po5 mentioned but not cited (29)

  1. Structural basis for ligand promiscuity in cytochrome P450 3A4. Ekroos M, Sjögren T. Proc Natl Acad Sci U S A 103 13682-13687 (2006)
  2. An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Scott EE, He YA, Wester MR, White MA, Chin CC, Halpert JR, Johnson EF, Stout CD. Proc Natl Acad Sci U S A 100 13196-13201 (2003)
  3. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. Shahrokh K, Orendt A, Yost GS, Cheatham TE. J Comput Chem 33 119-133 (2012)
  4. Rapid and accurate prediction and scoring of water molecules in protein binding sites. Ross GA, Morris GM, Biggin PC. PLoS One 7 e32036 (2012)
  5. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct Biol 7 44 (2007)
  6. Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-A resolution. Gay SC, Shah MB, Talakad JC, Maekawa K, Roberts AG, Wilderman PR, Sun L, Yang JY, Huelga SC, Hong WX, Zhang Q, Stout CD, Halpert JR. Mol Pharmacol 77 529-538 (2010)
  7. Conformational adaptation of human cytochrome P450 2B6 and rabbit cytochrome P450 2B4 revealed upon binding multiple amlodipine molecules. Shah MB, Wilderman PR, Pascual J, Zhang Q, Stout CD, Halpert JR. Biochemistry 51 7225-7238 (2012)
  8. Plasticity of cytochrome P450 2B4 as investigated by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography. Wilderman PR, Shah MB, Liu T, Li S, Hsu S, Roberts AG, Goodlett DR, Zhang Q, Woods VL, Stout CD, Halpert JR. J Biol Chem 285 38602-38611 (2010)
  9. Crystal structures of cytochrome P450 2B4 in complex with the inhibitor 1-biphenyl-4-methyl-1H-imidazole: ligand-induced structural response through alpha-helical repositioning. Gay SC, Sun L, Maekawa K, Halpert JR, Stout CD. Biochemistry 48 4762-4771 (2009)
  10. Real-time ligand binding pocket database search using local surface descriptors. Chikhi R, Sael L, Kihara D. Proteins 78 2007-2028 (2010)
  11. Structural motif-based homology modeling of CYP27A1 and site-directed mutational analyses affecting vitamin D hydroxylation. Prosser DE, Guo Y, Jia Z, Jones G. Biophys J 90 3389-3409 (2006)
  12. Lecture Structure and function of cytochromes P450 2B: from mechanism-based inactivators to X-ray crystal structures and back. Halpert JR. Drug Metab Dispos 39 1113-1121 (2011)
  13. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers. Kubota A, Bainy AC, Woodin BR, Goldstone JV, Stegeman JJ. Toxicol Appl Pharmacol 272 172-179 (2013)
  14. Intramolecular heme ligation of the cytochrome P450 2C9 R108H mutant demonstrates pronounced conformational flexibility of the B-C loop region: implications for substrate binding. Roberts AG, Cheesman MJ, Primak A, Bowman MK, Atkins WM, Rettie AE. Biochemistry 49 8700-8708 (2010)
  15. Investigation by site-directed mutagenesis of the role of cytochrome P450 2B4 non-active-site residues in protein-ligand interactions based on crystal structures of the ligand-bound enzyme. Wilderman PR, Gay SC, Jang HH, Zhang Q, Stout CD, Halpert JR. FEBS J 279 1607-1620 (2012)
  16. Reaction mechanisms of 15-hydroperoxyeicosatetraenoic acid catalyzed by human prostacyclin and thromboxane synthases. Yeh HC, Tsai AL, Wang LH. Arch Biochem Biophys 461 159-168 (2007)
  17. Rational engineering of cytochromes P450 2B6 and 2B11 for enhanced stability: Insights into structural importance of residue 334. Talakad JC, Wilderman PR, Davydov DR, Kumar S, Halpert JR. Arch Biochem Biophys 494 151-158 (2010)
  18. Drug targeting CYP2E1 for the treatment of early-stage alcoholic steatohepatitis. Diesinger T, Buko V, Lautwein A, Dvorsky R, Belonovskaya E, Lukivskaya O, Naruta E, Kirko S, Andreev V, Buckert D, Bergler S, Renz C, Schneider E, Kuchenbauer F, Kumar M, Günes C, Büchele B, Simmet T, Müller-Enoch D, Wirth T, Haehner T. PLoS One 15 e0235990 (2020)
  19. A structural snapshot of CYP2B4 in complex with paroxetine provides insights into ligand binding and clusters of conformational states. Shah MB, Kufareva I, Pascual J, Zhang Q, Stout CD, Halpert JR. J Pharmacol Exp Ther 346 113-120 (2013)
  20. Perturbation centrality and turbine: a novel centrality measure obtained using a versatile network dynamics tool. Szalay KZ, Csermely P. PLoS One 8 e78059 (2013)
  21. Identification and analysis of conserved sequence motifs in cytochrome P450 family 2. Functional and structural role of a motif 187RFDYKD192 in CYP2B enzymes. Oezguen N, Kumar S, Hindupur A, Braun W, Muralidhara BK, Halpert JR. J Biol Chem 283 21808-21816 (2008)
  22. Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2. Jeřábek P, Florián J, Martínek V. Phys Chem Chem Phys 18 30344-30356 (2016)
  23. PatchSurfers: Two methods for local molecular property-based binding ligand prediction. Shin WH, Bures MG, Kihara D. Methods 93 41-50 (2016)
  24. Binding of 7-methoxy-4-(aminomethyl)-coumarin to wild-type and W128F mutant cytochrome P450 2D6 studied by time-resolved fluorescence spectroscopy. Stortelder A, Keizers PH, Oostenbrink C, De Graaf C, De Kruijf P, Vermeulen NP, Gooijer C, Commandeur JN, Van der Zwan G. Biochem J 393 635-643 (2006)
  25. Tyrosine Nitration Contributes to Nitric Oxide-Stimulated Degradation of CYP2B6. Lee CM, Wilderman PR, Park JW, Murphy TJ, Morgan ET. Mol Pharmacol 98 267-279 (2020)
