1qtr Citations

Crystal structure of prolyl aminopeptidase from Serratia marcescens.

Abstract

Prolyl aminopeptidase from Serratia marcescens specifically catalyzes the removal of N-terminal proline residues from peptides. We have solved its three-dimensional structure at 2.3 A resolution by the multiple isomorphous replacement method. The enzyme consists of two contiguous domains. The larger domain shows the general topology of the alpha/beta hydrolase fold, with a central eight-stranded beta-sheet and six helices. The smaller domain consists of six helices. The catalytic triad (Ser113, His296, and Asp268) is located near the large cavity at the interface between the two domains. Cys271, which is sensitive to SH reagents, is located near the catalytic residues, in spite of the fact that the enzyme is a serine peptidase. The specific residues which make up the hydrophobic pocket line the smaller domain, and the specificity of the exo-type enzyme originates from this smaller domain, which blocks the N-terminal of P1 proline.

Reviews - 1qtr mentioned but not cited (2)

Articles - 1qtr mentioned but not cited (6)

  1. Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. Sanishvili R, Yakunin AF, Laskowski RA, Skarina T, Evdokimova E, Doherty-Kirby A, Lajoie GA, Thornton JM, Arrowsmith CH, Savchenko A, Joachimiak A, Edwards AM. J Biol Chem 278 26039-26045 (2003)
  2. Induced-fit mechanism for prolyl endopeptidase. Li M, Chen C, Davies DR, Chiu TK. J Biol Chem 285 21487-21495 (2010)
  3. Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases. Bezerra GA, Dobrovetsky E, Dong A, Seitova A, Crombett L, Shewchuk LM, Hassell AM, Sweitzer SM, Sweitzer TD, McDevitt PJ, Johanson KO, Kennedy-Wilson KM, Cossar D, Bochkarev A, Gruber K, Dhe-Paganon S. PLoS One 7 e43019 (2012)
  4. A self-compartmentalizing hexamer serine protease from Pyrococcus horikoshii: substrate selection achieved through multimerization. Menyhárd DK, Kiss-Szemán A, Tichy-Rács É, Hornung B, Rádi K, Szeltner Z, Domokos K, Szamosi I, Náray-Szabó G, Polgár L, Harmat V. J Biol Chem 288 17884-17894 (2013)
  5. Cupin: a candidate molecular structure for the Nep1-like protein family. Cechin AL, Sinigaglia M, Lemke N, Echeverrigaray S, Cabrera OG, Pereira GA, Mombach JC. BMC Plant Biol 8 50 (2008)
  6. BioGPS descriptors for rational engineering of enzyme promiscuity and structure based bioinformatic analysis. Ferrario V, Siragusa L, Ebert C, Baroni M, Foscato M, Cruciani G, Gardossi L. PLoS One 9 e109354 (2014)


Reviews citing this publication (3)

Articles citing this publication (20)

