1qcf Citations

Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor.

Mol Cell 3 639-48 (1999)
Cited: 263 times
EuropePMC logo PMID: 10360180

Abstract

The crystal structure of the autoinhibited form of Hck has been determined at 2.0 A resolution, in complex with a specific pyrazolo pyrimidine-type inhibitor, PP1. The activation segment, a key regulatory component of the catalytic domain, is unphosphorylated and is visualized in its entirety. Tyr-416, the site of activating autophosphorylation in the Src family kinases, is positioned such that access to the catalytic machinery is blocked. PP1 is bound at the ATP-binding site of the kinase, and a methylphenyl group on PP1 is inserted into an adjacent hydrophobic pocket. The enlargement of this pocket in autoinhibited Src kinases suggests a route toward the development of inhibitors that are specific for the inactive forms of these proteins.

Reviews - 1qcf mentioned but not cited (11)

  1. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol Cell 42 9-22 (2011)
  2. SH3 domains: modules of protein-protein interactions. Kurochkina N, Guha U. Biophys Rev 5 29-39 (2013)
  3. Mechanisms of drug resistance in kinases. Barouch-Bentov R, Sauer K. Expert Opin Investig Drugs 20 153-208 (2011)
  4. Covalent Inhibition in Drug Discovery. Ghosh AK, Samanta I, Mondal A, Liu WR. ChemMedChem 14 889-906 (2019)
  5. Visualization of macromolecular structures. O'Donoghue SI, Goodsell DS, Frangakis AS, Jossinet F, Laskowski RA, Nilges M, Saibil HR, Schafferhans A, Wade RC, Westhof E, Olson AJ. Nat Methods 7 S42-55 (2010)
  6. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit Rev Biochem Mol Biol 53 535-563 (2018)
  7. Disordered Protein Kinase Regions in Regulation of Kinase Domain Cores. Gógl G, Kornev AP, Reményi A, Taylor SS. Trends Biochem Sci 44 300-311 (2019)
  8. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. J Biol Chem 295 15158-15171 (2020)
  9. Targeting protein kinases with selective and semipromiscuous covalent inhibitors. Miller RM, Taunton J. Methods Enzymol 548 93-116 (2014)
  10. Understanding molecular mechanisms in cell signaling through natural and artificial sequence variation. Shah NH, Kuriyan J. Nat Struct Mol Biol 26 25-34 (2019)
  11. Kinases as targets for chemical modulators: Structural aspects and their role in spermatogenesis. Jenardhanan P, Mathur PP. Spermatogenesis 4 e979113 (2014)

Articles - 1qcf mentioned but not cited (60)

  1. How does a drug molecule find its target binding site? Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE. J Am Chem Soc 133 9181-9183 (2011)
  2. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  3. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T, Ries RE, Lubman O, Fremont DH, McLellan MD, Payton JE, Westervelt P, DiPersio JF, Link DC, Walter MJ, Graubert TA, Watson M, Baty J, Heath S, Shannon WD, Nagarajan R, Bloomfield CD, Mardis ER, Wilson RK, Ley TJ. Blood 111 4797-4808 (2008)
  4. An unbiased cell morphology-based screen for new, biologically active small molecules. Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, Hansen KC, Burlingame AL, Trautman JK, Shokat KM, Adams CL. PLoS Biol 3 e128 (2005)
  5. Multidomain assembled states of Hck tyrosine kinase in solution. Yang S, Blachowicz L, Makowski L, Roux B. Proc Natl Acad Sci U S A 107 15757-15762 (2010)
  6. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Seeliger MA, Ranjitkar P, Kasap C, Shan Y, Shaw DE, Shah NP, Kuriyan J, Maly DJ. Cancer Res 69 2384-2392 (2009)
  7. MMDB: Entrez's 3D-structure database. Chen J, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler-Bauer A, Marchler GH, Mazumder R, Nikolskaya AN, Rao BS, Panchenko AR, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH. Nucleic Acids Res 31 474-477 (2003)
  8. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Marcotte DJ, Liu YT, Arduini RM, Hession CA, Miatkowski K, Wildes CP, Cullen PF, Hong V, Hopkins BT, Mertsching E, Jenkins TJ, Romanowski MJ, Baker DP, Silvian LF. Protein Sci 19 429-439 (2010)
  9. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Yang S, Banavali NK, Roux B. Proc Natl Acad Sci U S A 106 3776-3781 (2009)
  10. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. Yang S, Roux B. PLoS Comput Biol 4 e1000047 (2008)
  11. PALI-a database of Phylogeny and ALIgnment of homologous protein structures. Balaji S, Sujatha S, Kumar SS, Srinivasan N. Nucleic Acids Res 29 61-65 (2001)
  12. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J. Elife 4 (2015)
  13. Src kinase activation: A switched electrostatic network. Ozkirimli E, Post CB. Protein Sci 15 1051-1062 (2006)
  14. High-Throughput parallel blind Virtual Screening using BINDSURF. Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM. BMC Bioinformatics 13 Suppl 14 S13 (2012)
  15. Selective targeting of distinct active site nucleophiles by irreversible SRC-family kinase inhibitors. Gushwa NN, Kang S, Chen J, Taunton J. J Am Chem Soc 134 20214-20217 (2012)
  16. Expression of a Src family kinase in chronic myelogenous leukemia cells induces resistance to imatinib in a kinase-dependent manner. Pene-Dumitrescu T, Smithgall TE. J Biol Chem 285 21446-21457 (2010)
  17. Folding free energy function selects native-like protein sequences in the core but not on the surface. Jaramillo A, Wernisch L, Héry S, Wodak SJ. Proc Natl Acad Sci U S A 99 13554-13559 (2002)
  18. The design and application of target-focused compound libraries. Harris CJ, Hill RD, Sheppard DW, Slater MJ, Stouten PF. Comb Chem High Throughput Screen 14 521-531 (2011)
