1r4k Citations

Structure and conserved RNA binding of the PAZ domain.

Nature 426 468-74 (2003)
Cited: 270 times
EuropePMC logo PMID: 14615802

Abstract

The discovery of RNA-mediated gene-silencing pathways, including RNA interference, highlights a fundamental role of short RNAs in eukaryotic gene regulation and antiviral defence. Members of the Dicer and Argonaute protein families are essential components of these RNA-silencing pathways. Notably, these two families possess an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose biochemical function is unknown. Here we report the nuclear magnetic resonance solution structure of the PAZ domain from Drosophila melanogaster Argonaute 1 (Ago1). The structure consists of a left-handed, six-stranded beta-barrel capped at one end by two alpha-helices and wrapped on one side by a distinctive appendage, which comprises a long beta-hairpin and a short alpha-helix. Using structural and biochemical analyses, we demonstrate that the PAZ domain binds a 5-nucleotide RNA with 1:1 stoichiometry. We map the RNA-binding surface to the open face of the beta-barrel, which contains amino acids conserved within the PAZ domain family, and we define the 5'-to-3' orientation of single-stranded RNA bound within that site. Furthermore, we show that PAZ domains from different human Argonaute proteins also bind RNA, establishing a conserved function for this domain.

Reviews - 1r4k mentioned but not cited (1)

  1. A Glimpse of "Dicer Biology" Through the Structural and Functional Perspective. Paturi S, Deshmukh MV. Front Mol Biosci 8 643657 (2021)

Articles - 1r4k mentioned but not cited (2)

  1. Dicer recognizes the 5' end of RNA for efficient and accurate processing. Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN. Nature 475 201-205 (2011)
  2. Structure prediction for CASP8 with all-atom refinement using Rosetta. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange O, Kinch L, Sheffler W, Kim BH, Das R, Grishin NV, Baker D. Proteins 77 Suppl 9 89-99 (2009)


Reviews citing this publication (101)

  1. MicroRNAs: genomics, biogenesis, mechanism, and function. Bartel DP. Cell 116 281-297 (2004)
  2. MicroRNAs: small RNAs with a big role in gene regulation. He L, Hannon GJ. Nat Rev Genet 5 522-531 (2004)
  3. Biogenesis of small RNAs in animals. Kim VN, Han J, Siomi MC. Nat Rev Mol Cell Biol 10 126-139 (2009)
  4. MicroRNA biogenesis: coordinated cropping and dicing. Kim VN. Nat Rev Mol Cell Biol 6 376-385 (2005)
  5. MicroRNAS and their regulatory roles in plants. Jones-Rhoades MW, Bartel DP, Bartel B. Annu Rev Plant Biol 57 19-53 (2006)
  6. Argonaute proteins: key players in RNA silencing. Hutvagner G, Simard MJ. Nat Rev Mol Cell Biol 9 22-32 (2008)
  7. RNA-binding proteins: modular design for efficient function. Lunde BM, Moore C, Varani G. Nat Rev Mol Cell Biol 8 479-490 (2007)
  8. Diversifying microRNA sequence and function. Ameres SL, Zamore PD. Nat Rev Mol Cell Biol 14 475-488 (2013)
  9. Small RNAs as guardians of the genome. Malone CD, Hannon GJ. Cell 136 656-668 (2009)
  10. Molecular mechanisms of RNA interference. Wilson RC, Doudna JA. Annu Rev Biophys 42 217-239 (2013)
  11. RNAi-mediated pathways in the nucleus. Matzke MA, Birchler JA. Nat Rev Genet 6 24-35 (2005)
  12. A three-dimensional view of the molecular machinery of RNA interference. Jinek M, Doudna JA. Nature 457 405-412 (2009)
  13. RNA-binding proteins in human genetic disease. Lukong KE, Chang KW, Khandjian EW, Richard S. Trends Genet 24 416-425 (2008)
  14. Plant microRNA: a small regulatory molecule with big impact. Zhang B, Pan X, Cobb GP, Anderson TA. Dev Biol 289 3-16 (2006)
  15. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Thomson T, Lin H. Annu Rev Cell Dev Biol 25 355-376 (2009)
  16. Post-transcriptional gene silencing by siRNAs and miRNAs. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Curr Opin Struct Biol 15 331-341 (2005)
  17. The Argonaute protein family. Höck J, Meister G. Genome Biol 9 210 (2008)
  18. Dicing and slicing: the core machinery of the RNA interference pathway. Hammond SM. FEBS Lett 579 5822-5829 (2005)
  19. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Engels BM, Hutvagner G. Oncogene 25 6163-6169 (2006)
  20. Slicer and the argonautes. Tolia NH, Joshua-Tor L. Nat Chem Biol 3 36-43 (2007)
  21. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Corley M, Burns MC, Yeo GW. Mol Cell 78 9-29 (2020)
  22. The evolutionary journey of Argonaute proteins. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. Nat Struct Mol Biol 21 743-753 (2014)
  23. RNase III enzymes and the initiation of gene silencing. Carmell MA, Hannon GJ. Nat Struct Mol Biol 11 214-218 (2004)
  24. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Murchison EP, Hannon GJ. Curr Opin Cell Biol 16 223-229 (2004)
  25. Assembly and function of RNA silencing complexes. Sontheimer EJ. Nat Rev Mol Cell Biol 6 127-138 (2005)