  26. Effect of detergent binding on cytochrome P450 2B4 structure as analyzed by X-ray crystallography and deuterium-exchange mass spectrometry. Shah MB, Jang HH, Wilderman PR, Lee D, Li S, Zhang Q, Stout CD, Halpert JR. Biophys Chem 216 1-8 (2016)
  27. Hole Hopping through Cytochrome P450. Sørensen MLH, Sanders BC, Hicks LP, Rasmussen MH, Vishart AL, Kongsted J, Winkler JR, Gray HB, Hansen T. J Phys Chem B 124 3065-3073 (2020)
  28. TransCent: computational enzyme design by transferring active sites and considering constraints relevant for catalysis. Fischer A, Enkler N, Neudert G, Bocola M, Sterner R, Merkl R. BMC Bioinformatics 10 54 (2009)
  29. Studies on 16α-Hydroxylation of Steroid Molecules and Regioselective Binding Mode in Homology-Modeled Cytochrome P450-2C11. Ali HI, Yamada M, Fujita Y, Maeda M, Akaho E. Int J Med Chem 2011 918168 (2011)


Reviews citing this publication (38)

  1. Heme enzyme structure and function. Poulos TL. Chem Rev 114 3919-3962 (2014)
  2. Cytochrome P450: nature's most versatile biological catalyst. Coon MJ. Annu Rev Pharmacol Toxicol 45 1-25 (2005)
  3. Variations on a (t)heme--novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Munro AW, Girvan HM, McLean KJ. Nat Prod Rep 24 585-609 (2007)
  4. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM. J Endocrinol 210 271-284 (2011)
  5. Cytochrome P450: what have we learned and what are the future issues? Guengerich FP. Drug Metab Rev 36 159-197 (2004)
  6. Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Atkins WM. Annu Rev Pharmacol Toxicol 45 291-310 (2005)
  7. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. Drug Metab Rev 41 573-643 (2009)
  8. Conformational plasticity and structure/function relationships in cytochromes P450. Pochapsky TC, Kazanis S, Dang M. Antioxid Redox Signal 13 1273-1296 (2010)
  9. Cytochrome P450 biosensors-a review. Bistolas N, Wollenberger U, Jung C, Scheller FW. Biosens Bioelectron 20 2408-2423 (2005)
  10. Structural diversity of eukaryotic membrane cytochrome p450s. Johnson EF, Stout CD. J Biol Chem 288 17082-17090 (2013)
  11. Herbal interactions involving cytochrome p450 enzymes: a mini review. Delgoda R, Westlake AC. Toxicol Rev 23 239-249 (2004)
  12. Regulation of cytochrome P450 by posttranslational modification. Aguiar M, Masse R, Gibbs BF. Drug Metab Rev 37 379-404 (2005)
  13. Plasticity of specialized metabolism as mediated by dynamic metabolons. Laursen T, Møller BL, Bassard JE. Trends Plant Sci 20 20-32 (2015)
  14. Structures of cytochrome P450 3A4. Scott EE, Halpert JR. Trends Biochem Sci 30 5-7 (2005)
  15. The Mycobacterium tuberculosis cytochrome P450 system. Ouellet H, Johnston JB, Ortiz de Montellano PR. Arch Biochem Biophys 493 82-95 (2010)
  16. Modeling kinetics of subcellular disposition of chemicals. Balaz S. Chem Rev 109 1793-1899 (2009)
  17. Role of cytochrome b5 in catalysis by cytochrome P450 2B4. Zhang H, Myshkin E, Waskell L. Biochem Biophys Res Commun 338 499-506 (2005)
  18. Structural biology of heme monooxygenases. Poulos TL. Biochem Biophys Res Commun 338 337-345 (2005)
  19. Conformational diversity and ligand tunnels of mammalian cytochrome P450s. Yu X, Cojocaru V, Wade RC. Biotechnol Appl Biochem 60 134-145 (2013)
  20. Implications of the allosteric kinetics of cytochrome P450s. Atkins WM. Drug Discov Today 9 478-484 (2004)
  21. Cytochrome P450 structure-function: insights from molecular dynamics simulations. Nair PC, McKinnon RA, Miners JO. Drug Metab Rev 48 434-452 (2016)
  22. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Behrendorff JB, Huang W, Gillam EM. Biochem J 467 1-15 (2015)
  23. New cytochrome P450 mechanisms: implications for understanding molecular basis for drug toxicity at the level of the cytochrome. Shakunthala N. Expert Opin Drug Metab Toxicol 6 1-15 (2010)
  24. Structure and function of heme proteins in non-native states: a mini-review. Lin YW, Wang J. J Inorg Biochem 129 162-171 (2013)
  25. Use of directed evolution of mammalian cytochromes P450 for investigating the molecular basis of enzyme function and generating novel biocatalysts. Kumar S, Halpert JR. Biochem Biophys Res Commun 338 456-464 (2005)
  26. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Gillam EM. Arch Biochem Biophys 464 176-186 (2007)
  27. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Maréchal JD, Kemp CA, Roberts GC, Paine MJ, Wolf CR, Sutcliffe MJ. Br J Pharmacol 153 Suppl 1 S82-9 (2008)
  28. Progress in cytochrome P450 active site modeling. Kemp CA, Maréchal JD, Sutcliffe MJ. Arch Biochem Biophys 433 361-368 (2005)
  29. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Drug Metab Rev 48 405-433 (2016)
  30. New findings in studies of cytochromes P450. Myasoedova KN. Biochemistry (Mosc) 73 965-969 (2008)
  31. Structural insights into the function of steroidogenic cytochrome P450 17A1. Yadav R, Petrunak EM, Estrada DF, Scott EE. Mol Cell Endocrinol 441 68-75 (2017)
  32. Thermodynamics of ligand binding to P450 2B4 and P450eryF studied by isothermal titration calorimetry. Muralidhara BK, Halpert JR. Drug Metab Rev 39 539-556 (2007)
  33. Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity. Lewis DF, Ito Y. Xenobiotica 39 625-635 (2009)
  34. Steroidogenic cytochrome P450 17A1 structure and function. Burris-Hiday SD, Scott EE. Mol Cell Endocrinol 528 111261 (2021)
