1qjq Citations

Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.

Protein Sci 9 956-63 (2000)
Related entries: 1fcp, 1qkc, 2fcp

Cited: 84 times
EuropePMC logo PMID: 10850805

Abstract

One alternative method for drug delivery involves the use of siderophore-antibiotic conjugates. These compounds represent a specific means by which potent antimicrobial agents, covalently linked to iron-chelating siderophores, can be actively transported across the outer membrane of gram-negative bacteria. These "Trojan Horse" antibiotics may prove useful as an efficient means to combat multi-drug-resistant bacterial infections. Here we present the crystallographic structures of the natural siderophore-antibiotic conjugate albomycin and the siderophore phenylferricrocin, in complex with the active outer membrane transporter FhuA from Escherichia coli. To our knowledge, this represents the first structure of an antibiotic bound to its cognate transporter. Albomycins are broad-host range antibiotics that consist of a hydroxamate-type iron-chelating siderophore, and an antibiotically active, thioribosyl pyrimidine moiety. As observed with other hydroxamate-type siderophores, the three-dimensional structure of albomycin reveals an identical coordination geometry surrounding the ferric iron atom. Unexpectedly, this antibiotic assumes two conformational isomers in the binding site of FhuA, an extended and a compact form. The structural information derived from this study provides novel insights into the diverse array of antibiotic moieties that can be linked to the distal portion of iron-chelating siderophores and offers a structural platform for the rational design of hydroxamate-type siderophore-antibiotic conjugates.

Reviews - 1qjq mentioned but not cited (2)

  1. TonB-dependent transporters: regulation, structure, and function. Noinaj N, Guillier M, Barnard TJ, Buchanan SK. Annu Rev Microbiol 64 43-60 (2010)
  2. The structural biology of β-barrel membrane proteins: a summary of recent reports. Fairman JW, Noinaj N, Buchanan SK. Curr Opin Struct Biol 21 523-531 (2011)

Articles - 1qjq mentioned but not cited (3)



Reviews citing this publication (35)

  1. Bacterial iron homeostasis. Andrews SC, Robinson AK, Rodríguez-Quiñones F. FEMS Microbiol Rev 27 215-237 (2003)
  2. Siderophore-based iron acquisition and pathogen control. Miethke M, Marahiel MA. Microbiol Mol Biol Rev 71 413-451 (2007)
  3. Bacterial iron sources: from siderophores to hemophores. Wandersman C, Delepelaire P. Annu Rev Microbiol 58 611-647 (2004)
  4. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Martínez JL, Baquero F. Clin Microbiol Rev 15 647-679 (2002)
  5. Microbial iron acquisition: marine and terrestrial siderophores. Sandy M, Butler A. Chem Rev 109 4580-4595 (2009)
  6. Acquisition of siderophores in gram-negative bacteria. Faraldo-Gómez JD, Sansom MS. Nat Rev Mol Cell Biol 4 105-116 (2003)
  7. Iron uptake mechanisms and their regulation in pathogenic bacteria. Braun V. Int J Med Microbiol 291 67-79 (2001)
  8. TonB or not TonB: is that the question? Krewulak KD, Vogel HJ. Biochem Cell Biol 89 87-97 (2011)
  9. Iron transport and signaling in Escherichia coli. Braun V, Braun M. FEBS Lett 529 78-85 (2002)
  10. TonB-dependent receptors-structural perspectives. Ferguson AD, Deisenhofer J. Biochim Biophys Acta 1565 318-332 (2002)
  11. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Wilks A, Burkhard KA. Nat Prod Rep 24 511-522 (2007)
  12. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Mislin GL, Schalk IJ. Metallomics 6 408-420 (2014)
  13. Metal import through microbial membranes. Ferguson AD, Deisenhofer J. Cell 116 15-24 (2004)
  14. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Schalk IJ, Guillon L. Amino Acids 44 1267-1277 (2013)
  15. Structure and function of "metalloantibiotics". Ming LJ. Med Res Rev 23 697-762 (2003)
  16. Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. Schalk IJ. J Inorg Biochem 102 1159-1169 (2008)
  17. Siderophore-drug complexes: potential medicinal applications of the 'Trojan horse' strategy. Górska A, Sloderbach A, Marszałł MP. Trends Pharmacol Sci 35 442-449 (2014)
  18. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin "Trojan Horse" antibiotics and synthetic desferridanoxamine-antibiotic conjugates. Wencewicz TA, Möllmann U, Long TE, Miller MJ. Biometals 22 633-648 (2009)
  19. FhuA (TonA), the career of a protein. Braun V. J Bacteriol 191 3431-3436 (2009)
  20. Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Destoumieux-Garzón D, Peduzzi J, Thomas X, Djediat C, Rebuffat S. Biometals 19 181-191 (2006)
  21. Antibiotics from microbes: converging to kill. Fischbach MA. Curr Opin Microbiol 12 520-527 (2009)
  22. The 'liaisons dangereuses' between iron and antibiotics. Ezraty B, Barras F. FEMS Microbiol Rev 40 418-435 (2016)
  23. The role of bacterial membrane proteins in the internalization of microcin MccJ25 and MccB17. Mathavan I, Beis K. Biochem Soc Trans 40 1539-1543 (2012)
  24. Characterization of ferric-anguibactin transport in Vibrio anguillarum. López CS, Crosa JH. Biometals 20 393-403 (2007)
  25. Functionalized nanocompartments (Synthosomes): limitations and prospective applications in industrial biotechnology. Onaca O, Nallani M, Ihle S, Schenk A, Schwaneberg U. Biotechnol J 1 795-805 (2006)
  26. TonB-Dependent Transporters in Sphingomonads: Unraveling Their Distribution and Function in Environmental Adaptation. Samantarrai D, Lakshman Sagar A, Gudla R, Siddavattam D. Microorganisms 8 E359 (2020)
  27. An overview of siderophores for iron acquisition in microorganisms living in the extreme. De Serrano LO, Camper AK, Richards AM. Biometals 29 551-571 (2016)
  28. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. Travin DY, Severinov K, Dubiley S. RSC Chem Biol 2 468-485 (2021)
  29. Outer membrane channels and active transporters for the uptake of antibiotics. Braun V, Bös C, Braun M, Killmann H. J Infect Dis 183 Suppl 1 S12-6 (2001)
  30. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. Braun V, Ratliff AC, Celia H, Buchanan SK. J Bacteriol 205 e0003523 (2023)
  31. The Gram-negative permeability barrier: tipping the balance of the in and the out. Maher C, Hassan KA. mBio 14 e0120523 (2023)
  32. Biosynthesis and Chemical Synthesis of Albomycin Nucleoside Antibiotics. Wang M, Zhang Y, Lv L, Kong D, Niu G. Antibiotics (Basel) 11 438 (2022)
  33. The chemistry and biology of natural ribomimetics and related compounds. Tsunoda T, Tanoeyadi S, Proteau PJ, Mahmud T. RSC Chem Biol 3 519-538 (2022)
  34. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Luo VC, Peczuh MW. Molecules 29 3889 (2024)
  35. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Calvanese M, D'Angelo C, Tutino ML, Lauro C. Mar Drugs 22 299 (2024)

Articles citing this publication (44)



Related citations provided by authors (2)