  26. Mechanisms of translational control by the 3' UTR in development and differentiation. de Moor CH, Meijer H, Lissenden S. Semin Cell Dev Biol 16 49-58 (2005)
  27. siRNA and miRNA: an insight into RISCs. Tang G. Trends Biochem Sci 30 106-114 (2005)
  28. RNA interference in protozoan parasites. Ullu E, Tschudi C, Chakraborty T. Cell Microbiol 6 509-519 (2004)
  29. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. MacRae IJ, Doudna JA. Curr Opin Struct Biol 17 138-145 (2007)
  30. Therapeutic siRNA: principles, challenges, and strategies. Gavrilov K, Saltzman WM. Yale J Biol Med 85 187-200 (2012)
  31. Small RNAs in genome rearrangement in Tetrahymena. Mochizuki K, Gorovsky MA. Curr Opin Genet Dev 14 181-187 (2004)
  32. MicroRNA regulation of gene expression in plants. Dugas DV, Bartel B. Curr Opin Plant Biol 7 512-520 (2004)
  33. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Ipsaro JJ, Joshua-Tor L. Nat Struct Mol Biol 22 20-28 (2015)
  34. RNAi in Plants: An Argonaute-Centered View. Fang X, Qi Y. Plant Cell 28 272-285 (2016)
  35. Regulation of heterochromatin by histone methylation and small RNAs. Grewal SI, Rice JC. Curr Opin Cell Biol 16 230-238 (2004)
  36. General principals of miRNA biogenesis and regulation in the brain. O'Carroll D, Schaefer A. Neuropsychopharmacology 38 39-54 (2013)
  37. MicroRNA Processing and Human Cancer. Ohtsuka M, Ling H, Doki Y, Mori M, Calin GA. J Clin Med 4 1651-1667 (2015)
  38. Protein families and RNA recognition. Chen Y, Varani G. FEBS J 272 2088-2097 (2005)
  39. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. Hutvagner G. FEBS Lett 579 5850-5857 (2005)
  40. Protein interactions and complexes in human microRNA biogenesis and function. Perron MP, Provost P. Front Biosci 13 2537-2547 (2008)
  41. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Mohibi S, Chen X, Zhang J. Pharmacol Ther 203 107390 (2019)
  42. MicroRNAs--micro in size but macro in function. Singh SK, Pal Bhadra M, Girschick HJ, Bhadra U. FEBS J 275 4929-4944 (2008)
  43. Argonaute: A scaffold for the function of short regulatory RNAs. Parker JS, Barford D. Trends Biochem Sci 31 622-630 (2006)
  44. The role of the precursor structure in the biogenesis of microRNA. Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ. Cell Mol Life Sci 68 2859-2871 (2011)
  45. microRNA-guided posttranscriptional gene regulation. Chen PY, Meister G. Biol Chem 386 1205-1218 (2005)
  46. RNA Interference Mechanisms and Applications in Plant Pathology. Rosa C, Kuo YW, Wuriyanghan H, Falk BW. Annu Rev Phytopathol 56 581-610 (2018)
  47. Drosha in primary microRNA processing. Lee Y, Han J, Yeom KH, Jin H, Kim VN. Cold Spring Harb Symp Quant Biol 71 51-57 (2006)
  48. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Duchaine TF, Fabian MR. Cold Spring Harb Perspect Biol 11 a032771 (2019)
  49. Structure and function of argonaute proteins. Hall TM. Structure 13 1403-1408 (2005)
  50. MicroRNAs and their therapeutic potential for human diseases: microRNAs, miR-143 and -145, function as anti-oncomirs and the application of chemically modified miR-143 as an anti-cancer drug. Kitade Y, Akao Y. J Pharmacol Sci 114 276-280 (2010)
  51. RNAi protects the Caenorhabditis elegans germline against transposition. Vastenhouw NL, Plasterk RH. Trends Genet 20 314-319 (2004)
  52. Mammalian piRNAs: Biogenesis, function, and mysteries. Fu Q, Wang PJ. Spermatogenesis 4 e27889 (2014)
  53. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FH. Prog Nucl Magn Reson Spectrosc 58 1-61 (2011)
  54. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M. Nucleic Acids Res 43 4365-4380 (2015)
  55. Target RNAs Strike Back on MicroRNAs. Fuchs Wightman F, Giono LE, Fededa JP, de la Mata M. Front Genet 9 435 (2018)
  56. Chromatin remodeling by the small RNA machinery in mammalian cells. Li LC. Epigenetics 9 45-52 (2014)
  57. Ancestral roles of small RNAs: an Ago-centric perspective. Joshua-Tor L, Hannon GJ. Cold Spring Harb Perspect Biol 3 a003772 (2011)
  58. MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. Virtue A, Wang H, Yang XF. J Hematol Oncol 5 66 (2012)
  59. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Müller M, Fazi F, Ciaudo C. Front Cell Dev Biol 7 360 (2019)
  60. Argonaute and the nuclear RNAs: new pathways for RNA-mediated control of gene expression. Gagnon KT, Corey DR. Nucleic Acid Ther 22 3-16 (2012)
  61. MicroRNA-directed cleavage of targets: mechanism and experimental approaches. Park JH, Shin C. BMB Rep 47 417-423 (2014)
  62. The continuing story of endoribonuclease III. Drider D, Condon C. J Mol Microbiol Biotechnol 8 195-200 (2004)
  63. Protein components of the microRNA pathway and human diseases. Perron MP, Provost P. Methods Mol Biol 487 369-385 (2009)
  64. The Argonautes. Joshua-Tor L. Cold Spring Harb Symp Quant Biol 71 67-72 (2006)