  35. Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. Hlavica P. J Inorg Biochem 167 100-115 (2017)
  36. Cytochrome P450 side-chain cleavage: insights gained from homology modeling. Storbeck KH, Swart P, Swart AC. Mol Cell Endocrinol 265-266 65-70 (2007)
  37. New assumptions about oxidative processes involved in steroid hormone biosynthesis: is the role of cytochrome P-450-activated dioxygen limited to hydroxylation reactions or are dioxygen insertion reactions also possible? Lieberman S, Ma S, He Y. J Steroid Biochem Mol Biol 94 405-420 (2005)
  38. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Cronin JM, Yu AM. Drug Metab Dispos 51 685-699 (2023)

Articles citing this publication (158)

  1. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF. J Biol Chem 279 35630-35637 (2004)
  2. Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. Scott EE, White MA, He YA, Johnson EF, Stout CD, Halpert JR. J Biol Chem 279 27294-27301 (2004)
  3. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann MH, Schwab M. Pharmacogenomics 8 743-759 (2007)
  4. Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O'Connell JD, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM. Proc Natl Acad Sci U S A 111 3865-3870 (2014)
  5. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Kim J, DellaPenna D. Proc Natl Acad Sci U S A 103 3474-3479 (2006)
  6. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Baas BJ, Denisov IG, Sligar SG. Arch Biochem Biophys 430 218-228 (2004)
  7. Protein-protein and protein-membrane associations in the lignin pathway. Bassard JE, Richert L, Geerinck J, Renault H, Duval F, Ullmann P, Schmitt M, Meyer E, Mutterer J, Boerjan W, De Jaeger G, Mely Y, Goossens A, Werck-Reichhart D. Plant Cell 24 4465-4482 (2012)
  8. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, Podust LM. J Biol Chem 281 26289-26297 (2006)
  9. Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Fer M, Dréano Y, Lucas D, Corcos L, Salaün JP, Berthou F, Amet Y. Arch Biochem Biophys 471 116-125 (2008)
  10. P450cam visits an open conformation in the absence of substrate. Lee YT, Wilson RF, Rupniewski I, Goodin DB. Biochemistry 49 3412-3419 (2010)
  11. Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. Lepesheva GI, Hargrove TY, Anderson S, Kleshchenko Y, Furtak V, Wawrzak Z, Villalta F, Waterman MR. J Biol Chem 285 25582-25590 (2010)
  12. Structure and dynamics of the membrane-bound cytochrome P450 2C9. Cojocaru V, Balali-Mood K, Sansom MS, Wade RC. PLoS Comput Biol 7 e1002152 (2011)
  13. A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A. J Biol Chem 288 22080-22095 (2013)
  14. Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum. Hargrove TY, Wawrzak Z, Liu J, Nes WD, Waterman MR, Lepesheva GI. J Biol Chem 286 26838-26848 (2011)
  15. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Chen CS, Lin JT, Goss KA, He YA, Halpert JR, Waxman DJ. Mol Pharmacol 65 1278-1285 (2004)
  16. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. Sirim D, Widmann M, Wagner F, Pleiss J. BMC Struct Biol 10 34 (2010)
  17. Theoretical characterization of substrate access/exit channels in the human cytochrome P450 3A4 enzyme: involvement of phenylalanine residues in the gating mechanism. Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R. J Phys Chem B 113 13018-13025 (2009)
  18. Designing better drugs: predicting cytochrome P450 metabolism. de Groot MJ. Drug Discov Today 11 601-606 (2006)
  19. Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide. Kumar S, Chen CS, Waxman DJ, Halpert JR. J Biol Chem 280 19569-19575 (2005)
  20. Crystal structure of human cytochrome P450 2D6 with prinomastat bound. Wang A, Savas U, Hsu MH, Stout CD, Johnson EF. J Biol Chem 287 10834-10843 (2012)
  21. Cytochrome P450 flexibility. Poulos TL. Proc Natl Acad Sci U S A 100 13121-13122 (2003)
  22. Conformational flexibility of mammalian cytochrome P450 2B4 in binding imidazole inhibitors with different ring chemistry and side chains. Solution thermodynamics and molecular modeling. Muralidhara BK, Negi S, Chin CC, Braun W, Halpert JR. J Biol Chem 281 8051-8061 (2006)
  23. Estriol bound and ligand-free structures of sterol 14alpha-demethylase. Podust LM, Yermalitskaya LV, Lepesheva GI, Podust VN, Dalmasso EA, Waterman MR. Structure 12 1937-1945 (2004)
  24. Mechanism of interactions of alpha-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe. Tsalkova TN, Davydova NY, Halpert JR, Davydov DR. Biochemistry 46 106-119 (2007)
  25. Mutations in CYP1B1 cause primary congenital glaucoma by reduction of either activity or abundance of the enzyme. Chavarria-Soley G, Sticht H, Aklillu E, Ingelman-Sundberg M, Pasutto F, Reis A, Rautenstrauss B. Hum Mutat 29 1147-1153 (2008)
  26. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Li L, Chang Z, Pan Z, Fu ZQ, Wang X. Proc Natl Acad Sci U S A 105 13883-13888 (2008)
  27. Surface plasmon resonance analysis of antifungal azoles binding to CYP3A4 with kinetic resolution of multiple binding orientations. Pearson JT, Hill JJ, Swank J, Isoherranen N, Kunze KL, Atkins WM. Biochemistry 45 6341-6353 (2006)
  28. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. Wang A, Stout CD, Zhang Q, Johnson EF. J Biol Chem 290 5092-5104 (2015)
