1q8x Citations

Solution structure of human cofilin: actin binding, pH sensitivity, and relationship to actin-depolymerizing factor.

J Biol Chem 279 4840-8 (2004)
Cited: 94 times
EuropePMC logo PMID: 14627701

Abstract

Human actin-depolymerizing factor (ADF) and cofilin are pH-sensitive, actin-depolymerizing proteins. Although 72% identical in sequence, ADF has a much higher depolymerizing activity than cofilin at pH 8. To understand this, we solved the structure of human cofilin using nuclear magnetic resonance and compared it with human ADF. Important sequence differences between vertebrate ADF/cofilins were correlated with unique structural determinants in the F-actin-binding site to account for differences in biochemical activities of the two proteins. Cofilin has a short beta-strand at the C terminus, not found in ADF, which packs against strands beta3/beta4, changing the environment around Lys96, a residue essential for F-actin binding. A salt bridge involving His133 and Asp98 (Glu98 in ADF) may explain the pH sensitivity of human cofilin and ADF; these two residues are fully conserved in vertebrate ADF/cofilins. Chemical shift perturbations identified residues that (i) differ in their chemical environments between wild type cofilin and mutants S3D, which has greatly reduced G-actin binding, and K96Q, which does not bind F-actin; (ii) are affected when G-actin binds cofilin; and (iii) are affected by pH change from 6 to 8. Many residues affected by G-actin binding also show perturbation in the mutants or in response to pH. Our evidence suggests the involvement of residues 133-138 of strand beta5 in all of the activities examined. Because residues in beta5 are perturbed by mutations that affect both G-actin and F-actin binding, this strand forms a "boundary" or "bridge" between the proposed F- and G-actin-binding sites.

Reviews - 1q8x mentioned but not cited (2)

  1. Considering protonation as a posttranslational modification regulating protein structure and function. Schönichen A, Webb BA, Jacobson MP, Barber DL. Annu Rev Biophys 42 289-314 (2013)
  2. Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Shishkin S, Eremina L, Pashintseva N, Kovalev L, Kovaleva M. Int J Mol Sci 18 E10 (2016)

Articles - 1q8x mentioned but not cited (6)

  1. Mapping the cofilin binding site on yeast G-actin by chemical cross-linking. Grintsevich EE, Benchaar SA, Warshaviak D, Boontheung P, Halgand F, Whitelegge JP, Faull KF, Loo RR, Sept D, Loo JA, Reisler E. J Mol Biol 377 395-409 (2008)
  2. A mechanism for actin filament severing by malaria parasite actin depolymerizing factor 1 via a low affinity binding interface. Wong W, Webb AI, Olshina MA, Infusini G, Tan YH, Hanssen E, Catimel B, Suarez C, Condron M, Angrisano F, Nebi T, Kovar DR, Baum J. J Biol Chem 289 4043-4054 (2014)
  3. Analysis of the human cofilin 1 structure reveals conformational changes required for actin binding. Klejnot M, Gabrielsen M, Cameron J, Mleczak A, Talapatra SK, Kozielski F, Pannifer A, Olson MF. Acta Crystallogr D Biol Crystallogr 69 1780-1788 (2013)
  4. Development of a high-throughput screening method for LIM kinase 1 using a luciferase-based assay of ATP consumption. Mezna M, Wong AC, Ainger M, Scott RW, Hammonds T, Olson MF. J Biomol Screen 17 460-468 (2012)
  5. STIP1/HOP Regulates the Actin Cytoskeleton through Interactions with Actin and Changes in Actin-Binding Proteins Cofilin and Profilin. Beckley SJ, Hunter MC, Kituyi SN, Wingate I, Chakraborty A, Schwarz K, Makhubu MP, Rousseau RP, Ruck DK, de la Mare JA, Blatch GL, Edkins AL. Int J Mol Sci 21 E3152 (2020)
  6. Recombinant actin-depolymerizing factor of the apicomplexan Neospora caninum (NcADF) is susceptible to oxidation. Baroni L, Abreu-Filho PG, Pereira LM, Nagl M, Yatsuda AP. Front Cell Infect Microbiol 12 952720 (2022)


Reviews citing this publication (23)