  19. On the importance of a funneled energy landscape for the assembly and regulation of multidomain Src tyrosine kinases. Faraldo-Gómez JD, Roux B. Proc Natl Acad Sci U S A 104 13643-13648 (2007)
  20. Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Liaunardy-Jopeace A, Murton BL, Mahesh M, Chin JW, James JR. Nat Struct Mol Biol 24 1155-1163 (2017)
  21. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. J Biol Chem 289 28539-28553 (2014)
  22. αC helix as a switch in the conformational transition of Src/CDK-like kinase domains. Huang H, Zhao R, Dickson BM, Skeel RD, Post CB. J Phys Chem B 116 4465-4475 (2012)
  23. Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases. Banavali NK, Roux B. Proteins 74 378-389 (2009)
  24. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. Fajer M, Meng Y, Roux B. J Phys Chem B 121 3352-3363 (2017)
  25. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains. Zhou HX. Biophys J 91 3170-3181 (2006)
  26. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Chen S, Brier S, Smithgall TE, Engen JR. Protein Sci 16 572-581 (2007)
  27. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Stogios PJ, Spanogiannopoulos P, Evdokimova E, Egorova O, Shakya T, Todorovic N, Capretta A, Wright GD, Savchenko A. Biochem J 454 191-200 (2013)
  28. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. Mol Cell 33 43-52 (2009)
  29. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism. Alvarado JJ, Betts L, Moroco JA, Smithgall TE, Yeh JI. J Biol Chem 285 35455-35461 (2010)
  30. Multiscale dynamics of macromolecules using normal mode Langevin. Izaguirre JA, Sweet CR, Pande VS. Pac Symp Biocomput 240-251 (2010)
  31. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Int Rev Phys Chem 32 96-127 (2013)
  32. Encounter complexes and hidden poses of kinase-inhibitor binding on the free-energy landscape. Re S, Oshima H, Kasahara K, Kamiya M, Sugita Y. Proc Natl Acad Sci U S A 116 18404-18409 (2019)
  33. Ack1: activation and regulation by allostery. Gajiwala KS, Maegley K, Ferre R, He YA, Yu X. PLoS One 8 e53994 (2013)
  34. Methods for SAXS-based structure determination of biomolecular complexes. Yang S. Adv Mater 26 7902-7910 (2014)
  35. Unrestrained computation of free energy along a path. Dickson BM, Huang H, Post CB. J Phys Chem B 116 11046-11055 (2012)
  36. Chemical genetics identifies c-Src as an activator of primitive ectoderm formation in murine embryonic stem cells. Meyn MA, Smithgall TE. Sci Signal 2 ra64 (2009)
  37. A Comparison of Three Perturbation Molecular Dynamics Methods for Modeling Conformational Transitions. Huang H, Ozkirimli E, Post CB. J Chem Theory Comput 5 1301-1314 (2009)
  38. Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation. Keates T, Cooper CD, Savitsky P, Allerston CK, Phillips C, Hammarström M, Daga N, Berridge G, Mahajan P, Burgess-Brown NA, Müller S, Gräslund S, Gileadi O. N Biotechnol 29 515-525 (2012)
  39. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. Pene-Dumitrescu T, Shu ST, Wales TE, Alvarado JJ, Shi H, Narute P, Moroco JA, Yeh JI, Engen JR, Smithgall TE. BMC Chem Biol 12 1 (2012)
  40. Structure-based drug design and AutoDock study of potential protein tyrosine kinase inhibitors. Ali HI, Nagamatsu T, Akaho E. Bioinformation 5 368-374 (2011)
  41. Systematic exploration of multiple drug binding sites. Bálint M, Jeszenői N, Horváth I, van der Spoel D, Hetényi C. J Cheminform 9 65 (2017)
  42. Prediction of specificity-determining residues for small-molecule kinase inhibitors. Caffrey DR, Lunney EA, Moshinsky DJ. BMC Bioinformatics 9 491 (2008)
  43. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. J Biol Chem 295 7849-7864 (2020)
  44. Subtle Dynamic Changes Accompany Hck Activation by HIV-1 Nef and are Reversed by an Antiretroviral Kinase Inhibitor. Wales TE, Hochrein JM, Morgan CR, Emert-Sedlak LA, Smithgall TE, Engen JR. Biochemistry 54 6382-6391 (2015)
  45. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. BMC Genomics 11 Suppl 1 S14 (2010)
  46. eModel-BDB: a database of comparative structure models of drug-target interactions from the Binding Database. Naderi M, Govindaraj RG, Brylinski M. Gigascience 7 (2018)
  47. eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs. Brylinski M, Naderi M, Govindaraj RG, Lemoine J. J Mol Biol 430 2266-2273 (2018)
  48. A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. Romano V, de Beer TA, Schwede T. BMC Res Notes 10 104 (2017)
  49. Phenylpyrazalopyrimidines as Tyrosine Kinase Inhibitors: Synthesis, Antiproliferative Activity, and Molecular Simulations. Chhikara BS, Ashraf S, Mozaffari S, St Jeans N, Mandal D, Tiwari RK, Ul-Haq Z, Parang K. Molecules 25 E2135 (2020)
  50. Discovery of Non-peptide Small Molecule Allosteric Modulators of the Src-family Kinase, Hck. Dorman HR, Close D, Wingert BM, Camacho CJ, Johnston PA, Smithgall TE. Front Chem 7 822 (2019)
  51. In Vitro Evolution Reveals a Single Mutation as Sole Source of Src-Family Kinase C-Helix-out Inhibitor Resistance. Patel RK, Patel YK, Smithgall TE. ACS Chem Biol 15 2175-2184 (2020)
  52. An aggregate analysis of many predicted structures to reduce errors in protein structure comparison caused by conformational flexibility. Godshall BG, Tang Y, Yang W, Chen BY. BMC Struct Biol 13 Suppl 1 S10 (2013)
  53. Deeper Insights on Alchornea cordifolia (Schumach. & Thonn.) Müll.Arg Extracts: Chemical Profiles, Biological Abilities, Network Analysis and Molecular Docking. Sinan KI, Ak G, Etienne OK, Jekő J, Cziáky Z, Gupcsó K, João Rodrigues M, Custodio L, Mahomoodally MF, Sharmeen JB, Brunetti L, Leone S, Recinella L, Chiavaroli A, Orlando G, Menghini L, Tacchini M, Ferrante C, Zengin G. Biomolecules 11 219 (2021)