  29. Structure conservation in cytochromes P450. Mestres J. Proteins 58 596-609 (2005)
  30. Crystal structure of H2O2-dependent cytochrome P450SPalpha with its bound fatty acid substrate: insight into the regioselective hydroxylation of fatty acids at the alpha position. Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y. J Biol Chem 286 29941-29950 (2011)
  31. Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Seifert A, Tatzel S, Schmid RD, Pleiss J. Proteins 64 147-155 (2006)
  32. Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. Xu LH, Fushinobu S, Ikeda H, Wakagi T, Shoun H. J Bacteriol 191 1211-1219 (2009)
  33. Three-dimensional model of the human aromatase enzyme and density functional parameterization of the iron-containing protoporphyrin IX for a molecular dynamics study of heme-cysteinato cytochromes. Favia AD, Cavalli A, Masetti M, Carotti A, Recanatini M. Proteins 62 1074-1087 (2006)
  34. Exploring coumarin egress channels in human cytochrome P450 2A6 by random acceleration and steered molecular dynamics simulations. Li W, Shen J, Liu G, Tang Y, Hoshino T. Proteins 79 271-281 (2011)
  35. Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Bikadi Z, Demko L, Hazai E. Arch Biochem Biophys 461 225-234 (2007)
  36. Identification and functional characterization of novel CYP2J2 variants: G312R variant causes loss of enzyme catalytic activity. Lee SS, Jeong HE, Liu KH, Ryu JY, Moon T, Yoon CN, Oh SJ, Yun CH, Shin JG. Pharmacogenet Genomics 15 105-113 (2005)
  37. Differential roles of Arg97, Asp293, and Arg108 in enzyme stability and substrate specificity of CYP2C9. Dickmann LJ, Locuson CW, Jones JP, Rettie AE. Mol Pharmacol 65 842-850 (2004)
  38. Structural and thermodynamic consequences of 1-(4-chlorophenyl)imidazole binding to cytochrome P450 2B4. Zhao Y, Sun L, Muralidhara BK, Kumar S, White MA, Stout CD, Halpert JR. Biochemistry 46 11559-11567 (2007)
  39. Three clusters of conformational states in p450cam reveal a multistep pathway for closing of the substrate access channel. Lee YT, Glazer EC, Wilson RF, Stout CD, Goodin DB. Biochemistry 50 693-703 (2011)
  40. CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds. Hargrove TY, Kim K, de Nazaré Correia Soeiro M, da Silva CF, Batista DD, Batista MM, Yazlovitskaya EM, Waterman MR, Sulikowski GA, Lepesheva GI. Int J Parasitol Drugs Drug Resist 2 178-186 (2012)
  41. Detection of substrate-dependent conformational changes in the P450 fold by nuclear magnetic resonance. Colthart AM, Tietz DR, Ni Y, Friedman JL, Dang M, Pochapsky TC. Sci Rep 6 22035 (2016)
  42. Disease-causing mutations in proteins: structural analysis of the CYP1B1 mutations causing primary congenital glaucoma in humans. Achary MS, Reddy AB, Chakrabarti S, Panicker SG, Mandal AK, Ahmed N, Balasubramanian D, Hasnain SE, Nagarajaram HA. Biophys J 91 4329-4339 (2006)
  43. Protein dynamics in cytochrome P450 molecular recognition and substrate specificity using 2D IR vibrational echo spectroscopy. Thielges MC, Chung JK, Fayer MD. J Am Chem Soc 133 3995-4004 (2011)
  44. Structures of cytochrome P450 2B4 complexed with the antiplatelet drugs ticlopidine and clopidogrel . Gay SC, Roberts AG, Maekawa K, Talakad JC, Hong WX, Zhang Q, Stout CD, Halpert JR. Biochemistry 49 8709-8720 (2010)
  45. Towards a new therapeutic target: Helicobacter pylori flavodoxin. Cremades N, Bueno M, Toja M, Sancho J. Biophys Chem 115 267-276 (2005)
  46. Unusual regioselectivity and active site topology of human cytochrome P450 2J2. Lafite P, André F, Zeldin DC, Dansette PM, Mansuy D. Biochemistry 46 10237-10247 (2007)
  47. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. Bell SG, Xu F, Forward I, Bartlam M, Rao Z, Wong LL. J Mol Biol 383 561-574 (2008)
  48. Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires. Hays AM, Dunn AR, Chiu R, Gray HB, Stout CD, Goodin DB. J Mol Biol 344 455-469 (2004)
  49. Functional role of residues in the helix B' region of cytochrome P450 2B1. Honma W, Li W, Liu H, Scott EE, Halpert JR. Arch Biochem Biophys 435 157-165 (2005)
  50. Protein dynamics studied with ultrafast two-dimensional infrared vibrational echo spectroscopy. Thielges MC, Fayer MD. Acc Chem Res 45 1866-1874 (2012)
  51. Structure-function analysis of vitamin D 24-hydroxylase (CYP24A1) by site-directed mutagenesis: amino acid residues responsible for species-based difference of CYP24A1 between humans and rats. Hamamoto H, Kusudo T, Urushino N, Masuno H, Yamamoto K, Yamada S, Kamakura M, Ohta M, Inouye K, Sakaki T. Mol Pharmacol 70 120-128 (2006)
  52. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production. Peng HM, Im SC, Pearl NM, Turcu AF, Rege J, Waskell L, Auchus RJ. Biochemistry 55 4356-4365 (2016)
  53. Improvement of cyclophosphamide activation by CYP2B6 mutants: from in silico to ex vivo. Nguyen TA, Tychopoulos M, Bichat F, Zimmermann C, Flinois JP, Diry M, Ahlberg E, Delaforge M, Corcos L, Beaune P, Dansette P, André F, de Waziers I. Mol Pharmacol 73 1122-1133 (2008)
  54. Probing the transmembrane structure and topology of microsomal cytochrome-p450 by solid-state NMR on temperature-resistant bicelles. Yamamoto K, Gildenberg M, Ahuja S, Im SC, Pearcy P, Waskell L, Ramamoorthy A. Sci Rep 3 2556 (2013)