  65. Ancient endo-siRNA pathways reveal new tricks. Claycomb JM. Curr Biol 24 R703-15 (2014)
  66. Argonaute and GW182 proteins: an effective alliance in gene silencing. Pfaff J, Meister G. Biochem Soc Trans 41 855-860 (2013)
  67. RNA Binding Proteins in the miRNA Pathway. Connerty P, Ahadi A, Hutvagner G. Int J Mol Sci 17 E31 (2015)
  68. The fascinating world of RNA interference. Naqvi AR, Islam MN, Choudhury NR, Haq QM. Int J Biol Sci 5 97-117 (2009)
  69. siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. Neumeier J, Meister G. Front Plant Sci 11 526455 (2020)
  70. A Structural View of miRNA Biogenesis and Function. Leitão AL, Enguita FJ. Noncoding RNA 8 10 (2022)
  71. Structural domains in RNAi. Collins RE, Cheng X. FEBS Lett 579 5841-5849 (2005)
  72. From early lessons to new frontiers: the worm as a treasure trove of small RNA biology. Youngman EM, Claycomb JM. Front Genet 5 416 (2014)
  73. Structural and functional modules in RNA interference. Nowotny M, Yang W. Curr Opin Struct Biol 19 286-293 (2009)
  74. Renaissance of mammalian endogenous RNAi. Svoboda P. FEBS Lett 588 2550-2556 (2014)
  75. Studies on the mechanism of RNAi-dependent heterochromatin assembly. Moazed D, Bühler M, Buker SM, Colmenares SU, Gerace EL, Gerber SA, Hong EJ, Motamedi MR, Verdel A, Villén J, Gygi SP. Cold Spring Harb Symp Quant Biol 71 461-471 (2006)
  76. Uncovering RNAi mechanisms in plants: biochemistry enters the foray. Qi Y, Hannon GJ. FEBS Lett 579 5899-5903 (2005)
  77. RNA silencing pathways in plants. Herr AJ, Baulcombe DC. Cold Spring Harb Symp Quant Biol 69 363-370 (2004)
  78. RITS-connecting transcription, RNA interference, and heterochromatin assembly in fission yeast. Creamer KM, Partridge JF. Wiley Interdiscip Rev RNA 2 632-646 (2011)
  79. RNAi: finding the elusive endonuclease. Lingel A, Izaurralde E. RNA 10 1675-1679 (2004)
  80. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes. Olina AV, Kulbachinskiy AV, Aravin AA, Esyunina DM. Biochemistry (Mosc) 83 483-497 (2018)
  81. Key Mechanistic Principles and Considerations Concerning RNA Interference. Svoboda P. Front Plant Sci 11 1237 (2020)
  82. Structural biology of RNA silencing and its functional implications. Patel DJ, Ma JB, Yuan YR, Ye K, Pei Y, Kuryavyi V, Malinina L, Meister G, Tuschl T. Cold Spring Harb Symp Quant Biol 71 81-93 (2006)
  83. Protecting and Diversifying the Germline. Gleason RJ, Anand A, Kai T, Chen X. Genetics 208 435-471 (2018)
  84. Exploring the functions of RNA interference pathway proteins: some functions are more RISCy than others? Jaronczyk K, Carmichael JB, Hobman TC. Biochem J 387 561-571 (2005)
  85. RNA interference, transposon silencing, and cosuppression in the Caenorhabditis elegans germ line: similarities and differences. Robert VJ, Vastenhouw NL, Plasterk RH. Cold Spring Harb Symp Quant Biol 69 397-402 (2004)
  86. RNA Interference: Story and Mechanisms. Sioud M. Methods Mol Biol 2282 1-15 (2021)
  87. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. Bhattacharjee S, Roche B, Martienssen RA. RNA Biol 16 1133-1146 (2019)
  88. Regulatory RNAs: future perspectives in diagnosis, prognosis, and individualized therapy. Perron MP, Boissonneault V, Gobeil LA, Ouellet DL, Provost P. Methods Mol Biol 361 311-326 (2007)
  89. Argonaute proteins: structures and their endonuclease activity. Jin S, Zhan J, Zhou Y. Mol Biol Rep 48 4837-4849 (2021)
  90. MicroRNAs: Small but amazing, and their association with endothelin. von Brandenstein M, Richter C, Fries JW. Life Sci 91 475-489 (2012)
  91. RNAi and microRNAs: from animal models to disease therapy. Fjose A, Drivenes O. Birth Defects Res C Embryo Today 78 150-171 (2006)
  92. MicroRNAs as Important Players in Host-Adenovirus Interactions. Piedade D, Azevedo-Pereira JM. Front Microbiol 8 1324 (2017)
  93. Small RNAs and RNAi pathways in meiotic prophase I. Holmes RJ, Cohen PE. Chromosome Res 15 653-665 (2007)
  94. Dicer structure and function: conserved and evolving features. Zapletal D, Kubicek K, Svoboda P, Stefl R. EMBO Rep 24 e57215 (2023)
  95. RNA-Binding Proteins in Pulmonary Hypertension. Zhang H, Brown RD, Stenmark KR, Hu CJ. Int J Mol Sci 21 E3757 (2020)
  96. Structural Modifications of siRNA Improve Its Performance In Vivo. Chernikov IV, Ponomareva UA, Chernolovskaya EL. Int J Mol Sci 24 956 (2023)
  97. The long hand of the small RNAs reaches into several levels of gene regulation. Nolan T, Cogoni C. Biochem Cell Biol 82 472-481 (2004)
  98. Argonaute protein-based nucleic acid detection technology. Wu Z, Yu L, Shi W, Ma J. Front Microbiol 14 1255716 (2023)
  99. Role of siRNAs and miRNAs in the processes of RNA-mediated gene silencing during viral infections. Krulko I, Ustyanenko D, Polischuk V. Cytol Genet 43 63-72 (2009)
  100. Synthesis of Nucleic Acid Mimics and Their Application in Nucleic Acid-based Medicine. Kitamura Y. Yakugaku Zasshi 136 1491-1499 (2016)
