1qg0 Citations

A productive NADP+ binding mode of ferredoxin-NADP + reductase revealed by protein engineering and crystallographic studies.

Nat Struct Biol 6 847-53 (1999)
Related entries: 1qfy, 1qfz, 1qga

Cited: 93 times
EuropePMC logo PMID: 10467097

Abstract

The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyzes the production of NADPH during photosynthesis. Whereas the structures of FNRs from spinach leaf and a cyanobacterium as well as many of their homologs have been solved, none of these studies has yielded a productive geometry of the flavin-nicotinamide interaction. Here, we show that this failure occurs because nicotinamide binding to wild type FNR involves the energetically unfavorable displacement of the C-terminal Tyr side chain. We used mutants of this residue (Tyr 308) of pea FNR to obtain the structures of productive NADP+ and NADPH complexes. These structures reveal a unique NADP+ binding mode in which the nicotinamide ring is not parallel to the flavin isoalloxazine ring, but lies against it at an angle of approximately 30 degrees, with the C4 atom 3 A from the flavin N5 atom.

Articles - 1qg0 mentioned but not cited (6)

  1. Ferredoxin:NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner. Alte F, Stengel A, Benz JP, Petersen E, Soll J, Groll M, Bölter B. Proc Natl Acad Sci U S A 107 19260-19265 (2010)
  2. A highly stable plastidic-type ferredoxin-NADP(H) reductase in the pathogenic bacterium Leptospira interrogans. Catalano-Dupuy DL, Musumeci MA, López-Rivero A, Ceccarelli EA. PLoS One 6 e26736 (2011)
  3. A new catalytic mechanism of bacterial ferredoxin-NADP+ reductases due to a particular NADP+ binding mode. Monchietti P, López Rivero AS, Ceccarelli EA, Catalano-Dupuy DL. Protein Sci 30 2106-2120 (2021)
  4. Identification of Inhibitors Targeting Ferredoxin-NADP⁺ Reductase from the Xanthomonas citri subsp. citri Phytopathogenic Bacteria. Martínez-Júlvez M, Goñi G, Pérez-Amigot D, Laplaza R, Ionescu IA, Petrocelli S, Tondo ML, Sancho J, Orellano EG, Medina M. Molecules 23 E29 (2017)
  5. Na2CO3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics. Suo J, Zhang H, Zhao Q, Zhang N, Zhang Y, Li Y, Song B, Yu J, Cao J, Wang T, Luo J, Guo L, Ma J, Zhang X, She Y, Peng L, Ma W, Guo S, Miao Y, Chen S, Qin Z, Dai S. Genomics Proteomics Bioinformatics 18 271-288 (2020)
  6. NADP(H) allosterically regulates the interaction between ferredoxin and ferredoxin-NADP+ reductase. Kimata-Ariga Y, Chikuma Y, Saitoh T, Miyata M, Yanagihara Y, Yamane K, Hase T. FEBS Open Bio 9 2126-2136 (2019)


Reviews citing this publication (8)

  1. Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Carrillo N, Ceccarelli EA. Eur J Biochem 270 1900-1915 (2003)
  2. Plant type ferredoxins and ferredoxin-dependent metabolism. Hanke G, Mulo P. Plant Cell Environ 36 1071-1084 (2013)
  3. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. Stuehr DJ, Tejero J, Haque MM. FEBS J 276 3959-3974 (2009)
  4. Structural and functional diversity of ferredoxin-NADP(+) reductases. Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G. Arch Biochem Biophys 474 283-291 (2008)
  5. Structural and mechanistic aspects of flavoproteins: photosynthetic electron transfer from photosystem I to NADP+. Medina M. FEBS J 276 3942-3958 (2009)
  6. Redox control of protein conformation in flavoproteins. Senda T, Senda M, Kimura S, Ishida T. Antioxid Redox Signal 11 1741-1766 (2009)
  7. Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications. Mulo P, Medina M. Photosynth Res 134 265-280 (2017)
  8. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. Chem Rev 123 5421-5458 (2023)

Articles citing this publication (79)