  54. Incorporating Protein Dynamics Through Ensemble Docking in Machine Learning Models to Predict Drug Binding. Alghamedy F, Bopaiah J, Jones D, Zhang X, Weiss HL, Ellingson SR. AMIA Jt Summits Transl Sci Proc 2017 26-34 (2018)
  55. Practical Protocols for Efficient Sampling of Kinase-Inhibitor Binding Pathways Using Two-Dimensional Replica-Exchange Molecular Dynamics. Shinobu A, Re S, Sugita Y. Front Mol Biosci 9 878830 (2022)
  56. The HIV-1 protein Nef activates the Tec family kinase Btk by stabilizing an intermolecular SH3-SH2 domain interaction. Aryal M, Lin D, Regan K, Du S, Shi H, Alvarado JJ, Ilina TV, Andreotti AH, Smithgall TE. Sci Signal 15 eabn8359 (2022)
  57. ATP-site inhibitors induce unique conformations of the acute myeloid leukemia-associated Src-family kinase, Fgr. Du S, Alvarado JJ, Wales TE, Moroco JA, Engen JR, Smithgall TE. Structure 30 1508-1517.e3 (2022)
  58. Glycine substitution in SH3-SH2 connector of Hck tyrosine kinase causes population shift from assembled to disassembled state. Huang L, Wright M, Yang S, Blachowicz L, Makowski L, Roux B. Biochim Biophys Acta Gen Subj 1864 129604 (2020)
  59. The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling. Shih YC, Chen HF, Wu CY, Ciou YR, Wang CW, Chuang HC, Tan TH. Nat Commun 15 532 (2024)
  60. Cocrystallization of the Src-Family Kinase Hck with the ATP-Site Inhibitor A-419259 Stabilizes an Extended Activation Loop Conformation. Selzer AM, Alvarado JJ, Smithgall TE. Biochemistry (2024)


Reviews citing this publication (41)

  1. The conformational plasticity of protein kinases. Huse M, Kuriyan J. Cell 109 275-282 (2002)
  2. Protein tyrosine kinase structure and function. Hubbard SR, Till JH. Annu Rev Biochem 69 373-398 (2000)
  3. Structure and regulation of Src family kinases. Boggon TJ, Eck MJ. Oncogene 23 7918-7927 (2004)
  4. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. Druker BJ, Lydon NB. J Clin Invest 105 3-7 (2000)
  5. Src in cancer: deregulation and consequences for cell behaviour. Frame MC. Biochim Biophys Acta 1602 114-130 (2002)
  6. The hunting of the Src. Martin GS. Nat Rev Mol Cell Biol 2 467-475 (2001)
  7. ErbB receptors: from oncogenes to targeted cancer therapies. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI. J Clin Invest 117 2051-2058 (2007)
  8. Src family tyrosine kinases and growth factor signaling. Abram CL, Courtneidge SA. Exp Cell Res 254 1-13 (2000)
  9. Magic bullets for protein kinases. Bishop AC, Buzko O, Shokat KM. Trends Cell Biol 11 167-172 (2001)
  10. The structure, regulation, and function of ZAP-70. Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A. Immunol Rev 228 41-57 (2009)
  11. Tyrphostins and other tyrosine kinase inhibitors. Levitzki A, Mishani E. Annu Rev Biochem 75 93-109 (2006)
  12. Structure and dynamic regulation of Src-family kinases. Engen JR, Wales TE, Hochrein JM, Meyn MA, Banu Ozkan S, Bahar I, Smithgall TE. Cell Mol Life Sci 65 3058-3073 (2008)
  13. Variation on an Src-like theme. Harrison SC. Cell 112 737-740 (2003)
  14. Progesterone receptor transcription and non-transcription signaling mechanisms. Leonhardt SA, Boonyaratanakornkit V, Edwards DP. Steroids 68 761-770 (2003)
  15. Role of linkers in communication between protein modules. Gokhale RS, Khosla C. Curr Opin Chem Biol 4 22-27 (2000)
  16. Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Dibb NJ, Dilworth SM, Mol CD. Nat Rev Cancer 4 718-727 (2004)
  17. Protein-protein interactions in the allosteric regulation of protein kinases. Pellicena P, Kuriyan J. Curr Opin Struct Biol 16 702-709 (2006)
  18. Lysine-Targeting Covalent Inhibitors. Pettinger J, Jones K, Cheeseman MD. Angew Chem Int Ed Engl 56 15200-15209 (2017)
  19. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C. Leukemia 17 1211-1262 (2003)
  20. Determinants of substrate recognition in nonreceptor tyrosine kinases. Miller WT. Acc Chem Res 36 393-400 (2003)
  21. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol Ther 93 99-111 (2002)
  22. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. Pharmacol Ther 88 229-279 (2000)
  23. Non-competitive inhibition by active site binders. Blat Y. Chem Biol Drug Des 75 535-540 (2010)
  24. Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: implication for the gender difference in cardiac arrhythmias. Furukawa T, Kurokawa J. Pharmacol Ther 115 106-115 (2007)
  25. Structural biology in drug design: selective protein kinase inhibitors. Scapin G. Drug Discov Today 7 601-611 (2002)
  26. Tyrosine kinases as targets for cancer therapy. Levitzki A. Eur J Cancer 38 Suppl 5 S11-8 (2002)
  27. The ErbB kinase domain: structural perspectives into kinase activation and inhibition. Bose R, Zhang X. Exp Cell Res 315 649-658 (2009)
  28. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. de Oliveira GA, Rangel LP, Costa DC, Silva JL. Front Oncol 5 97 (2015)
  29. Structural biology contributions to tyrosine kinase drug discovery. Cowan-Jacob SW, Möbitz H, Fabbro D. Curr Opin Cell Biol 21 280-287 (2009)
  30. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv Enzyme Regul 41 121-149 (2001)
  31. Src family kinases and the MEK/ERK pathway in the regulation of myeloid differentiation and myeloid leukemogenesis. Johnson DE. Adv Enzyme Regul 48 98-112 (2008)
  32. Src inhibitors: genomics to therapeutics. Sawyer T, Boyce B, Dalgarno D, Iuliucci J. Expert Opin Investig Drugs 10 1327-1344 (2001)