  101. [piRNA: a novel member of small RNA family]. Guo YH, Liu L, Cai R, Qian C. Yi Chuan 30 28-34 (2008)

Articles citing this publication (166)

  1. Human MicroRNA targets. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. PLoS Biol 2 e363 (2004)
  2. The Drosha-DGCR8 complex in primary microRNA processing. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. Genes Dev 18 3016-3027 (2004)
  3. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Mol Cell 15 185-197 (2004)
  4. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Cell 125 887-901 (2006)
  5. Genetic and functional diversification of small RNA pathways in plants. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. PLoS Biol 2 E104 (2004)
  6. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Cell 123 631-640 (2005)
  7. MicroRNA: Biogenesis, Function and Role in Cancer. Macfarlane LA, Murphy PR. Curr Genomics 11 537-561 (2010)
  8. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Baumberger N, Baulcombe DC. Proc Natl Acad Sci U S A 102 11928-11933 (2005)
  9. Single processing center models for human Dicer and bacterial RNase III. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Cell 118 57-68 (2004)
  10. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Vaucheret H, Vazquez F, Crété P, Bartel DP. Genes Dev 18 1187-1197 (2004)
  11. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K. Nucleic Acids Res 32 936-948 (2004)
  12. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Ma JB, Ye K, Patel DJ. Nature 429 318-322 (2004)
  13. The role of PACT in the RNA silencing pathway. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. EMBO J 25 522-532 (2006)
  14. The crystal structure of human Argonaute2. Schirle NT, MacRae IJ. Science 336 1037-1040 (2012)
  15. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D. Cell 119 789-802 (2004)
  16. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ. Nature 434 666-670 (2005)
  17. Target RNA-directed trimming and tailing of small silencing RNAs. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD. Science 328 1534-1539 (2010)
  18. Identification of novel argonaute-associated proteins. Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Lührmann R, Tuschl T. Curr Biol 15 2149-2155 (2005)
  19. The structure of human argonaute-2 in complex with miR-20a. Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L. Cell 150 100-110 (2012)
  20. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. Zeng Y, Yi R, Cullen BR. EMBO J 24 138-148 (2005)
  21. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Parker JS, Roe SM, Barford D. Nature 434 663-666 (2005)
  22. Letter Synthetic shRNAs as potent RNAi triggers. Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA. Nat Biotechnol 23 227-231 (2005)
  23. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Lingel A, Simon B, Izaurralde E, Sattler M. Nature 426 465-469 (2003)
  24. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC. Genes Dev 19 2837-2848 (2005)
  25. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T. RNA 14 2580-2596 (2008)
  26. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, Miska EA, Tarakhovsky A. Genes Dev 21 1999-2004 (2007)
  27. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ. Mol Cell 19 405-419 (2005)
  28. Structure of yeast Argonaute with guide RNA. Nakanishi K, Weinberg DE, Bartel DP, Patel DJ. Nature 486 368-374 (2012)
  29. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. Parker JS, Roe SM, Barford D. EMBO J 23 4727-4737 (2004)
  30. Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain. Lingel A, Simon B, Izaurralde E, Sattler M. Nat Struct Mol Biol 11 576-577 (2004)
  31. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. Orban TI, Izaurralde E. RNA 11 459-469 (2005)
  32. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Rand TA, Ginalski K, Grishin NV, Wang X. Proc Natl Acad Sci U S A 101 14385-14389 (2004)
  33. snoRNA, a novel precursor of microRNA in Giardia lamblia. Saraiya AA, Wang CC. PLoS Pathog 4 e1000224 (2008)
  34. Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, Nakashima R, Kitade Y, Naoe T. Cancer Gene Ther 17 398-408 (2010)
  35. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG. Nat Struct Mol Biol 14 897-903 (2007)
  36. A Dynamic Search Process Underlies MicroRNA Targeting. Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ, Joo C. Cell 162 96-107 (2015)
  37. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F. J Biol Chem 285 18344-18351 (2010)
  38. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, Jin G, Zhang J, Wu J, Meng L, Shou C. Int J Cancer 118 1922-1929 (2006)
  39. Strand-specific 5'-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. Chen PY, Weinmann L, Gaidatzis D, Pei Y, Zavolan M, Tuschl T, Meister G. RNA 14 263-274 (2008)
  40. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Mochizuki K, Gorovsky MA. Genes Dev 18 2068-2073 (2004)