  1. Plant NADPH-cytochrome P450 oxidoreductases. Jensen K, Møller BL. Phytochemistry 71 132-141 (2010)
  2. Small changes in the activity of chloroplastic NADP(+)-dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Hajirezaei MR, Peisker M, Tschiersch H, Palatnik JF, Valle EM, Carrillo N, Sonnewald U. Plant J 29 281-293 (2002)
  3. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. Vollmer M, Thomsen N, Wiek S, Seeber F. J Biol Chem 276 5483-5490 (2001)
  4. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gómez-Moreno C, Frey M. EMBO Rep 1 271-276 (2000)
  5. Crystal structures and atomic model of NADPH oxidase. Magnani F, Nenci S, Millana Fananas E, Ceccon M, Romero E, Fraaije MW, Mattevi A. Proc Natl Acad Sci U S A 114 6764-6769 (2017)
  6. Interaction of the targeting sequence of chloroplast precursors with Hsp70 molecular chaperones. Rial DV, Arakaki AK, Ceccarelli EA. Eur J Biochem 267 6239-6248 (2000)
  7. Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase. Senda T, Yamada T, Sakurai N, Kubota M, Nishizaki T, Masai E, Fukuda M, Mitsuidagger Y. J Mol Biol 304 397-410 (2000)
  8. High-resolution structure of the catalytic region of MICAL (molecule interacting with CasL), a multidomain flavoenzyme-signaling molecule. Siebold C, Berrow N, Walter TS, Harlos K, Owens RJ, Stuart DI, Terman JR, Kolodkin AL, Pasterkamp RJ, Jones EY. Proc Natl Acad Sci U S A 102 16836-16841 (2005)
  9. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrín JV. Proteomics 6 Suppl 1 S163-74 (2006)
  10. Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure. Demmer JK, Huang H, Wang S, Demmer U, Thauer RK, Ermler U. J Biol Chem 290 21985-21995 (2015)
  11. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. Gruez A, Pignol D, Zeghouf M, Covès J, Fontecave M, Ferrer JL, Fontecilla-Camps JC. J Mol Biol 299 199-212 (2000)
  12. Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins. Ilagan RP, Tiso M, Konas DW, Hemann C, Durra D, Hille R, Stuehr DJ. J Biol Chem 283 19603-19615 (2008)
  13. Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage. Palatnik JF, Tognetti VB, Poli HO, Rodríguez RE, Blanco N, Gattuso M, Hajirezaei MR, Sonnewald U, Valle EM, Carrillo N. Plant J 35 332-341 (2003)
  14. Engineering of a functional human NADH-dependent cytochrome P450 system. Döhr O, Paine MJ, Friedberg T, Roberts GC, Wolf CR. Proc Natl Acad Sci U S A 98 81-86 (2001)
  15. Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin. Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T. J Mol Biol 373 382-400 (2007)
  16. Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PC. J Bacteriol 189 3502-3514 (2007)
  17. Interaction of Ferredoxin-NADP(+) Reductase with its Substrates: Optimal Interaction for Efficient Electron Transfer. Medina M, Gómez-Moreno C. Photosynth Res 79 113-131 (2004)
  18. Interleukin-22 forms dimers that are recognized by two interleukin-22R1 receptor chains. de Oliveira Neto M, Ferreira JR, Colau D, Fischer H, Nascimento AS, Craievich AF, Dumoutier L, Renauld JC, Polikarpov I. Biophys J 94 1754-1765 (2008)
  19. Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+. Hermoso JA, Mayoral T, Faro M, Gómez-Moreno C, Sanz-Aparicio J, Medina M. J Mol Biol 319 1133-1142 (2002)
  20. Structural perturbations in the Ala --> Val polymorphism of methylenetetrahydrofolate reductase: how binding of folates may protect against inactivation. Pejchal R, Campbell E, Guenther BD, Lennon BW, Matthews RG, Ludwig ML. Biochemistry 45 4808-4818 (2006)
  21. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+. Chiu HJ, Johnson E, Schröder I, Rees DC. Structure 9 311-319 (2001)
  22. The FAD-shielding residue Phe1395 regulates neuronal nitric-oxide synthase catalysis by controlling NADP+ affinity and a conformational equilibrium within the flavoprotein domain. Konas DW, Zhu K, Sharma M, Aulak KS, Brudvig GW, Stuehr DJ. J Biol Chem 279 35412-35425 (2004)