  55. Structural evidence for enhancement of sequential vitamin D3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D3 hydroxylase. Yasutake Y, Fujii Y, Nishioka T, Cheon WK, Arisawa A, Tamura T. J Biol Chem 285 31193-31201 (2010)
  56. Structural insight into the altered substrate specificity of human cytochrome P450 2A6 mutants. Sansen S, Hsu MH, Stout CD, Johnson EF. Arch Biochem Biophys 464 197-206 (2007)
  57. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Li W, Tang Y, Liu H, Cheng J, Zhu W, Jiang H. Proteins 71 938-949 (2008)
  58. Analysis of the cryptophycin P450 epoxidase reveals substrate tolerance and cooperativity. Ding Y, Seufert WH, Beck ZQ, Sherman DH. J Am Chem Soc 130 5492-5498 (2008)
  59. Double electron-electron resonance shows cytochrome P450cam undergoes a conformational change in solution upon binding substrate. Stoll S, Lee YT, Zhang M, Wilson RF, Britt RD, Goodin DB. Proc Natl Acad Sci U S A 109 12888-12893 (2012)
  60. Selective inhibition of dog hepatic CYP2B11 and CYP3A12. Lu P, Singh SB, Carr BA, Fang Y, Xiang CD, Rushmore TH, Rodrigues AD, Shou M. J Pharmacol Exp Ther 313 518-528 (2005)
  61. Expression of human cytochrome P450 46A1 in Escherichia coli: effects of N- and C-terminal modifications. Mast N, Andersson U, Nakayama K, Bjorkhem I, Bjorkhem I, Pikuleva IA. Arch Biochem Biophys 428 99-108 (2004)
  62. Rational engineering of human cytochrome P450 2B6 for enhanced expression and stability: importance of a Leu264->Phe substitution. Kumar S, Zhao Y, Sun L, Negi SS, Halpert JR, Muralidhara BK. Mol Pharmacol 72 1191-1199 (2007)
  63. Comparative homology modeling of human cytochrome P4501A1 (CYP1A1) and confirmation of residues involved in 7-ethoxyresorufin O-deethylation by site-directed mutagenesis and enzyme kinetic analysis. Lewis BC, Mackenzie PI, Miners JO. Arch Biochem Biophys 468 58-69 (2007)
  64. Conformational selection dominates binding of steroids to human cytochrome P450 17A1. Guengerich FP, Wilkey CJ, Glass SM, Reddish MJ. J Biol Chem 294 10028-10041 (2019)
  65. Ile115Leu mutation in the SRS1 region of an insect cytochrome P450 (CYP6B1) compromises substrate turnover via changes in a predicted product release channel. Wen Z, Baudry J, Berenbaum MR, Schuler MA. Protein Eng Des Sel 18 191-199 (2005)
  66. Using a homology model of cytochrome P450 2D6 to predict substrate site of metabolism. Unwalla RJ, Cross JB, Salaniwal S, Shilling AD, Leung L, Kao J, Humblet C. J Comput Aided Mol Des 24 237-256 (2010)
  67. CYP2E1 active site residues in substrate recognition sequence 5 identified by photoaffinity labeling and homology modeling. Collom SL, Jamakhandi AP, Tackett AJ, Radominska-Pandya A, Miller GP. Arch Biochem Biophys 459 59-69 (2007)
  68. Uncovering the role of hydrophobic residues in cytochrome P450-cytochrome P450 reductase interactions. Kenaan C, Zhang H, Shea EV, Hollenberg PF. Biochemistry 50 3957-3967 (2011)
  69. Effect of conformational dynamics on substrate recognition and specificity as probed by the introduction of a de novo disulfide bond into cytochrome P450 2B1. Zhang H, Kenaan C, Hamdane D, Hoa GH, Hollenberg PF. J Biol Chem 284 25678-25686 (2009)
  70. Motion and flexibility in human cytochrome p450 aromatase. Jiang W, Ghosh D. PLoS One 7 e32565 (2012)
  71. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Prade E, Mahajan M, Im SC, Zhang M, Gentry KA, Anantharamaiah GM, Waskell L, Ramamoorthy A. Angew Chem Int Ed Engl 57 8458-8462 (2018)
  72. Identification of 17-alpha-ethynylestradiol-modified active site peptides and glutathione conjugates formed during metabolism and inactivation of P450s 2B1 and 2B6. Kent UM, Lin HL, Mills DE, Regal KA, Hollenberg PF. Chem Res Toxicol 19 279-287 (2006)
  73. Insights into the role of substrates on the interaction between cytochrome b5 and cytochrome P450 2B4 by NMR. Zhang M, Le Clair SV, Huang R, Ahuja S, Im SC, Waskell L, Ramamoorthy A. Sci Rep 5 8392 (2015)
  74. Mutagenesis and molecular dynamics suggest structural and functional roles for residues in the N-terminal portion of the cytochrome P450 2B1 I helix. Scott EE, Liu H, Qun He Y, Li W, Halpert JR. Arch Biochem Biophys 423 266-276 (2004)
  75. Re-engineering cytochrome P450 2B11dH for enhanced metabolism of several substrates including the anti-cancer prodrugs cyclophosphamide and ifosfamide. Sun L, Chen CS, Waxman DJ, Liu H, Halpert JR, Kumar S. Arch Biochem Biophys 458 167-174 (2007)
  76. Role of subunit interactions in P450 oligomers in the loss of homotropic cooperativity in the cytochrome P450 3A4 mutant L211F/D214E/F304W. Fernando H, Davydov DR, Chin CC, Halpert JR. Arch Biochem Biophys 460 129-140 (2007)
  77. Role of the conserved threonine 309 in mechanism of oxidation by cytochrome P450 2D6. Keizers PH, Schraven LH, de Graaf C, Hidestrand M, Ingelman-Sundberg M, van Dijk BR, Vermeulen NP, Commandeur JN. Biochem Biophys Res Commun 338 1065-1074 (2005)
  78. Association of cytochrome P450 enzymes is a determining factor in their catalytic activity. Hazai E, Bikádi Z, Simonyi M, Kupfer D. J Comput Aided Mol Des 19 271-285 (2005)
  79. Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Liu S, Peng L, Yang X, Wu Y, He L. Anal Biochem 375 209-216 (2008)