  1. Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its catalytic mechanism. Goettig P, Groll M, Kim JS, Huber R, Brandstetter H. EMBO J 21 5343-5352 (2002)
  2. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis. Ito K, Nakajima Y, Xu Y, Yamada N, Onohara Y, Ito T, Matsubara F, Kabashima T, Nakayama K, Yoshimoto T. J Mol Biol 362 228-240 (2006)
  3. X-ray snapshots of peptide processing in mutants of tricorn-interacting factor F1 from Thermoplasma acidophilum. Goettig P, Brandstetter H, Groll M, Göhring W, Konarev PV, Svergun DI, Huber R, Kim JS. J Biol Chem 280 33387-33396 (2005)
  4. Characterisation of Aspergillus niger prolyl aminopeptidase. Basten DE, Moers AP, Ooyen AJ, Schaap PJ. Mol Genet Genomics 272 673-679 (2005)
  5. Characterization of a multimeric, eukaryotic prolyl aminopeptidase: an inducible and highly specific intracellular peptidase from the non-pathogenic fungus Talaromyces emersonii. Mahon CS, O'Donoghue AJ, Goetz DH, Murray PG, Craik CS, Tuohy MG. Microbiology (Reading) 155 3673-3682 (2009)
  6. Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. Matsushita-Morita M, Furukawa I, Suzuki S, Yamagata Y, Koide Y, Ishida H, Takeuchi M, Kashiwagi Y, Kusumoto KI. J Appl Microbiol 109 156-165 (2010)
  7. The structural basis for catalysis and specificity of the X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis. Rigolet P, Mechin I, Delage MM, Chich JF. Structure 10 1383-1394 (2002)
  8. Characterization of a unique proline iminopeptidase from white-rot basidiomycetes Phanerochaete chrysosporium. Li N, Wu JM, Zhang LF, Zhang YZ, Feng H. Biochimie 92 779-788 (2010)
  9. Novel inhibitor for prolyl aminopeptidase from Serratia marcescens and studies on the mechanism of substrate recognition of the enzyme using the inhibitor. Inoue T, Ito K, Tozaka T, Hatakeyama S, Tanaka N, Nakamura KT, Yoshimoto T. Arch Biochem Biophys 416 147-154 (2003)
  10. The mechanism of aubstrate eecognition of pyroglutamyl-peptidase I from Bacillus amyloliquefaciens as determined by X-ray crystallography and site-directed mutagenesis. Ito K, Inoue T, Takahashi T, Huang HS, Esumi T, Hatakeyama S, Tanaka N, Nakamura KT, Yoshimoto T. J Biol Chem 276 18557-18562 (2001)
  11. Unusual extra space at the active site and high activity for acetylated hydroxyproline of prolyl aminopeptidase from Serratia marcescens. Nakajima Y, Ito K, Sakata M, Xu Y, Nakashima K, Matsubara F, Hatakeyama S, Yoshimoto T. J Bacteriol 188 1599-1606 (2006)
  12. S-stereoselective piperazine-2-tert-butylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase. Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y. Eur J Biochem 271 1465-1475 (2004)
  13. Over-expression of a proline specific aminopeptidase from Aspergillus oryzae JN-412 and its application in collagen degradation. Ding GW, Zhou ND, Tian YP. Appl Biochem Biotechnol 173 1765-1777 (2014)
  14. The structural comparison of the bacterial PepX and human DPP-IV reveals sites for the design of inhibitors of PepX activity. Rigolet P, Xi XG, Rety S, Chich JF. FEBS J 272 2050-2059 (2005)
  15. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c). Naffin-Olivos JL, Daab A, White A, Goldfarb NE, Milne AC, Liu D, Baikovitz J, Dunn BM, Rengarajan J, Petsko GA, Ringe D. Biochemistry 56 2304-2314 (2017)
  16. The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates. Shinohara Y, Miyanaga A, Kudo F, Eguchi T. FEBS Lett 588 995-1000 (2014)
  17. Biochemical characterization of the triticale TsPAP1, a new type of plant prolyl aminopeptidase, and its impact on proline content and flowering time in transgenic Arabidopsis plants. Zdunek-Zastocka E, Grabowska A, Branicki T, Michniewska B. Plant Physiol Biochem 116 18-26 (2017)
  18. Crystal structure of the proline iminopeptidase-related protein TTHA1809 from Thermus thermophilus HB8. Okai M, Miyauchi Y, Ebihara A, Lee WC, Nagata K, Tanokura M. Proteins 70 1646-1649 (2008)
  19. Expression, purification, and characterization of an aminopeptidase (Xac2987) with broad specificity from Xanthomonas axonopodis pv. citri. Santos K, Medrano FJ. Protein Expr Purif 52 117-122 (2007)
  20. Studies on the molecular docking and amino Acid residues involving in recognition of substrate in proline iminopeptidase by site-directed mutagenesis. Jing Z, Feng H. Protein J 34 173-180 (2015)


Related citations provided by authors (2)

  1. Prolyl Aminopeptidase from Serratia marcescens : Sequencing and Expression. Kabashima T, Kitazono A, Kitano A, Inoue K, Yoshimoto T J. Biochem. 122 601-605 (1997)
  2. Prolyl aminopeptidase is not a sulfhydryl enzyme: Identification of the active serine residue by site-directed mutagenesis. Kitazono A, Ito K, Yoshimoto T J. Biochem. 116 943-945 (1994)