  23. C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase. Tiso M, Konas DW, Panda K, Garcin ED, Sharma M, Getzoff ED, Stuehr DJ. J Biol Chem 280 39208-39219 (2005)
  24. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. Ito K, Nakanishi M, Lee WC, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M. J Biol Chem 283 13889-13896 (2008)
  25. Fd : FNR Electron Transfer Complexes: Evolutionary Refinement of Structural Interactions. Hanke GT, Kurisu G, Kusunoki M, Hase T. Photosynth Res 81 317-327 (2004)
  26. Recruitment of governing elements for electron transfer in the nitric oxide synthase family. Jáchymová M, Martásek P, Panda S, Roman LJ, Panda M, Shea TM, Ishimura Y, Kim JJ, Masters BS. Proc Natl Acad Sci U S A 102 15833-15838 (2005)
  27. Catalytic mechanism of hydride transfer between NADP+/H and ferredoxin-NADP+ reductase from Anabaena PCC 7119. Tejero J, Peregrina JR, Martínez-Júlvez M, Gutiérrez A, Gómez-Moreno C, Scrutton NS, Medina M. Arch Biochem Biophys 459 79-90 (2007)
  28. Structural Aspects of Plant Ferredoxin : NADP(+) Oxidoreductases. Karplus PA, Faber HR. Photosynth Res 81 303-315 (2004)
  29. Role of Thr(66) in porcine NADH-cytochrome b5 reductase in catalysis and control of the rate-limiting step in electron transfer. Kimura S, Kawamura M, Iyanagi T. J Biol Chem 278 3580-3589 (2003)
  30. Posttranslational modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis chloroplasts. Lehtimäki N, Koskela MM, Dahlström KM, Pakula E, Lintala M, Scholz M, Hippler M, Hanke GT, Rokka A, Battchikova N, Salminen TA, Mulo P. Plant Physiol 166 1764-1776 (2014)
  31. Structure Guided Chemical Modifications of Propylthiouracil Reveal Novel Small Molecule Inhibitors of Cytochrome b5 Reductase 3 That Increase Nitric Oxide Bioavailability. Rahaman MM, Reinders FG, Koes D, Nguyen AT, Mutchler SM, Sparacino-Watkins C, Alvarez RA, Miller MP, Cheng D, Chen BB, Jackson EK, Camacho CJ, Straub AC. J Biol Chem 290 16861-16872 (2015)
  32. Role of critical charged residues in reduction potential modulation of ferredoxin-NADP+ reductase. Faro M, Gómez-Moreno C, Stankovich M, Medina M. Eur J Biochem 269 2656-2661 (2002)
  33. Precursors with altered affinity for Hsp70 in their transit peptides are efficiently imported into chloroplasts. Rial DV, Ottado J, Ceccarelli EA. J Biol Chem 278 46473-46481 (2003)
  34. The crystal structure of the FAD/NADPH-binding domain of flavocytochrome P450 BM3. Joyce MG, Ekanem IS, Roitel O, Dunford AJ, Neeli R, Girvan HM, Baker GJ, Curtis RA, Munro AW, Leys D. FEBS J 279 1694-1706 (2012)
  35. Asymmetric dimeric structure of ferredoxin-NAD(P)+ oxidoreductase from the green sulfur bacterium Chlorobaculum tepidum: implications for binding ferredoxin and NADP+. Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G. J Mol Biol 401 403-414 (2010)
  36. Conformational diversity in NAD(H) and interacting transhydrogenase nicotinamide nucleotide binding domains. Sundaresan V, Chartron J, Yamaguchi M, Stout CD. J Mol Biol 346 617-629 (2005)
  37. Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity. Komori H, Seo D, Sakurai T, Higuchi Y. Protein Sci 19 2279-2290 (2010)
  38. Docking analysis of transient complexes: interaction of ferredoxin-NADP+ reductase with ferredoxin and flavodoxin. Medina M, Abagyan R, Gómez-Moreno C, Fernandez-Recio J. Proteins 72 848-862 (2008)
  39. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer. Yamada M, Tamada T, Takeda K, Matsumoto F, Ohno H, Kosugi M, Takaba K, Shoyama Y, Kimura S, Kuroki R, Miki K. J Mol Biol 425 4295-4306 (2013)
  40. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Bakkes PJ, Riehm JL, Sagadin T, Rühlmann A, Schubert P, Biemann S, Girhard M, Hutter MC, Bernhardt R, Urlacher VB. Sci Rep 7 9570 (2017)