  80. Generation of a homology model for the human cytochrome P450, CYP24A1, and the testing of putative substrate binding residues by site-directed mutagenesis and enzyme activity studies. Masuda S, Prosser DE, Guo YD, Kaufmann M, Jones G. Arch Biochem Biophys 460 177-191 (2007)
  81. Investigation of the role of cytochrome P450 2B4 active site residues in substrate metabolism based on crystal structures of the ligand-bound enzyme. Hernandez CE, Kumar S, Liu H, Halpert JR. Arch Biochem Biophys 455 61-67 (2006)
  82. Thermodynamic fidelity of the mammalian cytochrome P450 2B4 active site in binding substrates and inhibitors. Muralidhara BK, Sun L, Negi S, Halpert JR. J Mol Biol 377 232-245 (2008)
  83. Cross-linking of human cytochrome P450 2B6 to NADPH-cytochrome P450 reductase: Identification of a potential site of interaction. Bumpus NN, Hollenberg PF. J Inorg Biochem 104 485-488 (2010)
  84. Investigation of indazole unbinding pathways in CYP2E1 by molecular dynamics simulations. Shen Z, Cheng F, Cheng F, Xu Y, Fu J, Xiao W, Shen J, Liu G, Li W, Tang Y. PLoS One 7 e33500 (2012)
  85. Potent mechanism-based inactivation of cytochrome P450 2B4 by 9-ethynylphenanthrene: implications for allosteric modulation of cytochrome P450 catalysis. Zhang H, Gay SC, Shah M, Foroozesh M, Liu J, Osawa Y, Zhang Q, Stout CD, Halpert JR, Hollenberg PF. Biochemistry 52 355-364 (2013)
  86. Structural Analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444. Ma M, Bell SG, Yang W, Hao Y, Rees NH, Bartlam M, Zhou W, Wong LL, Rao Z. Chembiochem 12 88-99 (2011)
  87. Conformational diversity in NAD(H) and interacting transhydrogenase nicotinamide nucleotide binding domains. Sundaresan V, Chartron J, Yamaguchi M, Stout CD. J Mol Biol 346 617-629 (2005)
  88. Functional studies of two novel and two rare mutations in the 21-hydroxylase gene. Barbaro M, Baldazzi L, Balsamo A, Lajic S, Robins T, Barp L, Pirazzoli P, Cacciari E, Cicognani A, Wedell A. J Mol Med (Berl) 84 521-528 (2006)
  89. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in p450cin. Meharenna YT, Slessor KE, Cavaignac SM, Poulos TL, De Voss JJ. J Biol Chem 283 10804-10812 (2008)
  90. Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y. J Biol Inorg Chem 15 1331-1339 (2010)
  91. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy. Davydov DR, Yang Z, Davydova N, Halpert JR, Hubbell WL. Biophys J 110 1485-1498 (2016)
  92. Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy. Di Nardo G, Breitner M, Sadeghi SJ, Castrignanò S, Mei G, Di Venere A, Nicolai E, Allegra P, Gilardi G. PLoS One 8 e82118 (2013)
  93. Hybrid homology modeling and mutational analysis of cytochrome P450C24A1 (CYP24A1) of the Vitamin D pathway: insights into substrate specificity and membrane bound structure-function. Annalora AJ, Bobrovnikov-Marjon E, Serda R, Pastuszyn A, Graham SE, Marcus CB, Omdahl JL. Arch Biochem Biophys 460 262-273 (2007)
  94. Effects of disease causing mutations on the essential motions in proteins. Achary MS, Nagarajaram HA. J Biomol Struct Dyn 26 609-624 (2009)
  95. Incorporating protein flexibility into docking and structure-based drug design. Barril X, Fradera X. Expert Opin Drug Discov 1 335-349 (2006)
  96. Three novel CYP21A2 mutations and their protein modelling in patients with classical 21-hydroxylase deficiency from northeastern Iran. Baradaran-Heravi A, Vakili R, Robins T, Carlsson J, Ghaemi N, A'rabi A, Abbaszadegan MR. Clin Endocrinol (Oxf) 67 335-341 (2007)
  97. A comparison of substrate dynamics in human CYP2E1 and CYP2A6. Harrelson JP, Henne KR, Alonso DO, Nelson SD. Biochem Biophys Res Commun 352 843-849 (2007)
  98. Atomic Force Microscopy Study of Protein-Protein Interactions in the Cytochrome CYP11A1 (P450scc)-Containing Steroid Hydroxylase System. Ivanov YD, Frantsuzov PA, Zöllner A, Medvedeva NV, Archakov AI, Reinle W, Bernhardt R. Nanoscale Res Lett 6 54 (2011)
  99. Abolition of oxygenase function, retention of NADPH oxidase activity, and emergence of peroxidase activity upon replacement of the axial cysteine-436 ligand by histidine in cytochrome P450 2B4. Vatsis KP, Peng HM, Coon MJ. Arch Biochem Biophys 434 128-138 (2005)
  100. Identification of amino acid residues involved in the inactivation of cytochrome P450 2B1 by two acetylenic compounds: the role of three residues in nonsubstrate recognition Sites. Von Weymarn LB, Sridar C, Hollenberg PF. J Pharmacol Exp Ther 311 71-79 (2004)
  101. Important amino acid residues that confer CYP2C19 selective activity to CYP2C9. Wada Y, Mitsuda M, Ishihara Y, Watanabe M, Iwasaki M, Asahi S. J Biochem 144 323-333 (2008)
  102. Structural and functional analysis of a novel mutation of CYP21B in a heterozygote carrier of 21-hydroxylase deficiency. Bojunga J, Welsch C, Antes I, Albrecht M, Lengauer T, Zeuzem S. Hum Genet 117 558-564 (2005)
  103. Characterization of Medicago truncatula (barrel medic) hydroperoxide lyase (CYP74C3), a water-soluble detergent-free cytochrome P450 monomer whose biological activity is defined by monomer-micelle association. Hughes RK, Belfield EJ, Muthusamay M, Khan A, Rowe A, Harding SE, Fairhurst SA, Bornemann S, Ashton R, Thorneley RN, Casey R. Biochem J 395 641-652 (2006)
  104. Mechanism-based inactivation of CYP2B1 and its F-helix mutant by two tert-butyl acetylenic compounds: covalent modification of prosthetic heme versus apoprotein. Lin HL, Zhang H, Noon KR, Hollenberg PF. J Pharmacol Exp Ther 331 392-403 (2009)