  1. Dysregulated pH: a perfect storm for cancer progression. Webb BA, Chimenti M, Jacobson MP, Barber DL. Nat Rev Cancer 11 671-677 (2011)
  2. ADF/cofilin: a functional node in cell biology. Bernstein BW, Bamburg JR. Trends Cell Biol 20 187-195 (2010)
  3. The cofilin pathway in breast cancer invasion and metastasis. Wang W, Eddy R, Condeelis J. Nat Rev Cancer 7 429-440 (2007)
  4. Role of ion channels and transporters in cell migration. Schwab A, Fabian A, Hanley PJ, Stock C. Physiol Rev 92 1865-1913 (2012)
  5. The regulation of MMP targeting to invadopodia during cancer metastasis. Jacob A, Prekeris R. Front Cell Dev Biol 3 4 (2015)
  6. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. White KA, Grillo-Hill BK, Barber DL. J Cell Sci 130 663-669 (2017)
  7. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Paavilainen VO, Bertling E, Falck S, Lappalainen P. Trends Cell Biol 14 386-394 (2004)
  8. Microenvironment and tumor cell plasticity: an easy way out. Taddei ML, Giannoni E, Comito G, Chiarugi P. Cancer Lett 341 80-96 (2013)
  9. Intracellular pH sensors: design principles and functional significance. Srivastava J, Barber DL, Jacobson MP. Physiology (Bethesda) 22 30-39 (2007)
  10. Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Baumgartner M, Patel H, Barber DL. Am J Physiol Cell Physiol 287 C844-50 (2004)
  11. Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Peppicelli S, Bianchini F, Calorini L. Cancer Metastasis Rev 33 823-832 (2014)
  12. Carbonic Anhydrases: Role in pH Control and Cancer. Mboge MY, Mahon BP, McKenna R, Frost SC. Metabolites 8 E19 (2018)
  13. Actin dynamics and cofilin-actin rods in alzheimer disease. Bamburg JR, Bernstein BW. Cytoskeleton (Hoboken) 73 477-497 (2016)
  14. Structural genomics of protein phosphatases. Almo SC, Bonanno JB, Sauder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R, Kumaran D, Madegowda M, Ragumani S, Patskovsky Y, Alvarado J, Ramagopal UA, Faber-Barata J, Chance MR, Sali A, Fiser A, Zhang ZY, Lawrence DS, Burley SK. J Struct Funct Genomics 8 121-140 (2007)
  15. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase. Reinhard L, Tidow H, Clausen MJ, Nissen P. Cell Mol Life Sci 70 205-222 (2013)
  16. GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Nam HW. Korean J Parasitol 47 Suppl S29-37 (2009)
  17. Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Samstag Y, John I, Wabnitz GH. Immunol Rev 256 30-47 (2013)
  18. Guardians of the actin monomer. Xue B, Robinson RC. Eur J Cell Biol 92 316-332 (2013)
  19. Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis. Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, Li G, Li J, Liu H, Wu H. Front Cell Dev Biol 9 599065 (2021)
  20. Cofilin and profilin: partners in cancer aggressiveness. Coumans JVF, Davey RJ, Moens PDJ, Moens PDJ. Biophys Rev 10 1323-1335 (2018)
  21. ADF/cofilin regulation from a structural viewpoint. Narita A. J Muscle Res Cell Motil 41 141-151 (2020)
  22. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Lv S, Chen Z, Mi H, Yu X. Cancer Manag Res 14 3245-3269 (2022)
  23. The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy. Shehjar F, Almarghalani DA, Mahajan R, Hasan SA, Shah ZA. Cells 13 188 (2024)

Articles citing this publication (63)