  41. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. Mol Biol Cell 21 1462-1469 (2010)
  42. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Rehwinkel J, Natalin P, Stark A, Brennecke J, Cohen SM, Izaurralde E. Mol Cell Biol 26 2965-2975 (2006)
  43. Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. Schaefer A, Im HI, Venø MT, Fowler CD, Min A, Intrator A, Kjems J, Kenny PJ, O'Carroll D, Greengard P. J Exp Med 207 1843-1851 (2010)
  44. siRNA target site secondary structure predictions using local stable substructures. Heale BS, Soifer HS, Bowers C, Rossi JJ. Nucleic Acids Res 33 e30 (2005)
  45. Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD. Mol Cell 42 172-184 (2011)
  46. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Boland A, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O. Proc Natl Acad Sci U S A 108 10466-10471 (2011)
  47. Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Buker SM, Iida T, Bühler M, Villén J, Gygi SP, Nakayama J, Moazed D. Nat Struct Mol Biol 14 200-207 (2007)
  48. The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Kidner CA, Martienssen RA. Dev Biol 280 504-517 (2005)
  49. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. Gurtan AM, Lu V, Bhutkar A, Sharp PA. RNA 18 1116-1122 (2012)
  50. MicroRNAs in gene regulation: when the smallest governs it all. Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P. J Biomed Biotechnol 2006 69616 (2006)
  51. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein. Simon B, Kirkpatrick JP, Eckhardt S, Reuter M, Rocha EA, Andrade-Navarro MA, Sehr P, Pillai RS, Carlomagno T. Structure 19 172-180 (2011)
  52. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. Boland A, Tritschler F, Heimstädt S, Izaurralde E, Weichenrieder O. EMBO Rep 11 522-527 (2010)
  53. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. Duan CG, Zhang H, Tang K, Zhu X, Qian W, Hou YJ, Wang B, Lang Z, Zhao Y, Wang X, Wang P, Zhou J, Liang G, Liu N, Wang C, Zhu JK. EMBO J 34 581-592 (2015)
  54. The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. Doyle M, Badertscher L, Jaskiewicz L, Güttinger S, Jurado S, Hugenschmidt T, Kutay U, Filipowicz W. RNA 19 1238-1252 (2013)
  55. Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Tian Y, Simanshu DK, Ma JB, Patel DJ. Proc Natl Acad Sci U S A 108 903-910 (2011)
  56. Recurrent adaptation in RNA interference genes across the Drosophila phylogeny. Kolaczkowski B, Hupalo DN, Kern AD. Mol Biol Evol 28 1033-1042 (2011)
  57. RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases. Hammond TM, Keller NP. Genetics 169 607-617 (2005)
  58. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Miyoshi T, Ito K, Murakami R, Uchiumi T. Nat Commun 7 11846 (2016)
  59. Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. Qin H, Chen F, Huan X, Machida S, Song J, Yuan YA. RNA 16 474-481 (2010)
  60. How to slice: snapshots of Argonaute in action. Parker JS. Silence 1 3 (2010)
  61. Retroviral delivery of promoter-targeted shRNA induces long-term silencing of HIV-1 transcription. Yamagishi M, Ishida T, Miyake A, Cooper DA, Kelleher AD, Suzuki K, Watanabe T. Microbes Infect 11 500-508 (2009)
  62. RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans. Steiner FA, Okihara KL, Hoogstrate SW, Sijen T, Ketting RF. Nat Struct Mol Biol 16 207-211 (2009)
  63. Coordinated activities of human dicer domains in regulatory RNA processing. Ma E, Zhou K, Kidwell MA, Doudna JA. J Mol Biol 422 466-476 (2012)
  64. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. Quévillon Huberdeau M, Zeitler DM, Hauptmann J, Bruckmann A, Fressigné L, Danner J, Piquet S, Strieder N, Engelmann JC, Jannot G, Deutzmann R, Simard MJ, Meister G. EMBO J 36 2088-2106 (2017)
  65. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I, Joo C. Nat Commun 7 13694 (2016)
  66. Slicing-independent RISC activation requires the argonaute PAZ domain. Gu S, Jin L, Huang Y, Zhang F, Kay MA. Curr Biol 22 1536-1542 (2012)
  67. A genomewide screen for components of the RNAi pathway in Drosophila cultured cells. Dorner S, Lum L, Kim M, Paro R, Beachy PA, Green R. Proc Natl Acad Sci U S A 103 11880-11885 (2006)
  68. Preliminary analysis of miRNA pathway in Schistosoma mansoni. Gomes MS, Cabral FJ, Jannotti-Passos LK, Carvalho O, Rodrigues V, Baba EH, Sá RG. Parasitol Int 58 61-68 (2009)
  69. Argonaute2 is essential for mammalian gastrulation and proper mesoderm formation. Alisch RS, Jin P, Epstein M, Caspary T, Warren ST. PLoS Genet 3 e227 (2007)
  70. Dicer-1, but not Loquacious, is critical for assembly of miRNA-induced silencing complexes. Liu X, Park JK, Jiang F, Liu Y, McKearin D, Liu Q. RNA 13 2324-2329 (2007)
  71. Historical survey on chromatoid body research. Yokota S. Acta Histochem Cytochem 41 65-82 (2008)
  72. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Schraivogel D, Schindler SG, Danner J, Kremmer E, Pfaff J, Hannus S, Depping R, Meister G. Nucleic Acids Res 43 7447-7461 (2015)