  33. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Gerbec ZJ, Thakar MS, Malarkannan S. Front Immunol 6 472 (2015)
  34. The discovery of novel protein kinase inhibitors by using fragment-based high-throughput x-ray crystallography. Gill A, Cleasby A, Jhoti H. Chembiochem 6 506-512 (2005)
  35. Molecular interdiction of Src-family kinase signaling in hematopoietic cells. Geahlen RL, Handley MD, Harrison ML. Oncogene 23 8024-8032 (2004)
  36. Src family kinases and their role in hematological malignancies. Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, Izon D, Campbell L, Cheng HC, Nandurkar H. Leuk Lymphoma 56 577-586 (2015)
  37. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim Biophys Acta 1804 533-540 (2010)
  38. Structural insights into redox-active cysteine residues of the Src family kinases. Heppner DE. Redox Biol 41 101934 (2021)
  39. Bruton's TK inhibitors: structural insights and evolution of clinical candidates. Xing L, Huang A. Future Med Chem 6 675-695 (2014)
  40. Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome. Jurcik J, Sivakova B, Cipakova I, Selicky T, Stupenova E, Jurcik M, Osadska M, Barath P, Cipak L. Int J Mol Sci 21 E7637 (2020)
  41. T-cell-targeted signaling inhibitors. Won J, Lee GH. Int Rev Immunol 27 19-41 (2008)

Articles citing this publication (151)

  1. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. Cell 125 1137-1149 (2006)
  2. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, Wood JL, Morgan DO, Shokat KM. Nature 407 395-401 (2000)
  3. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM. Cell 125 733-747 (2006)
  4. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Xu W, Doshi A, Lei M, Eck MJ, Harrison SC. Mol Cell 3 629-638 (1999)
  5. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J. Cell 112 859-871 (2003)
  6. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Boonyaratanakornkit V, Scott MP, Ribon V, Sherman L, Anderson SM, Maller JL, Miller WT, Edwards DP. Mol Cell 8 269-280 (2001)
  7. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Cohen MS, Zhang C, Shokat KM, Taunton J. Science 308 1318-1321 (2005)
  8. Src tyrosine kinase is a novel direct effector of G proteins. Ma YC, Huang J, Ali S, Lowry W, Huang XY. Cell 102 635-646 (2000)
  9. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J. Cell 105 115-126 (2001)
  10. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA. Nat Chem Biol 4 691-699 (2008)
  11. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. Structure 13 861-871 (2005)
  12. A Src-like inactive conformation in the abl tyrosine kinase domain. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J. PLoS Biol 4 e144 (2006)
  13. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Di Paolo JA, Huang T, Balazs M, Barbosa J, Barck KH, Bravo BJ, Carano RA, Darrow J, Davies DR, DeForge LE, Diehl L, Ferrando R, Gallion SL, Giannetti AM, Gribling P, Hurez V, Hymowitz SG, Jones R, Kropf JE, Lee WP, Maciejewski PM, Mitchell SA, Rong H, Staker BL, Whitney JA, Yeh S, Young WB, Yu C, Zhang J, Reif K, Currie KS. Nat Chem Biol 7 41-50 (2011)
  14. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J. Cell 129 735-746 (2007)
  15. Structural basis for selective inhibition of Src family kinases by PP1. Liu Y, Bishop A, Witucki L, Kraybill B, Shimizu E, Tsien J, Ubersax J, Blethrow J, Morgan DO, Shokat KM. Chem Biol 6 671-678 (1999)
  16. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Holdorf AD, Lee KH, Burack WR, Allen PM, Shaw AS. Nat Immunol 3 259-264 (2002)
  17. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J. Structure 15 299-311 (2007)
  18. Cisplatin induces PKB/Akt activation and p38(MAPK) phosphorylation of the EGF receptor. Winograd-Katz SE, Levitzki A. Oncogene 25 7381-7390 (2006)
  19. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. Atwell S, Adams JM, Badger J, Buchanan MD, Feil IK, Froning KJ, Gao X, Hendle J, Keegan K, Leon BC, Müller-Dieckmann HJ, Nienaber VL, Noland BW, Post K, Rajashankar KR, Ramos A, Russell M, Burley SK, Buchanan SG. J Biol Chem 279 55827-55832 (2004)
  20. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. Trible RP, Emert-Sedlak L, Smithgall TE. J Biol Chem 281 27029-27038 (2006)
  21. Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Weiss EL, Bishop AC, Shokat KM, Drubin DG. Nat Cell Biol 2 677-685 (2000)
  22. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Tanis KQ, Veach D, Duewel HS, Bornmann WG, Koleske AJ. Mol Cell Biol 23 3884-3896 (2003)
  23. Structural basis for the recognition of c-Src by its inactivator Csk. Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Cell 134 124-134 (2008)
  24. Tyrosine kinase-dependent activation of phospholipase Cgamma is required for calcium transient in Xenopus egg fertilization. Sato K, Tokmakov AA, Iwasaki T, Fukami Y. Dev Biol 224 453-469 (2000)
  25. Role of the biomolecular energy gap in protein design, structure, and evolution. Fleishman SJ, Baker D. Cell 149 262-273 (2012)
  26. Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr-Abl signal transduction and oncogenesis. Wilson MB, Schreiner SJ, Choi HJ, Kamens J, Smithgall TE. Oncogene 21 8075-8088 (2002)
  27. Src family kinases phosphorylate the Bcr-Abl SH3-SH2 region and modulate Bcr-Abl transforming activity. Meyn MA, Wilson MB, Abdi FA, Fahey N, Schiavone AP, Wu J, Hochrein JM, Engen JR, Smithgall TE. J Biol Chem 281 30907-30916 (2006)
  28. Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A. J Biol Chem 277 42919-42925 (2002)
  29. Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM. J Biol Chem 277 24967-24975 (2002)