  1. Remodeling of actin filaments by ADF/cofilin proteins. Galkin VE, Orlova A, Kudryashov DS, Solodukhin A, Reisler E, Schröder GF, Egelman EH. Proc Natl Acad Sci U S A 108 20568-20572 (2011)
  2. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP, Barber DL. J Cell Biol 183 865-879 (2008)
  3. Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Srivastava J, Barreiro G, Groscurth S, Gingras AR, Goult BT, Critchley DR, Kelly MJ, Jacobson MP, Barber DL. Proc Natl Acad Sci U S A 105 14436-14441 (2008)
  4. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells. Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. J Cell Biochem 106 127-138 (2009)
  5. Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. Senju Y, Kalimeri M, Koskela EV, Somerharju P, Zhao H, Vattulainen I, Lappalainen P. Proc Natl Acad Sci U S A 114 E8977-E8986 (2017)
  6. Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells. Thouverey C, Malinowska A, Balcerzak M, Strzelecka-Kiliszek A, Buchet R, Dadlez M, Pikula S. J Proteomics 74 1123-1134 (2011)
  7. ADF/cofilin binds phosphoinositides in a multivalent manner to act as a PIP(2)-density sensor. Zhao H, Hakala M, Lappalainen P. Biophys J 98 2327-2336 (2010)
  8. Dissecting the N-terminal myosin binding site of human cardiac myosin-binding protein C. Structure and myosin binding of domain C2. Ababou A, Gautel M, Pfuhl M. J Biol Chem 282 9204-9215 (2007)
  9. GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Abrego J, Gunda V, Vernucci E, Shukla SK, King RJ, Dasgupta A, Goode G, Murthy D, Yu F, Singh PK. Cancer Lett 400 37-46 (2017)
  10. A Plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. Schüler H, Mueller AK, Matuschewski K. Mol Biol Cell 16 4013-4023 (2005)
  11. Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction. Gorbatyuk VY, Nosworthy NJ, Robson SA, Bains NP, Maciejewski MW, Dos Remedios CG, King GF. Mol Cell 24 511-522 (2006)
  12. Cofilin-2 controls actin filament length in muscle sarcomeres. Kremneva E, Makkonen MH, Skwarek-Maruszewska A, Gateva G, Michelot A, Dominguez R, Lappalainen P. Dev Cell 31 215-226 (2014)
  13. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells. Chen L, Shi K, Frary CE, Ditzel N, Hu H, Qiu W, Kassem M. Stem Cell Res 15 281-289 (2015)
  14. Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle. Papalouka V, Arvanitis DA, Vafiadaki E, Mavroidis M, Papadodima SA, Spiliopoulou CA, Kremastinos DT, Kranias EG, Sanoudou D. Mol Cell Biol 29 6046-6058 (2009)
  15. Quantitative Variations with pH of Actin Depolymerizing Factor/Cofilin's Multiple Actions on Actin Filaments. Wioland H, Jegou A, Romet-Lemonne G. Biochemistry 58 40-47 (2019)
  16. Na+, HCO3--cotransporter NBCn1 increases pHi gradients, filopodia, and migration of smooth muscle cells and promotes arterial remodelling. Boedtkjer E, Bentzon JF, Dam VS, Aalkjaer C. Cardiovasc Res 111 227-239 (2016)
  17. Non-overlapping activities of ADF and cofilin-1 during the migration of metastatic breast tumor cells. Tahtamouni LH, Shaw AE, Hasan MH, Yasin SR, Bamburg JR. BMC Cell Biol 14 45 (2013)
  18. Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. Elam WA, Cao W, Kang H, Huehn A, Hocky GM, Prochniewicz E, Schramm AC, Negrón K, Garcia J, Bonello TT, Gunning PW, Thomas DD, Voth GA, Sindelar CV, De La Cruz EM. J Biol Chem 292 19565-19579 (2017)
  19. Cofilin cross-bridges adjacent actin protomers and replaces part of the longitudinal F-actin interface. Kudryashov DS, Galkin VE, Orlova A, Phan M, Egelman EH, Reisler E. J Mol Biol 358 785-797 (2006)
  20. Structural and functional dissection of the Abp1 ADFH actin-binding domain reveals versatile in vivo adapter functions. Quintero-Monzon O, Rodal AA, Strokopytov B, Almo SC, Goode BL. Mol Biol Cell 16 3128-3139 (2005)
  21. Crystal structures explain functional differences in the two actin depolymerization factors of the malaria parasite. Singh BK, Sattler JM, Chatterjee M, Huttu J, Schüler H, Kursula I. J Biol Chem 286 28256-28264 (2011)
  22. Golgi Acidification by NHE7 Regulates Cytosolic pH Homeostasis in Pancreatic Cancer Cells. Galenkamp KMO, Sosicka P, Jung M, Recouvreux MV, Zhang Y, Moldenhauer MR, Brandi G, Freeze HH, Commisso C. Cancer Discov 10 822-835 (2020)