  73. Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Deerberg A, Willkomm S, Restle T. Proc Natl Acad Sci U S A 110 17850-17855 (2013)
  74. Synthetic siRNA targeting the breakpoint of EWS/Fli-1 inhibits growth of Ewing sarcoma xenografts in a mouse model. Takigami I, Ohno T, Kitade Y, Hara A, Nagano A, Kawai G, Saitou M, Matsuhashi A, Yamada K, Shimizu K. Int J Cancer 128 216-226 (2011)
  75. Long-term and short-term evolutionary impacts of transposable elements on Drosophila. Lee YC, Langley CH. Genetics 192 1411-1432 (2012)
  76. Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. Yang L, Huang W, Wang H, Cai R, Xu Y, Huang H. Plant Mol Biol 61 63-78 (2006)
  77. The siRNA Non-seed Region and Its Target Sequences Are Auxiliary Determinants of Off-Target Effects. Kamola PJ, Nakano Y, Takahashi T, Wilson PA, Ui-Tei K. PLoS Comput Biol 11 e1004656 (2015)
  78. Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain. Fukunaga R, Colpan C, Han BW, Zamore PD. EMBO J 33 371-384 (2014)
  79. Seawi--a sea urchin piwi/argonaute family member is a component of MT-RNP complexes. Rodriguez AJ, Seipel SA, Hamill DR, Romancino DP, DI Carlo M, Suprenant KA, Bonder EM. RNA 11 646-656 (2005)
  80. Dicer cleaves 5'-extended microRNA precursors originating from RNA polymerase II transcription start sites. Sheng P, Fields C, Aadland K, Wei T, Kolaczkowski O, Gu T, Kolaczkowski B, Xie M. Nucleic Acids Res 46 5737-5752 (2018)
  81. RNA silencing gene truncation in the filamentous fungus Aspergillus nidulans. Hammond TM, Bok JW, Andrewski MD, Reyes-Domínguez Y, Scazzocchio C, Keller NP. Eukaryot Cell 7 339-349 (2008)
  82. Structural evolution and functional diversification analyses of argonaute protein. Wei KF, Wu LJ, Chen J, Chen YF, Xie DX. J Cell Biochem 113 2576-2585 (2012)
  83. RNA-binding proteins and their role in the regulation of gene expression in Trypanosoma cruzi and Saccharomyces cerevisiae. Oliveira C, Faoro H, Alves LR, Goldenberg S. Genet Mol Biol 40 22-30 (2017)
  84. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent. Liu Y, Song X, Gorovsky MA, Karrer KM. Eukaryot Cell 4 421-431 (2005)
  85. The Caenorhabditis elegans Argonautes ALG-1 and ALG-2: almost identical yet different. Tops BB, Plasterk RH, Ketting RF. Cold Spring Harb Symp Quant Biol 71 189-194 (2006)
  86. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference. Yi T, Arthanari H, Akabayov B, Song H, Papadopoulos E, Qi HH, Jedrychowski M, Güttler T, Guo C, Luna RE, Gygi SP, Huang SA, Wagner G. Nat Commun 6 7194 (2015)
  87. RNA-binding proteins in pluripotency, differentiation, and reprogramming. Guallar D, Wang J. Front Biol (Beijing) 9 389-409 (2014)
  88. The microRNA pathway genes AGO1, HEN1 and HYL1 participate in leaf proximal-distal, venation and stomatal patterning in Arabidopsis. Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM, Micol JL, Ponce MR. Plant Cell Physiol 53 1322-1333 (2012)
  89. Drosophila Dicer-2 has an RNA interference-independent function that modulates Toll immune signaling. Wang Z, Wu D, Liu Y, Xia X, Gong W, Qiu Y, Yang J, Zheng Y, Li J, Wang YF, Xiang Y, Hu Y, Zhou X. Sci Adv 1 e1500228 (2015)
  90. Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. Hauptmann J, Kater L, Löffler P, Merkl R, Meister G. RNA 20 1532-1538 (2014)
  91. Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Zhang X, Lin H, Zhao H, Hao Y, Mort M, Cooper DN, Zhou Y, Liu Y. Hum Mol Genet 23 3024-3034 (2014)
  92. Synthesis of nuclease-resistant siRNAs possessing universal overhangs. Ueno Y, Watanabe Y, Shibata A, Yoshikawa K, Takano T, Kohara M, Kitade Y. Bioorg Med Chem 17 1974-1981 (2009)
  93. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Kinch LN, Grishin NV. Biol Direct 4 2 (2009)
  94. Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference. Dechklar M, Udomkit A, Panyim S. Biochem Biophys Res Commun 367 768-774 (2008)
  95. Evolutionary conservation of a unique amino acid sequence in human DICER protein essential for binding to Argonaute family proteins. Sasaki T, Shimizu N. Gene 396 312-320 (2007)
  96. Revealing a new activity of the human Dicer DUF283 domain in vitro. Kurzynska-Kokorniak A, Pokornowska M, Koralewska N, Hoffmann W, Bienkowska-Szewczyk K, Figlerowicz M. Sci Rep 6 23989 (2016)
  97. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Zapletal D, Taborska E, Pasulka J, Malik R, Kubicek K, Zanova M, Much C, Sebesta M, Buccheri V, Horvat F, Jenickova I, Prochazkova M, Prochazka J, Pinkas M, Novacek J, Joseph DF, Sedlacek R, Bernecky C, O'Carroll D, Stefl R, Svoboda P. Mol Cell 82 4064-4079.e13 (2022)
  98. Origin, evolution and diversification of plant ARGONAUTE proteins. Li Z, Li W, Guo M, Liu S, Liu L, Yu Y, Mo B, Chen X, Gao L. Plant J 109 1086-1097 (2022)