  30. Src kinase contributes to the metastatic spread of carcinoma cells. Boyer B, Bourgeois Y, Poupon MF. Oncogene 21 2347-2356 (2002)
  31. Structural analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating HER3 mutations. Littlefield P, Liu L, Mysore V, Shan Y, Shaw DE, Jura N. Sci Signal 7 ra114 (2014)
  32. KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. Wu J, Bohanan CS, Neumann JC, Lingrel JB. J Biol Chem 283 3942-3950 (2008)
  33. Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. Qiu H, Miller WT. J Biol Chem 277 34634-34641 (2002)
  34. Structural basis for peptide binding in protein kinase A. Role of glutamic acid 203 and tyrosine 204 in the peptide-positioning loop. Moore MJ, Adams JA, Taylor SS. J Biol Chem 278 10613-10618 (2003)
  35. Small molecule recognition of c-Src via the Imatinib-binding conformation. Dar AC, Lopez MS, Shokat KM. Chem Biol 15 1015-1022 (2008)
  36. The pp60c-Src inhibitor PP1 is non-competitive against ATP. Karni R, Mizrachi S, Reiss-Sklan E, Gazit A, Livnah O, Levitzki A. FEBS Lett 537 47-52 (2003)
  37. Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. Giordanetto F, Kroemer RT. Protein Eng 15 727-737 (2002)
  38. Ras-dependent regulation of c-Jun phosphorylation is mediated by the Ral guanine nucleotide exchange factor-Ral pathway. de Ruiter ND, Wolthuis RM, van Dam H, Burgering BM, Bos JL. Mol Cell Biol 20 8480-8488 (2000)
  39. Active Src elevates the expression of beta-catenin by enhancement of cap-dependent translation. Karni R, Gus Y, Dor Y, Meyuhas O, Levitzki A. Mol Cell Biol 25 5031-5039 (2005)
  40. Conformational disturbance in Abl kinase upon mutation and deregulation. Iacob RE, Pene-Dumitrescu T, Zhang J, Gray NS, Smithgall TE, Engen JR. Proc Natl Acad Sci U S A 106 1386-1391 (2009)
  41. Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop. Meng Y, Roux B. J Mol Biol 426 423-435 (2014)
  42. SRC family kinase activity is required for murine embryonic stem cell growth and differentiation. Meyn MA, Schreiner SJ, Dumitrescu TP, Nau GJ, Smithgall TE. Mol Pharmacol 68 1320-1330 (2005)
  43. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase. Dorey K, Engen JR, Kretzschmar J, Wilm M, Neubauer G, Schindler T, Superti-Furga G. Oncogene 20 8075-8084 (2001)
  44. Chemical library screens targeting an HIV-1 accessory factor/host cell kinase complex identify novel antiretroviral compounds. Emert-Sedlak L, Kodama T, Lerner EC, Dai W, Foster C, Day BW, Lazo JS, Smithgall TE. ACS Chem Biol 4 939-947 (2009)
  45. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. Ma QL, Yang F, Frautschy SA, Cole GM. Cell Logist 2 117-125 (2012)
  46. Construction of a linker library with widely controllable flexibility for fusion protein design. Li G, Huang Z, Zhang C, Dong BJ, Guo RH, Yue HW, Yan LT, Xing XH. Appl Microbiol Biotechnol 100 215-225 (2016)
  47. Sequence and structural analysis of kinase ATP pocket residues. Vulpetti A, Bosotti R. Farmaco 59 759-765 (2004)
  48. Chemical genetic strategy for targeting protein kinases based on covalent complementarity. Garske AL, Peters U, Cortesi AT, Perez JL, Shokat KM. Proc Natl Acad Sci U S A 108 15046-15052 (2011)
  49. RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. Perrone L, Peluso G, Melone MA. J Cell Physiol 217 60-71 (2008)
  50. Inhibition of Hematopoietic Cell Kinase Activity Suppresses Myeloid Cell-Mediated Colon Cancer Progression. Poh AR, Love CG, Masson F, Preaudet A, Tsui C, Whitehead L, Monard S, Khakham Y, Burstroem L, Lessene G, Sieber O, Lowell C, Putoczki TL, O'Donoghue RJJ, Ernst M. Cancer Cell 31 563-575.e5 (2017)
  51. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. Aleksandrov A, Simonson T. J Biol Chem 285 13807-13815 (2010)
  52. Src family kinases are required for prolactin induction of cell proliferation. Fresno Vara JA, Cáceres MA, Silva A, Martín-Pérez J. Mol Biol Cell 12 2171-2183 (2001)
  53. A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo. Saito Y, Yuki H, Kuratani M, Hashizume Y, Takagi S, Honma T, Tanaka A, Shirouzu M, Mikuni J, Handa N, Ogahara I, Sone A, Najima Y, Tomabechi Y, Wakiyama M, Uchida N, Tomizawa-Murasawa M, Kaneko A, Tanaka S, Suzuki N, Kajita H, Aoki Y, Ohara O, Shultz LD, Fukami T, Goto T, Taniguchi S, Yokoyama S, Ishikawa F. Sci Transl Med 5 181ra52 (2013)
  54. An electrostatic network and long-range regulation of Src kinases. Ozkirimli E, Yadav SS, Miller WT, Post CB. Protein Sci 17 1871-1880 (2008)
  55. Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37. Prince T, Matts RL. J Biol Chem 279 39975-39981 (2004)
  56. Partial unfolding of diverse SH3 domains on a wide timescale. Wales TE, Engen JR. J Mol Biol 357 1592-1604 (2006)
  57. Evidence that Src-type tyrosine kinase activity is necessary for initiation of calcium release at fertilization in sea urchin eggs. Abassi YA, Carroll DJ, Giusti AF, Belton RJ, Foltz KR. Dev Biol 218 206-219 (2000)
  58. Structural variations in the catalytic and ubiquitin-associated domains of microtubule-associated protein/microtubule affinity regulating kinase (MARK) 1 and MARK2. Marx A, Nugoor C, Müller J, Panneerselvam S, Timm T, Bilang M, Mylonas E, Svergun DI, Mandelkow EM, Mandelkow E. J Biol Chem 281 27586-27599 (2006)
  59. Crystal structures of active SRC kinase domain complexes. Breitenlechner CB, Kairies NA, Honold K, Scheiblich S, Koll H, Greiter E, Koch S, Schäfer W, Huber R, Engh RA. J Mol Biol 353 222-231 (2005)
  60. The N-terminal end of the catalytic domain of SRC kinase Hck is a conformational switch implicated in long-range allosteric regulation. Banavali NK, Roux B. Structure 13 1715-1723 (2005)