  41. Thermodynamic and kinetic analysis of the isolated FAD domain of rat neuronal nitric oxide synthase altered in the region of the FAD shielding residue Phe1395. Dunford AJ, Marshall KR, Munro AW, Scrutton NS. Eur J Biochem 271 2548-2560 (2004)
  42. Design and improvement of artificial redox modules by molecular fusion of flavodoxin and flavodoxin reductase from Escherichia coli. Bakkes PJ, Biemann S, Bokel A, Eickholt M, Girhard M, Urlacher VB. Sci Rep 5 12158 (2015)
  43. Mechanistic insights into ferredoxin-NADP(H) reductase catalysis involving the conserved glutamate in the active site. Dumit VI, Essigke T, Cortez N, Ullmann GM. J Mol Biol 397 814-825 (2010)
  44. The import of ferredoxin-NADP+ reductase precursor into chloroplasts is modulated by the region between the transit peptide and the mature core of the protein. Rial DV, Lombardo VA, Ceccarelli EA, Ottado J. Eur J Biochem 269 5431-5439 (2002)
  45. The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP+ -reductase. Peregrina JR, Lans I, Medina M. Eur Biophys J 41 117-128 (2012)
  46. Dynamics of the active site architecture in plant-type ferredoxin-NADP(+) reductases catalytic complexes. Sánchez-Azqueta A, Catalano-Dupuy DL, López-Rivero A, Tondo ML, Orellano EG, Ceccarelli EA, Medina M. Biochim Biophys Acta 1837 1730-1738 (2014)
  47. Structures of human dual oxidase 1 complex in low-calcium and high-calcium states. Wu JX, Liu R, Song K, Chen L. Nat Commun 12 155 (2021)
  48. Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode for Catalytically Competent Nitroreductase. Pitsawong W, Haynes CA, Koder RL, Rodgers DW, Miller AF. Structure 25 978-987.e4 (2017)
  49. X-ray crystallographic and solution state nuclear magnetic resonance spectroscopic investigations of NADP+ binding to ferredoxin NADP reductase from Pseudomonas aeruginosa. Wang A, Rodríguez JC, Han H, Schönbrunn E, Rivera M. Biochemistry 47 8080-8093 (2008)
  50. Modulation of the enzymatic efficiency of ferredoxin-NADP(H) reductase by the amino acid volume around the catalytic site. Musumeci MA, Arakaki AK, Rial DV, Catalano-Dupuy DL, Ceccarelli EA. FEBS J 275 1350-1366 (2008)
  51. Nanomechanical Study of Enzyme: Coenzyme Complexes: Bipartite Sites in Plastidic Ferredoxin-NADP+ Reductase for the Interaction with NADP. Pérez-Domínguez S, Caballero-Mancebo S, Marcuello C, Martínez-Júlvez M, Medina M, Lostao A. Antioxidants (Basel) 11 537 (2022)
  52. A mobile tryptophan is the intrinsic charge transfer donor in a flavoenzyme essential for nikkomycin antibiotic biosynthesis. Bruckner RC, Zhao G, Ferreira P, Jorns MS. Biochemistry 46 819-827 (2007)
  53. Binding energetics of ferredoxin-NADP+ reductase with ferredoxin and its relation to function. Lee YH, Ikegami T, Standley DM, Sakurai K, Hase T, Goto Y. Chembiochem 12 2062-2070 (2011)
  54. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase. Pudney CR, Hay S, Scrutton NS. FEBS J 276 4780-4789 (2009)
  55. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency. Sánchez-Azqueta A, Herguedas B, Hurtado-Guerrero R, Hervás M, Navarro JA, Martínez-Júlvez M, Medina M. Biochim Biophys Acta 1837 251-263 (2014)
  56. Kinetic analysis of cytochrome P450 reductase from Artemisia annua reveals accelerated rates of NADH-dependent flavin reduction. Simtchouk S, Eng JL, Meints CE, Makins C, Wolthers KR. FEBS J 280 6627-6642 (2013)
  57. Kinetic analysis of electron flux in cytochrome P450 reductases reveals differences in rate-determining steps in plant and mammalian enzymes. Whitelaw DA, Tonkin R, Meints CE, Wolthers KR. Arch Biochem Biophys 584 107-115 (2015)
  58. Probing the NADH- and Methyl Red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Feng J, Kweon O, Xu H, Cerniglia CE, Chen H. Arch Biochem Biophys 520 99-107 (2012)
  59. Crystal structures of Leptospira interrogans FAD-containing ferredoxin-NADP+ reductase and its complex with NADP+. Nascimento AS, Catalano-Dupuy DL, Bernardes A, Neto Mde O, Santos MA, Ceccarelli EA, Polikarpov I. BMC Struct Biol 7 69 (2007)