  99. A piRNA utilizes HILI and HIWI2 mediated pathway to down-regulate ferritin heavy chain 1 mRNA in human somatic cells. Balaratnam S, West N, Basu S. Nucleic Acids Res 46 10635-10648 (2018)
  100. Aberrant expression of DPPA2 and HIWI genes in colorectal cancer and their impacts on poor prognosis. Raeisossadati R, Abbaszadegan MR, Moghbeli M, Tavassoli A, Kihara AH, Forghanifard MM. Tumour Biol 35 5299-5305 (2014)
  101. Interactions between the non-seed region of siRNA and RNA-binding RLC/RISC proteins, Ago and TRBP, in mammalian cells. Takahashi T, Zenno S, Ishibashi O, Takizawa T, Saigo K, Ui-Tei K. Nucleic Acids Res 42 5256-5269 (2014)
  102. Comparison of non-coding RNAs in human and canine cancer. Wagner S, Willenbrock S, Nolte I, Murua Escobar H. Front Genet 4 46 (2013)
  103. Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Jouravleva K, Golovenko D, Demo G, Dutcher RC, Hall TMT, Zamore PD, Korostelev AA. Mol Cell 82 4049-4063.e6 (2022)
  104. Synthesis of nuclease-resistant siRNAs possessing benzene-phosphate backbones in their 3'-overhang regions. Ueno Y, Inoue T, Yoshida M, Yoshikawa K, Shibata A, Kitamura Y, Kitade Y. Bioorg Med Chem Lett 18 5194-5196 (2008)
  105. Two Sets of Piwi Proteins Are Involved in Distinct sRNA Pathways Leading to Elimination of Germline-Specific DNA. Furrer DI, Swart EC, Kraft MF, Sandoval PY, Nowacki M. Cell Rep 20 505-520 (2017)
  106. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. Genes (Basel) 3 702-741 (2012)
  107. Evolutionary convergence and divergence in archaeal chromosomal proteins and Chromo-like domains from bacteria and eukaryotes. Kaur G, Iyer LM, Subramanian S, Aravind L. Sci Rep 8 6196 (2018)
  108. Identification of two piwi genes and their expression profile in honeybee, Apis mellifera. Liao Z, Jia Q, Li F, Han Z. Arch Insect Biochem Physiol 74 91-102 (2010)
  109. In vitro binding of single-stranded RNA by human Dicer. Kini HK, Walton SP. FEBS Lett 581 5611-5616 (2007)
  110. Mechanistic Insights into Archaeal and Human Argonaute Substrate Binding and Cleavage Properties. Willkomm S, Zander A, Grohmann D, Restle T. PLoS One 11 e0164695 (2016)
  111. RNAi induction and activation in mammalian muscle cells where Dicer and eIF2C translation initiation factors are barely expressed. Sago N, Omi K, Tamura Y, Kunugi H, Toyo-oka T, Tokunaga K, Hohjoh H. Biochem Biophys Res Commun 319 50-57 (2004)
  112. Role of the silkworm argonaute2 homolog gene in double-strand break repair of extrachromosomal DNA. Tsukioka H, Takahashi M, Mon H, Okano K, Mita K, Shimada T, Lee JM, Kawaguchi Y, Koga K, Kusakabe T. Nucleic Acids Res 34 1092-1101 (2006)
  113. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. Kandeel M, Kitade Y. PLoS One 8 e57140 (2013)
  114. Research Support, Non-U.S. Gov't The true core of RNA silencing revealed. Sasaki HM, Tomari Y. Nat Struct Mol Biol 19 657-660 (2012)
  115. miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato. Liu X, Tan C, Cheng X, Zhao X, Li T, Jiang J. BMC Plant Biol 20 477 (2020)
  116. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain. Kandeel M, Al-Taher A, Nakashima R, Sakaguchi T, Kandeel A, Nagaya Y, Kitamura Y, Kitade Y. PLoS One 9 e94538 (2014)
  117. Genes involved in the RNA interference pathway are differentially expressed during sea urchin development. Song JL, Wessel GM. Dev Dyn 236 3180-3190 (2007)
  118. Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Chung BY, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC. Sci Rep 9 11091 (2019)
  119. Genome-Wide Identification of RNA Silencing-Related Genes and Their Expressional Analysis in Response to Heat Stress in Barley (Hordeum vulgare L.). Hamar É, Szaker HM, Kis A, Dalmadi Á, Miloro F, Szittya G, Taller J, Gyula P, Csorba T, Havelda Z, Havelda Z. Biomolecules 10 E929 (2020)
  120. Identification of PIWIL1 Isoforms and Their Expression in Bovine Testes, Oocytes, and Early Embryos. Russell SJ, Stalker L, Gilchrist G, Backx A, Molledo G, Foster RA, LaMarre J. Biol Reprod 94 75 (2016)
  121. Structural insights into piRNA recognition by the human PIWI-like 1 PAZ domain. Zeng L, Zhang Q, Yan K, Zhou MM. Proteins 79 2004-2009 (2011)
  122. Atomistic mechanism of microRNA translation upregulation via molecular dynamics simulations. Ye W, Qin F, Zhang J, Luo R, Chen HF. PLoS One 7 e43788 (2012)
  123. Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Huang X, Hu H, Webster A, Zou F, Du J, Patel DJ, Sachidanandam R, Toth KF, Aravin AA, Li S. Nat Commun 12 4061 (2021)
  124. Detection of human Dicer and Argonaute 2 catalytic activity. Perron MP, Landry P, Plante I, Provost P. Methods Mol Biol 725 121-141 (2011)
  125. Polymorphism analyses and protein modelling inform on functional specialization of Piwi clade genes in the arboviral vector Aedes albopictus. Marconcini M, Hernandez L, Iovino G, Houé V, Valerio F, Palatini U, Pischedda E, Crawford JE, White BJ, Lin T, Carballar-Lejarazu R, Ometto L, Forneris F, Failloux AB, Bonizzoni M. PLoS Negl Trop Dis 13 e0007919 (2019)