  61. Progesterone receptor interacting coregulatory proteins and cross talk with cell signaling pathways. Edwards DP, Wardell SE, Boonyaratanakornkit V. J Steroid Biochem Mol Biol 83 173-186 (2002)
  62. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220). Zorn JA, Wang Q, Fujimura E, Barros T, Kuriyan J. PLoS One 10 e0121177 (2015)
  63. Structure-guided inhibitor design expands the scope of analog-sensitive kinase technology. Zhang C, Lopez MS, Dar AC, Ladow E, Finkbeiner S, Yun CH, Eck MJ, Shokat KM. ACS Chem Biol 8 1931-1938 (2013)
  64. Activation of the Src family kinase Hck without SH3-linker release. Lerner EC, Trible RP, Schiavone AP, Hochrein JM, Engen JR, Smithgall TE. J Biol Chem 280 40832-40837 (2005)
  65. Are Src family kinases involved in cell cycle resumption in rat eggs? Talmor-Cohen A, Tomashov-Matar R, Eliyahu E, Shapiro R, Shalgi R. Reproduction 127 455-463 (2004)
  66. Galpha12 regulates epithelial cell junctions through Src tyrosine kinases. Meyer TN, Hunt J, Schwesinger C, Denker BM. Am J Physiol Cell Physiol 285 C1281-93 (2003)
  67. Competing protein:protein interactions are proposed to control the biological switch of the E coli biotin repressor. Weaver LH, Kwon K, Beckett D, Matthews BW. Protein Sci 10 2618-2622 (2001)
  68. Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Giannini A, Bijlmakers MJ. Mol Cell Biol 24 5667-5676 (2004)
  69. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry. Hochrein JM, Lerner EC, Schiavone AP, Smithgall TE, Engen JR. Protein Sci 15 65-73 (2006)
  70. Design and use of analog-sensitive protein kinases. Blethrow J, Zhang C, Shokat KM, Weiss EL. Curr Protoc Mol Biol Chapter 18 Unit 18.11 (2004)
  71. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Miller M, Ginalski K, Lesyng B, Nakaigawa N, Schmidt L, Zbar B. Proteins 44 32-43 (2001)
  72. An inhibitor-resistant mutant of Hck protects CML cells against the antiproliferative and apoptotic effects of the broad-spectrum Src family kinase inhibitor A-419259. Pene-Dumitrescu T, Peterson LF, Donato NJ, Smithgall TE. Oncogene 27 7055-7069 (2008)
  73. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  74. Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds. Dalgarno D, Stehle T, Narula S, Schelling P, van Schravendijk MR, Adams S, Andrade L, Keats J, Ram M, Jin L, Grossman T, MacNeil I, Metcalf C, Shakespeare W, Wang Y, Keenan T, Sundaramoorthi R, Bohacek R, Weigele M, Sawyer T. Chem Biol Drug Des 67 46-57 (2006)
  75. Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit. Gazit A, Yee K, Uecker A, Böhmer FD, Sjöblom T, Ostman A, Waltenberger J, Golomb G, Banai S, Heinrich MC, Levitzki A. Bioorg Med Chem 11 2007-2018 (2003)
  76. Allosteric loss-of-function mutations in HIV-1 Nef from a long-term non-progressor. Trible RP, Emert-Sedlak L, Wales TE, Ayyavoo V, Engen JR, Smithgall TE. J Mol Biol 374 121-129 (2007)
  77. Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase. Fraser C, Dawson JC, Dowling R, Houston DR, Weiss JT, Munro AF, Muir M, Harrington L, Webster SP, Frame MC, Brunton VG, Patton EE, Carragher NO, Unciti-Broceta A. J Med Chem 59 4697-4710 (2016)
  78. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. Sheinerman FB, Al-Lazikani B, Honig B. J Mol Biol 334 823-841 (2003)
  79. c-Src tyrosine kinase, a critical component for 5-HT2A receptor-mediated contraction in rat aorta. Lu R, Alioua A, Kumar Y, Kundu P, Eghbali M, Weisstaub NV, Gingrich JA, Stefani E, Toro L. J Physiol 586 3855-3869 (2008)
  80. Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn. Brignatz C, Paronetto MP, Opi S, Cappellari M, Audebert S, Feuillet V, Bismuth G, Roche S, Arold ST, Sette C, Collette Y. Mol Cell Biol 29 6438-6448 (2009)
  81. Conserved residues in the HIV-1 Nef hydrophobic pocket are essential for recruitment and activation of the Hck tyrosine kinase. Choi HJ, Smithgall TE. J Mol Biol 343 1255-1268 (2004)
  82. A Dimerization Function in the Intrinsically Disordered N-Terminal Region of Src. Spassov DS, Ruiz-Saenz A, Piple A, Moasser MM. Cell Rep 25 449-463.e4 (2018)
  83. Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. Zhao J, Zhang Y, Ithychanda SS, Tu Y, Chen K, Qin J, Wu C. J Biol Chem 284 34308-34320 (2009)
  84. Modified AutoDock for accurate docking of protein kinase inhibitors. Buzko OV, Bishop AC, Shokat KM. J Comput Aided Mol Des 16 113-127 (2002)
  85. Src activation is not necessary for transforming growth factor (TGF)-beta-mediated epithelial to mesenchymal transitions (EMT) in mammary epithelial cells. PP1 directly inhibits TGF-beta receptors I and II. Maeda M, Shintani Y, Wheelock MJ, Johnson KR. J Biol Chem 281 59-68 (2006)
  86. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase. Pucheta-Martínez E, Saladino G, Morando MA, Martinez-Torrecuadrada J, Lelli M, Sutto L, D'Amelio N, Gervasio FL. Sci Rep 6 24235 (2016)
  87. Crystal structures of IL-2-inducible T cell kinase complexed with inhibitors: insights into rational drug design and activity regulation. Kutach AK, Villaseñor AG, Lam D, Belunis C, Janson C, Lok S, Hong LN, Liu CM, Deval J, Novak TJ, Barnett JW, Chu W, Shaw D, Kuglstatter A. Chem Biol Drug Des 76 154-163 (2010)
  88. Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Deindl S, Kadlecek TA, Cao X, Kuriyan J, Weiss A. Proc Natl Acad Sci U S A 106 20699-20704 (2009)
  89. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. Tarafdar S, Poe JA, Smithgall TE. J Biol Chem 289 15718-15728 (2014)