  23. Interactions between secreted GRA proteins and host cell proteins across the paratitophorous vacuolar membrane in the parasitism of Toxoplasma gondii. Ahn HJ, Kim S, Kim HE, Nam HW. Korean J Parasitol 44 303-312 (2006)
  24. Mapping the ADF/cofilin binding site on monomeric actin by competitive cross-linking and peptide array: evidence for a second binding site on monomeric actin. Mannherz HG, Ballweber E, Galla M, Villard S, Granier C, Steegborn C, Schmidtmann A, Jaquet K, Pope B, Weeds AG. J Mol Biol 366 745-755 (2007)
  25. Three-dimensional structure of cofilin bound to monomeric actin derived by structural mass spectrometry data. Kamal JK, Benchaar SA, Takamoto K, Reisler E, Chance MR. Proc Natl Acad Sci U S A 104 7910-7915 (2007)
  26. Modeling of protein binary complexes using structural mass spectrometry data. Kamal JK, Chance MR. Protein Sci 17 79-94 (2008)
  27. Structure of the N terminus of a nonmuscle alpha-tropomyosin in complex with the C terminus: implications for actin binding. Greenfield NJ, Kotlyanskaya L, Hitchcock-DeGregori SE. Biochemistry 48 1272-1283 (2009)
  28. Mitochondrial translocation of cofilin-1 promotes apoptosis of gastric cancer BGC-823 cells induced by ursolic acid. Tang Q, Ji Q, Tang Y, Chen T, Pan G, Hu S, Bao Y, Peng W, Yin P. Tumour Biol 35 2451-2459 (2014)
  29. Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). Tsarova K, Yarmola EG, Bubb MR. FEBS Lett 584 4756-4760 (2010)
  30. Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival. Toft NJ, Axelsen TV, Pedersen HL, Mele M, Burton M, Balling E, Johansen T, Thomassen M, Christiansen PM, Boedtkjer E. Elife 10 e68447 (2021)
  31. Extracellular alkaline pH leads to increased metastatic potential of estrogen receptor silenced endocrine resistant breast cancer cells. Khajah MA, Almohri I, Mathew PM, Luqmani YA. PLoS One 8 e76327 (2013)
  32. Identification of DAPK as a scaffold protein for the LIMK/cofilin complex in TNF-induced apoptosis. Ivanovska J, Tregubova A, Mahadevan V, Chakilam S, Gandesiri M, Benderska N, Ettle B, Hartmann A, Söder S, Ziesché E, Fischer T, Lautscham L, Fabry B, Segerer G, Gohla A, Schneider-Stock R. Int J Biochem Cell Biol 45 1720-1729 (2013)
  33. Severing of F-actin by yeast cofilin is pH-independent. Pavlov D, Muhlrad A, Cooper J, Wear M, Reisler E. Cell Motil Cytoskeleton 63 533-542 (2006)
  34. Novel PKCα-mediated phosphorylation site(s) on cofilin and their potential role in terminating histamine release. Sakuma M, Shirai Y, Yoshino K, Kuramasu M, Nakamura T, Yanagita T, Mizuno K, Hide I, Nakata Y, Saito N. Mol Biol Cell 23 3707-3721 (2012)
  35. Polycation induced actin bundles. Muhlrad A, Grintsevich EE, Reisler E. Biophys Chem 155 45-51 (2011)
  36. Solution structure and dynamics of ADF from Toxoplasma gondii. Yadav R, Pathak PP, Shukla VK, Jain A, Srivastava S, Tripathi S, Krishna Pulavarti SV, Mehta S, Sibley LD, Arora A. J Struct Biol 176 97-111 (2011)
  37. The interaction of cofilin with the actin filament. Wong DY, Sept D. J Mol Biol 413 97-105 (2011)
  38. Microfilaments and microtubules alternately coordinate the multi-step endosomal trafficking of Classical Swine Fever Virus. Cheng Y, Lou JX, Liu CC, Liu YY, Chen XN, Liang XD, Zhang J, Yang Q, Go YY, Zhou B. J Virol 95 JVI.02436-20 (2021)
  39. Taurine chloramine-induced inactivation of cofilin protein through methionine oxidation. Luo S, Uehara H, Shacter E. Free Radic Biol Med 75 84-94 (2014)
  40. A reducing milieu renders cofilin insensitive to phosphatidylinositol 4,5-bisphosphate (PIP2) inhibition. Schulte B, John I, Simon B, Brockmann C, Oelmeier SA, Jahraus B, Kirchgessner H, Riplinger S, Carlomagno T, Wabnitz GH, Samstag Y. J Biol Chem 288 29430-29439 (2013)
  41. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites. Dong CH, Tang WP, Liu JY. J Integr Plant Biol 55 250-261 (2013)
  42. Cofilin oligomer formation occurs in vivo and is regulated by cofilin phosphorylation. Goyal P, Pandey D, Brünnert D, Hammer E, Zygmunt M, Siess W. PLoS One 8 e71769 (2013)
  43. Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy. Yehl J, Kudryashova E, Reisler E, Kudryashov D, Polenova T. Sci Rep 7 44506 (2017)