  60. Enzymatic oxidation of NADP+ to its 4-oxo derivative is a side-reaction displayed only by the adrenodoxin reductase type of ferredoxin-NADP+ reductases. de Rosa M, Pennati A, Pandini V, Monzani E, Zanetti G, Aliverti A. FEBS J 274 3998-4007 (2007)
  61. Inhibition of pea ferredoxin-NADP(H) reductase by Zn-ferrocyanide. Dupuy DL, Rial DV, Ceccarelli EA. Eur J Biochem 271 4582-4593 (2004)
  62. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity. Barber MJ, Desai SK, Marohnic CC. Arch Biochem Biophys 394 99-110 (2001)
  63. Effect of Artemisinin on the Redox System of NADPH/FNR/Ferredoxin from Malaria Parasites. Kimata-Ariga Y, Morihisa R. Antioxidants (Basel) 11 273 (2022)
  64. High-resolution studies of hydride transfer in the ferredoxin:NADP+ reductase superfamily. Kean KM, Carpenter RA, Pandini V, Zanetti G, Hall AR, Faber R, Aliverti A, Karplus PA. FEBS J 284 3302-3319 (2017)
  65. Towards a new interaction enzyme:coenzyme. Martínez-Júlvez M, Tejero J, Peregrina JR, Nogués I, Frago S, Gómez-Moreno C, Medina M. Biophys Chem 115 219-224 (2005)
  66. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes. Lee KH, Humbarger S, Bahnvadia R, Sazinsky MH, Crane EJ. Biochim Biophys Acta 1844 1708-1717 (2014)
  67. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase. Meints CE, Simtchouk S, Wolthers KR. FEBS J 280 1460-1474 (2013)
  68. Distinguishing two groups of flavin reductases by analyzing the protonation state of an active site carboxylic acid. Dumit VI, Cortez N, Matthias Ullmann G. Proteins 79 2076-2085 (2011)
  69. Molecular and functional characterization of ferredoxin NADP(H) oxidoreductase from Gracilaria chilensis and its complex with ferredoxin. Vorphal MA, Bruna C, Wandersleben T, Dagnino-Leone J, Lobos-González F, Uribe E, Martínez-Oyanedel J, Bunster M. Biol Res 50 39 (2017)
  70. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase. Meints CE, Parke SM, Wolthers KR. Arch Biochem Biophys 547 18-26 (2014)
  71. A STD-NMR study of the interaction of the Anabaena ferredoxin-NADP+ reductase with the coenzyme. Antonini LV, Peregrina JR, Angulo J, Medina M, Nieto PM. Molecules 19 672-685 (2014)
  72. Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP+ reductases. Koskela MM, Dahlström KM, Goñi G, Lehtimäki N, Nurmi M, Velazquez-Campoy A, Hanke G, Bölter B, Salminen TA, Medina M, Mulo P. Physiol Plant 162 177-190 (2018)
  73. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans. Nascimento AS, Ferrarezi T, Catalano-Dupuy DL, Ceccarelli EA, Polikarpov I. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 662-664 (2006)
  74. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation. Sánchez-Azqueta A, Martínez-Júlvez M, Hervás M, Navarro JA, Medina M. Biochim Biophys Acta 1837 296-305 (2014)
  75. Crystal structure of the ferredoxin reductase component of carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3. Ashikawa Y, Fujimoto Z, Inoue K, Yamane H, Nojiri H. Acta Crystallogr D Struct Biol 77 921-932 (2021)
  76. Expression, purification and crystal structure determination of a ferredoxin reductase from the actinobacterium Thermobifida fusca. Rodriguez Buitrago JA, Klünemann T, Blankenfeldt W, Schallmey A. Acta Crystallogr F Struct Biol Commun 76 334-340 (2020)
  77. NADP(H)-dependent biocatalysis without adding NADP(H). Herold RA, Reinbold R, Schofield CJ, Armstrong FA. Proc Natl Acad Sci U S A 120 e2214123120 (2023)
  78. Some fundamental insights into biological redox catalysis from the electrochemical characteristics of enzymes attached directly to electrodes. Armstrong FA. Electrochim Acta 390 138836 (2021)
  79. Thermodynamics of alpha-lactalbumin-DL-alpha-dipalmitoylphosphatidylcholine interactions and effect of the antioxidant nicotinamide on these interactions. Kundu A, Kishore N. Biophys Chem 114 157-167 (2005)