  90. High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding. Sheinerman FB, Giraud E, Laoui A. J Mol Biol 352 1134-1156 (2005)
  91. Tyrosine 416 is phosphorylated in the closed, repressed conformation of c-Src. Irtegun S, Wood RJ, Ormsby AR, Mulhern TD, Hatters DM. PLoS One 8 e71035 (2013)
  92. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. Moroco JA, Craigo JK, Iacob RE, Wales TE, Engen JR, Smithgall TE. PLoS One 9 e105629 (2014)
  93. Effect of autophosphorylation on the catalytic and regulatory properties of protein tyrosine kinase Src. Sun G, Ramdas L, Wang W, Vinci J, McMurray J, Budde RJ. Arch Biochem Biophys 397 11-17 (2002)
  94. Novel mechanism of regulation of the non-receptor protein tyrosine kinase Csk: insights from NMR mapping studies and site-directed mutagenesis. Shekhtman A, Ghose R, Wang D, Cole PA, Cowburn D. J Mol Biol 314 129-138 (2001)
  95. Reversion-induced LIM interaction with Src reveals a novel Src inactivation cycle. Zhang Y, Tu Y, Zhao J, Chen K, Wu C. J Cell Biol 184 785-792 (2009)
  96. Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes. Schmidt H, Hoffmann S, Tran T, Stoldt M, Stangler T, Wiesehan K, Willbold D. J Mol Biol 365 1517-1532 (2007)
  97. The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. Goel RK, Miah S, Black K, Kalra N, Dai C, Lukong KE. FEBS J 280 4539-4559 (2013)
  98. p50(Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck. Scholz G, Hartson SD, Cartledge K, Hall N, Shao J, Dunn AR, Matts RL. Mol Cell Biol 20 6984-6995 (2000)
  99. Nonredundant roles of Src-family kinases and Syk in the initiation of B-cell antigen receptor signaling. Stepanek O, Draber P, Drobek A, Horejsi V, Brdicka T. J Immunol 190 1807-1818 (2013)
  100. Testing the promiscuity of commercial kinase inhibitors against the AGC kinase group using a split-luciferase screen. Jester BW, Gaj A, Shomin CD, Cox KJ, Ghosh I. J Med Chem 55 1526-1537 (2012)
  101. Src family kinases play multiple roles in differentiation of trophoblasts from human term placenta. Daoud G, Rassart E, Masse A, Lafond J. J Physiol 571 537-553 (2006)
  102. The Src family kinase Fgr is a transforming oncoprotein that functions independently of SH3-SH2 domain regulation. Shen K, Moroco JA, Patel RK, Shi H, Engen JR, Dorman HR, Smithgall TE. Sci Signal 11 eaat5916 (2018)
  103. The tyrosine kinase Csk dimerizes through Its SH3 domain. Levinson NM, Visperas PR, Kuriyan J. PLoS One 4 e7683 (2009)
  104. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations. Lee TS, Ma W, Zhang X, Kantarjian H, Albitar M. BMC Struct Biol 9 58 (2009)
  105. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N'-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily. Gandin V, Ferrarese A, Dalla Via M, Marzano C, Chilin A, Marzaro G. Sci Rep 5 16750 (2015)
  106. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Retrovirology 10 135 (2013)
  107. Identification of a SRC-like tyrosine kinase gene, FRK, fused with ETV6 in a patient with acute myelogenous leukemia carrying a t(6;12)(q21;p13) translocation. Hosoya N, Qiao Y, Hangaishi A, Wang L, Nannya Y, Sanada M, Kurokawa M, Chiba S, Hirai H, Ogawa S. Genes Chromosomes Cancer 42 269-279 (2005)
  108. Requirements of Src family kinase during meiotic maturation in mouse oocyte. Zheng KG, Meng XQ, Yang Y, Yu YS, Liu DC, Li YL. Mol Reprod Dev 74 125-130 (2007)
  109. pp60(cSrc) is a caspase-3 substrate and Is essential for the transformed phenotype of A431 cells. Karni R, Levitzki A. Mol Cell Biol Res Commun 3 98-104 (2000)
  110. pp60c-src associates with the SH2-containing inositol-5-phosphatase SHIP1 and is involved in its tyrosine phosphorylation downstream of alphaIIbbeta3 integrin in human platelets. Giuriato S, Bodin S, Erneux C, Woscholski R, Plantavid M, Chap H, Payrastre B. Biochem J 348 Pt 1 107-112 (2000)
  111. Abl N-terminal cap stabilization of SH3 domain dynamics. Chen S, Dumitrescu TP, Smithgall TE, Engen JR. Biochemistry 47 5795-5803 (2008)
  112. In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures. Verkhivker GM. Biopolymers 85 333-348 (2007)
  113. Click chemistry inspired one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles and their Src kinase inhibitory activity. Kumar D, Reddy VB, Kumar A, Mandal D, Tiwari R, Parang K. Bioorg Med Chem Lett 21 449-452 (2011)
  114. Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Vihinen M, Villa A, Mella P, Schumacher RF, Savoldi G, O'Shea JJ, Candotti F, Notarangelo LD. Clin Immunol 96 108-118 (2000)
  115. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64. Strong TC, Kaur G, Thomas JH. PLoS One 6 e28100 (2011)
  116. Bombesin and angiotensin II rapidly stimulate Src phosphorylation at Tyr-418 in fibroblasts and intestinal epithelial cells through a PP2-insensitive pathway. Wu SS, Yamauchi K, Rozengurt E. Cell Signal 17 93-102 (2005)
  117. Functional characterization and conformational analysis of the Herpesvirus saimiri Tip-C484 protein. Mitchell JL, Trible RP, Emert-Sedlak LA, Weis DD, Lerner EC, Applen JJ, Sefton BM, Smithgall TE, Engen JR. J Mol Biol 366 1282-1293 (2007)
  118. The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity. Laham LE, Mukhopadhyay N, Roberts TM. Oncogene 19 3961-3970 (2000)
  119. An unexpected role for the clock protein timeless in developmental apoptosis. O'Reilly LP, Watkins SC, Smithgall TE. PLoS One 6 e17157 (2011)
  120. Evolution of Functional Diversity in the Holozoan Tyrosine Kinome. Yeung W, Kwon A, Taujale R, Bunn C, Venkat A, Kannan N. Mol Biol Evol 38 5625-5639 (2021)