  105. NMR-derived models of amidopyrine and its metabolites in complexes with rabbit cytochrome P450 2B4 reveal a structural mechanism of sequential N-dealkylation. Roberts AG, Sjögren SE, Fomina N, Vu KT, Almutairi A, Halpert JR. Biochemistry 50 2123-2134 (2011)
  106. Prediction of three-dimensional structures and structural flexibilities of wild-type and mutant cytochrome P450 1A2 using molecular dynamics simulations. Watanabe Y, Fukuyoshi S, Hiratsuka M, Yamaotsu N, Hirono S, Takahashi O, Oda A. J Mol Graph Model 68 48-56 (2016)
  107. Structural basis for plant lutein biosynthesis from α-carotene. Niu G, Guo Q, Wang J, Zhao S, He Y, Liu L. Proc Natl Acad Sci U S A 117 14150-14157 (2020)
  108. The role of cytochrome P450 2B6 and 2B4 substrate access channel residues predicted based on crystal structures of the amlodipine complexes. Jang HH, Davydov DR, Lee GY, Yun CH, Halpert JR. Arch Biochem Biophys 545 100-107 (2014)
  109. Thr302 is the site for the covalent modification of human cytochrome P450 2B6 leading to mechanism-based inactivation by tert-butylphenylacetylene. Lin HL, Zhang H, Pratt-Hyatt MJ, Hollenberg PF. Drug Metab Dispos 39 2431-2439 (2011)
  110. An epoxidation mechanism of carbamazepine by CYP3A4. Hata M, Tanaka Y, Kyoda N, Osakabe T, Yuki H, Ishii I, Kitada M, Neya S, Hoshino T. Bioorg Med Chem 16 5134-5148 (2008)
  111. Engineering of LadA for enhanced hexadecane oxidation using random- and site-directed mutagenesis. Dong Y, Yan J, Du H, Chen M, Ma T, Feng L. Appl Microbiol Biotechnol 94 1019-1029 (2012)
  112. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy. Rupasinghe SG, Duan H, Frericks Schmidt HL, Berthold DA, Rienstra CM, Schuler MA. Biochim Biophys Acta 1768 3061-3070 (2007)
  113. Interactions between cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) lead to alterations in toluene disposition and P450 uncoupling. Reed JR, Cawley GF, Backes WL. Biochemistry 52 4003-4013 (2013)
  114. Investigation of the mechanisms underlying the differential effects of the K262R mutation of P450 2B6 on catalytic activity. Bumpus NN, Hollenberg PF. Mol Pharmacol 74 990-999 (2008)
  115. Ketonization of Proline Residues in the Peptide Chains of Actinomycins by a 4-Oxoproline Synthase. Semsary S, Crnovčić I, Driller R, Vater J, Loll B, Keller U. Chembiochem 19 706-715 (2018)
  116. Site-Specific 1D and 2D IR Spectroscopy to Characterize the Conformations and Dynamics of Protein Molecular Recognition. Ramos S, Thielges MC. J Phys Chem B 123 3551-3566 (2019)
  117. The role of Ile87 of CYP158A2 in oxidative coupling reaction. Zhao B, Bellamine A, Lei L, Waterman MR. Arch Biochem Biophys 518 127-132 (2012)
  118. Characterization of the active site properties of CYP4F12. Eksterowicz J, Rock DA, Rock BM, Wienkers LC, Foti RS. Drug Metab Dispos 42 1698-1707 (2014)
  119. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes. Hughes RK, Yousafzai FK, Ashton R, Chechetkin IR, Fairhurst SA, Hamberg M, Casey R. Proteins 72 1199-1211 (2008)
  120. Homology modeling of cytochrome P450scc and the mutations for optimal amperometric sensor. Sivozhelezov V, Nicolini C. J Theor Biol 234 479-485 (2005)
  121. Interactions between CYP2E1 and CYP2B4: effects on affinity for NADPH-cytochrome P450 reductase and substrate metabolism. Kenaan C, Shea EV, Lin HL, Zhang H, Pratt-Hyatt MJ, Hollenberg PF. Drug Metab Dispos 41 101-110 (2013)
  122. Modification of serine 360 by a reactive intermediate of 17-alpha-ethynylestradiol results in mechanism-based inactivation of cytochrome P450s 2B1 and 2B6. Kent UM, Sridar C, Spahlinger G, Hollenberg PF. Chem Res Toxicol 21 1956-1963 (2008)
  123. Probing membrane enhanced protein-protein interactions in a minimal redox complex of cytochrome-P450 and P450-reductase. Mahajan M, Ravula T, Prade E, Anantharamaiah GM, Ramamoorthy A. Chem Commun (Camb) 55 5777-5780 (2019)
  124. Covalent modification and time-dependent inhibition of human CYP2E1 by the meta-isomer of acetaminophen. Harrelson JP, Stamper BD, Chapman JD, Goodlett DR, Nelson SD. Drug Metab Dispos 40 1460-1465 (2012)
  125. Investigation of substrate recognition for cytochrome P450 1A2 mediated by water molecules using docking and molecular dynamics simulations. Watanabe Y, Fukuyoshi S, Kato K, Hiratsuka M, Yamaotsu N, Hirono S, Gouda H, Oda A. J Mol Graph Model 74 326-336 (2017)
  126. Membrane topology and search for potential redox partners of colon cancer-specific cytochrome P450 2W1. Guo J, Guo J, Thiess S, Johansson I, Mkrtchian S, Ingelman-Sundberg M. FEBS Lett 590 330-339 (2016)
  127. Molecular modeling study on orphan human protein CYP4A22 for identification of potential ligand binding site. Gajendrarao P, Krishnamoorthy N, Sakkiah S, Lazar P, Lee KW. J Mol Graph Model 28 524-532 (2010)
  128. Structural requirements for inhibitors of cytochromes P450 2B: assessment of the enzyme interaction with diamondoids. Hodek P, Bortek-Dohalská L, Sopko B, Sulc M, Smrcek S, Hudecek J, Janků J, Stiborová M. J Enzyme Inhib Med Chem 20 25-33 (2005)
  129. The functional role of threonine-205 in the mechanism-based inactivation of P450 2B1 by two ethynyl substrates: the importance of the F helix in catalysis. Lin HL, Kent UM, Zhang H, Waskell L, Hollenberg PF. J Pharmacol Exp Ther 311 855-863 (2004)