  44. Crystal structure of human coactosin-like protein at 1.9 A resolution. Li X, Liu X, Lou Z, Duan X, Wu H, Liu Y, Rao Z. Protein Sci 13 2845-2851 (2004)
  45. Crystal structure of human slingshot phosphatase 2. Jung SK, Jeong DG, Yoon TS, Kim JH, Ryu SE, Kim SJ. Proteins 68 408-412 (2007)
  46. The binding landscape of a partially-selective isopeptidase inhibitor with potent pro-death activity, based on the bis(arylidene)cyclohexanone scaffold. Ciotti S, Sgarra R, Sgorbissa A, Penzo C, Tomasella A, Casarsa F, Benedetti F, Berti F, Manfioletti G, Brancolini C. Cell Death Dis 9 184 (2018)
  47. A proposed mechanism for cell polarization with no external cues. Bernstein BW, Bamburg JR. Cell Motil Cytoskeleton 58 96-103 (2004)
  48. Cucurbitacin E Inhibits Proliferation and Migration of Intestinal Epithelial Cells via Activating Cofilin. Song H, Wang Y, Li L, Sui H, Wang P, Wang F. Front Physiol 9 1090 (2018)
  49. Solution structures and dynamics of ADF/cofilins UNC-60A and UNC-60B from Caenorhabditis elegans. Shukla VK, Kabra A, Maheshwari D, Yadav R, Jain A, Tripathi S, Ono S, Kumar D, Arora A. Biochem J 465 63-78 (2015)
  50. Structural and functional insight into ADF/cofilin from Trypanosoma brucei. Dai K, Liao S, Zhang J, Zhang X, Tu X. PLoS One 8 e53639 (2013)
  51. Actin-ADF/cofilin rod formation in Caenorhabditis elegans muscle requires a putative F-actin binding site of ADF/cofilin at the C-terminus. Ono K, Ono S. Cell Motil Cytoskeleton 66 398-408 (2009)
  52. CofActor: A light- and stress-gated optogenetic clustering tool to study disease-associated cytoskeletal dynamics in living cells. Salem FB, Bunner WP, Prabhu VV, Kuyateh AB, O'Bryant CT, Murashov AK, Szatmari EM, Hughes RM. J Biol Chem 295 11231-11245 (2020)
  53. Magic angle spinning NMR structure of human cofilin-2 assembled on actin filaments reveals isoform-specific conformation and binding mode. Kraus J, Russell RW, Kudryashova E, Xu C, Katyal N, Perilla JR, Kudryashov DS, Polenova T. Nat Commun 13 2114 (2022)
  54. Solution structure and dynamics of ADF/cofilin from Leishmania donovani. Pathak PP, Pulavarti SV, Jain A, Sahasrabuddhe AA, Gupta CM, Arora A. J Struct Biol 172 219-224 (2010)
  55. Utilization of paramagnetic relaxation enhancements for structural analysis of actin-binding proteins in complex with actin. Huang S, Umemoto R, Tamura Y, Kofuku Y, Uyeda TQ, Nishida N, Shimada I. Sci Rep 6 33690 (2016)
  56. Hyperoxia induces glucose metabolism reprogramming and intracellular acidification by suppressing MYC/MCT1 axis in lung cancer. Liu X, Qin H, Zhang L, Jia C, Chao Z, Qin X, Zhang H, Chen C. Redox Biol 61 102647 (2023)
  57. Inhibition of Na+/H+exchanger modulates microglial activation and scar formation following microelectrode implantation. Dubaniewicz M, Eles JR, Lam S, Song S, Cambi F, Sun D, Wellman SM, Kozai TDY. J Neural Eng 18 (2021)
  58. Cofilin-induced changes in F-actin detected via cross-linking with benzophenone-4-maleimide. Chen CK, Benchaar SA, Phan M, Grintsevich EE, Loo RR, Loo JA, Reisler E. Biochemistry 52 5503-5509 (2013)
  59. Rescue of Citrus sudden death-associated virus in Nicotiana benthamiana plants from cloned cDNA: insights into mechanisms of expression of the three capsid proteins. Matsumura EE, Coletta-Filho HD, Machado MA, Nouri S, Falk BW. Mol Plant Pathol 20 611-625 (2019)
  60. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana. Du J, Wang X, Dong CH, Yang JM, Yao XJ. PLoS One 11 e0159053 (2016)
  61. GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton. Wolf C, Pouya A, Bitar S, Pfeiffer A, Bueno D, Rojas-Charry L, Arndt S, Gomez-Zepeda D, Tenzer S, Bello FD, Vianello C, Ritz S, Schwirz J, Dobrindt K, Peitz M, Hanschmann EM, Mencke P, Boussaad I, Silies M, Brüstle O, Giacomello M, Krüger R, Methner A. Commun Biol 5 541 (2022)
  62. Investigation of binding proteins for anti-platelet agent K-134 by Drug-Western method. Ikenoya M, Doi T, Miura T, Sawanobori K, Nishio M, Hidaka H. Biochem Biophys Res Commun 353 1111-1114 (2007)
  63. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Nat Commun 15 1426 (2024)