  121. Synthesis and evaluation of 3-phenylpyrazolo[3,4-d]pyrimidine-peptide conjugates as Src kinase inhibitors. Kumar A, Wang Y, Lin X, Sun G, Parang K. ChemMedChem 2 1346-1360 (2007)
  122. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity. Verkhivker GM. Proteins 66 912-929 (2007)
  123. Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M. ChemMedChem 8 1353-1360 (2013)
  124. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin. Gifford SM, Liu W, Mader CC, Halo TL, Machida K, Boggon TJ, Koleske AJ. J Biol Chem 289 19704-19713 (2014)
  125. Computational study of the W260A activating mutant of Src tyrosine kinase. Meng Y, Roux B. Protein Sci 25 219-230 (2016)
  126. Subunit S5a of the 26S proteasome is regulated by antiapoptotic signals. Gus Y, Karni R, Levitzki A. FEBS J 274 2815-2831 (2007)
  127. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain. Huber RG, Fan H, Bond PJ. PLoS Comput Biol 11 e1004560 (2015)
  128. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. J Mol Biol 434 167400 (2022)
  129. Pyrazolo pyrimidine-type inhibitors of SRC family tyrosine kinases promote ovarian steroid-induced differentiation of human endometrial stromal cells in vitro. Maruyama T, Yamamoto Y, Shimizu A, Masuda H, Sakai N, Sakurai R, Asada H, Yoshimura Y. Biol Reprod 70 214-221 (2004)
  130. The SRC-family tyrosine kinase HCK shapes the landscape of SKAP2 interactome. Bureau JF, Cassonnet P, Grange L, Dessapt J, Jones L, Demeret C, Sakuntabhai A, Jacob Y. Oncotarget 9 13102-13115 (2018)
  131. The crystal structure of the catalytic domain of the ser/thr kinase PknA from M. tuberculosis shows an Src-like autoinhibited conformation. Wagner T, Alexandre M, Duran R, Barilone N, Wehenkel A, Alzari PM, Bellinzoni M. Proteins 83 982-988 (2015)
  132. Kinase crystal identification and ATP-competitive inhibitor screening using the fluorescent ligand SKF86002. Parker LJ, Taruya S, Tsuganezawa K, Ogawa N, Mikuni J, Honda K, Tomabechi Y, Handa N, Shirouzu M, Yokoyama S, Tanaka A. Acta Crystallogr D Biol Crystallogr 70 392-404 (2014)
  133. Lithium suppresses motility and invasivity of v-src-transformed cells by glutathione-dependent activation of phosphotyrosine phosphatases. Néel BD, Lopez J, Chabadel A, Gillet G. Oncogene 28 3246-3260 (2009)
  134. Rational design of multitargeted tyrosine kinase inhibitors: a novel approach. Barchéchath S, Williams C, Saade K, Lauwagie S, Jean-Claude B. Chem Biol Drug Des 73 380-387 (2009)
  135. SUMOylation of Csk Negatively Modulates its Tumor Suppressor Function. Cui N, Liu T, Guo Y, Dou J, Yang Q, Zhang H, Chen R, Wang Y, Zhao X, Yu J, Huang J. Neoplasia 21 676-688 (2019)
  136. SKAP2 Modular Organization Differently Recognizes SRC Kinases Depending on Their Activation Status and Localization. Levillayer L, Cassonnet P, Declercq M, Santos MD, Lebreton L, Danezi K, Demeret C, Sakuntabhai A, Jacob Y, Bureau JF. Mol Cell Proteomics 22 100451 (2023)
  137. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Front Plant Sci 8 852 (2017)
  138. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling. Mori Y, Hirokawa T, Aoki K, Satomi H, Takeda S, Aburada M, Miyamoto K. Chem Pharm Bull (Tokyo) 56 682-687 (2008)
  139. Characterization of WY 14,643 and its Complex with Aldose Reductase. Sawaya MR, Verma M, Balendiran V, Rath NP, Cascio D, Balendiran GK. Sci Rep 6 34394 (2016)
  140. Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Picard C, Greenway A, Holloway G, Olive D, Collette Y. Virology 295 320-327 (2002)
  141. One-pot regioselective synthesis of tetrahydroindazolones and evaluation of their antiproliferative and Src kinase inhibitory activities. Rao VK, Chhikara BS, Tiwari R, Shirazi AN, Parang K, Kumar A. Bioorg Med Chem Lett 22 410-414 (2012)
  142. Selective targeting of the inactive state of hematopoietic cell kinase (Hck) with a stable curcumin derivative. Chakraborty MP, Bhattacharyya S, Roy S, Bhattacharya I, Das R, Mukherjee A. J Biol Chem 296 100449 (2021)
  143. Bimolecular fluorescence complementation demonstrates that the c-Fes protein-tyrosine kinase forms constitutive oligomers in living cells. Shaffer JM, Hellwig S, Smithgall TE. Biochemistry 48 4780-4788 (2009)
  144. Src tyrosine kinases contribute to serotonin-mediated contraction by regulating calcium-dependent pathways in rat skeletal muscle arteries. Zavaritskaya O, Lubomirov LT, Altay S, Schubert R. Pflugers Arch 469 767-777 (2017)
  145. An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function. Cuesta-Hernández HN, Contreras J, Soriano-Maldonado P, Sánchez-Wandelmer J, Yeung W, Martín-Hurtado A, Muñoz IG, Kannan N, Llimargas M, Muñoz J, Plaza-Menacho I. Nat Commun 14 6548 (2023)
  146. Classifying protein kinase conformations with machine learning. Reveguk I, Simonson T. Protein Sci 33 e4918 (2024)
  147. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. Meiselbach H, Sticht H. J Mol Model 17 1927-1934 (2011)
  148. Inhibition of src family kinases by a combinatorial action of 5'-AMP and small heat shock proteins, identified from the adult heart. Kasi VS, Kuppuswamy D. Mol Cell Biol 19 6858-6871 (1999)
  149. Structural basis for the activity of pp60(c-src) protein tyrosine kinase inhibitors. Prabhu NV, Siddiqui SA, McMurray JS, Pettitt BM. Biopolymers 59 167-179 (2001)
  150. Detection of ATP competitive protein kinase inhibition by Western blotting. Wang R, Thompson JE. Anal Biochem 299 110-112 (2001)
  151. SHP-1 tyrosine phosphatase binding to c-Src kinase phosphor-dependent conformations: A comparative structural framework. Gul M, Navid A, Fakhar M, Rashid S. PLoS One 18 e0278448 (2023)