  130. Conformational Change Induced by Putidaredoxin Binding to Ferrous CO-ligated Cytochrome P450cam Characterized by 2D IR Spectroscopy. Ramos S, Basom EJ, Thielges MC. Front Mol Biosci 5 94 (2018)
  131. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations. Mancini G, Zazza C. PLoS One 10 e0137075 (2015)
  132. Molecular dynamics analysis reveals structural insights into mechanism of nicotine N-demethylation catalyzed by tobacco cytochrome P450 mono-oxygenase. Wang S, Yang S, An B, Wang S, Yin Y, Lu Y, Xu Y, Hao D. PLoS One 6 e23342 (2011)
  133. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis. Dorner ME, McMunn RD, Bartholow TG, Calhoon BE, Conlon MR, Dulli JM, Fehling SC, Fisher CR, Hodgson SW, Keenan SW, Kruger AN, Mabin JW, Mazula DL, Monte CA, Olthafer A, Sexton AE, Soderholm BR, Strom AM, Hati S. Protein Sci 24 1495-1507 (2015)
  134. Conformational Heterogeneity and the Affinity of Substrate Molecular Recognition by Cytochrome P450cam. Basom EJ, Manifold BA, Thielges MC. Biochemistry 56 3248-3256 (2017)
  135. Effects of polymorphic variation on the thermostability of heterogenous populations of CYP3A4 and CYP2C9 enzymes in solution. Arendse LB, Blackburn JM. Sci Rep 8 11876 (2018)
  136. Structural analysis of SgvP involved in carbon-sulfur bond formation during griseoviridin biosynthesis. Li Q, Chen Y, Zhang G, Zhang H. FEBS Lett 591 1295-1304 (2017)
  137. 13C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites. McCullough CR, Pullela PK, Im SC, Waskell L, Sem DS. J Biomol NMR 43 171-178 (2009)
  138. CYP2S1 gene polymorphisms in a Korean population. Jang YJ, Cha EY, Kim WY, Park SW, Shon JH, Lee SS, Shin JG. Ther Drug Monit 29 292-298 (2007)
  139. Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films. Hagen KD, Gillan JM, Im SC, Landefeld S, Mead G, Hiley M, Waskell LA, Hill MG, Udit AK. J Inorg Biochem 129 30-34 (2013)
  140. Exploration of the binding of curcumin analogues to human P450 2C9 based on docking and molecular dynamics simulation. Shi R, Wang Y, Zhu X, Lu X. J Mol Model 18 2599-2611 (2012)
  141. Improving the affinity and activity of CYP101D2 for hydrophobic substrates. Bell SG, Yang W, Dale A, Zhou W, Wong LL. Appl Microbiol Biotechnol 97 3979-3990 (2013)
  142. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter. Reed JR, dela Cruz AL, Lomnicki SM, Backes WL. Biochem Pharmacol 95 126-132 (2015)
  143. Complex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme. Min W, Jiang L, Xie XS. Chem Asian J 5 1129-1138 (2010)
  144. Mapping electrostatic potential of a protein on its hydrophobic surface: implications for crystallization of Cytochrome P450scc. Sivozhelezov V, Pechkova E, Nicolini C. J Theor Biol 241 73-80 (2006)
  145. Mapping of cytochrome P450 2B4 substrate binding sites by photolabile probe 3-azidiamantane: identification of putative substrate access regions. Hodek P, Karabec M, Sulc M, Sopko B, Smrcek S, Martínek V, Hudecek J, Stiborová M. Arch Biochem Biophys 468 82-91 (2007)
  146. Mechanism of steroidogenic electron transport: role of conserved Glu429 in destabilization of CYP11A1-adrenodoxin complex. Strushkevich NV, Harnastai IN, Usanov SA. Biochemistry (Mosc) 75 570-578 (2010)
  147. Photoaffinity labeling of P450Cam by an imidazole-tethered benzophenone probe. Trnka MJ, Doneanu CE, Trager WF. Arch Biochem Biophys 445 95-107 (2006)
  148. Rational Development of Novel Activity Probes for the Analysis of Human Cytochromes P450. Sellars JD, Skipsey M, Sadr-Ul-Shaheed, Gravell S, Abumansour H, Kashtl G, Irfan J, Khot M, Pors K, Patterson LH, Sutton CW. ChemMedChem 11 1122-1128 (2016)
  149. Uncovering of cytochrome P450 anatomy by SecStrAnnotator. Midlik A, Navrátilová V, Moturu TR, Koča J, Svobodová R, Berka K. Sci Rep 11 12345 (2021)
  150. Domain-Swap Dimerization of Acanthamoeba castellanii CYP51 and a Unique Mechanism of Inactivation by Isavuconazole. Sharma V, Shing B, Hernandez-Alvarez L, Debnath A, Podust LM. Mol Pharmacol 98 770-780 (2020)
  151. Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density. Huang J, Xu Q, Liu Z, Jain N, Tyagi M, Wei DQ, Hong L. Molecules 26 5693 (2021)
  152. Crystal Structures of Drug-Metabolizing CYPs. Estrada DF, Kumar A, Campomizzi CS, Jay N. Methods Mol Biol 2342 171-192 (2021)
  153. Induced fit for cytochrome P450 3A4 based on molecular dynamics. Quiroga I, Scior T. ADMET DMPK 7 252-266 (2019)
  154. Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1? Mokkawes T, de Visser SP. Int J Mol Sci 24 3651 (2023)
  155. Reconciling conformational heterogeneity and substrate recognition in cytochrome P450. Dandekar BR, Ahalawat N, Mondal J. Biophys J 120 1732-1745 (2021)
  156. Role of C-terminal sequence of cytochrome P450scc in folding and functional activity. Strushkevich NV, Harnastai IN, Lepesheva GI, Usanov SA. Biochemistry (Mosc) 71 1027-1034 (2006)
  157. So many roads traveled: A career in science and administration. Halpert JR. J Biol Chem 295 822-832 (2020)
  158. The synthesis, characterization, and application of ¹³C-methyl isocyanide as an NMR probe of heme protein active sites. McCullough C, Pullela PK, Im SC, Waskell L, Sem D. Methods Mol Biol 987 51-59 (2013)


Related citations provided by authors (1)