  126. Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro. Hunt EA, Evans TC, Tanner NA. PLoS One 13 e0203073 (2018)
  127. Genome-wide identification, evolutionary relationship and expression analysis of AGO, DCL and RDR family genes in tea. Krishnatreya DB, Baruah PM, Dowarah B, Chowrasia S, Mondal TK, Agarwala N. Sci Rep 11 8679 (2021)
  128. Predicting RNA-binding residues from evolutionary information and sequence conservation. Huang YF, Chiu LY, Huang CC, Huang CK. BMC Genomics 11 Suppl 4 S2 (2010)
  129. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation. Kruse J, Meier D, Zenk F, Rehders M, Nellen W, Hammann C. RNA Biol 13 1000-1010 (2016)
  130. Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Hogenhout SA, Spieth J, Sternberg PW, Wilson RK, Grewal PS. BMC Genomics 10 205 (2009)
  131. Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges. Yang L, Li X, Jiang S, Qiu L, Zhou F, Liu W, Jiang S. Fish Shellfish Immunol 36 261-269 (2014)
  132. Contributions of 3'-overhang to the dissociation of small interfering RNAs from the PAZ domain: molecular dynamics simulation study. Lee HS, Lee SN, Joo CH, Lee H, Lee HS, Yoon SY, Kim YK, Choe H. J Mol Graph Model 25 784-793 (2007)
  133. Synthesis and silencing properties of siRNAs possessing lipophilic groups at their 3'-termini. Ueno Y, Kawada K, Naito T, Shibata A, Yoshikawa K, Kim HS, Wataya Y, Kitade Y. Bioorg Med Chem 16 7698-7704 (2008)
  134. Synthesis of novel siRNAs having thymidine dimers consisting of a carbamate or a urea linkage at their 3' overhang regions and their ability to suppress human RNase L protein expression. Ueno Y, Naito T, Kawada K, Shibata A, Kim HS, Wataya Y, Kitade Y. Biochem Biophys Res Commun 330 1168-1175 (2005)
  135. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates. Baillet A, Le Bouffant R, Volff JN, Luangpraseuth A, Poumerol E, Thépot D, Pailhoux E, Livera G, Cotinot C, Mandon-Pépin B. PLoS One 6 e26950 (2011)
  136. "siRNAs and miRNAs": a meeting report on RNA silencing. He Z, Sontheimer EJ. RNA 10 1165-1173 (2004)
  137. Identification, chromosomal mapping and conserved synteny of porcine Argonaute family of genes. Zhou X, Guo H, Chen K, Cheng H, Zhou R. Genetica 138 805-812 (2010)
  138. Mammalian Argonaute-DNA binding? Smalheiser NR, Gomes OL. Biol Direct 10 27 (2014)
  139. A new and efficient method for inhibition of RNA viruses by DNA interference. Nowak M, Wyszko E, Fedoruk-Wyszomirska A, Pospieszny H, Barciszewska MZ, Barciszewski J. FEBS J 276 4372-4380 (2009)
  140. Exploring the RNA-bound and RNA-free human Argonaute-2 by molecular dynamics simulation method. Kong R, Xu L, Piao L, Zhang D, Hou TJ, Chang S. Chem Biol Drug Des 90 753-763 (2017)
  141. Guide Strand 3'-End Modifications Regulate siRNA Specificity. Valenzuela RA, Onizuka K, Ball-Jones AA, Hu T, Suter SR, Beal PA. Chembiochem 17 2340-2345 (2016)
  142. In silico characterization of microRNAs-like sequences in the genome of Paracoccidioides brasiliensis. Curcio JS, Batista MP, Paccez JD, Novaes E, Soares CMA. Genet Mol Biol 42 95-107 (2019)
  143. MicroRNA-binding is required for recruitment of human Argonaute 2 to stress granules and P-bodies. Pare JM, López-Orozco J, Hobman TC. Biochem Biophys Res Commun 414 259-264 (2011)
  144. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics. Giebler M, Greither T, Müller L, Mösinger C, Behre HM. Asian J Androl 20 260-264 (2018)
  145. Characterization of DCL4 missense alleles provides insights into its ability to process distinct classes of dsRNA substrates. Montavon T, Kwon Y, Zimmermann A, Hammann P, Vincent T, Cognat V, Bergdoll M, Michel F, Dunoyer P. Plant J 95 204-218 (2018)
  146. In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference. Kandeel M, Kitade Y. J Comput Aided Mol Des 27 605-614 (2013)
  147. Isolation of carrot Argonaute1 from subtractive somatic embryogenesis cDNA library. Takahata K. Biosci Biotechnol Biochem 72 900-904 (2008)
  148. Local and global effects of Mg2+ on Ago and miRNA-target interactions. Ma Z, Xue Z, Zhang H, Li Y, Wang Y. J Mol Model 18 3769-3781 (2012)
  149. Expansion and Divergence of Argonaute Genes in the Oomycete Genus Phytophthora. Bollmann SR, Press CM, Tyler BM, Grünwald NJ. Front Microbiol 9 2841 (2018)
  150. A homozygous PIWIL2 frameshift variant affects the formation and maintenance of human-induced pluripotent stem cell-derived spermatogonial stem cells and causes Sertoli cell-only syndrome. Wang X, Li Z, Qu M, Xiong C, Li H. Stem Cell Res Ther 13 480 (2022)
  151. A universal small molecule, inorganic phosphate, restricts the substrate specificity of Dicer-2 in small RNA biogenesis. Fukunaga R, Zamore PD. Cell Cycle 13 1671-1676 (2014)
  152. Multi-resBind: a residual network-based multi-label classifier for in vivo RNA binding prediction and preference visualization. Zhao S, Hamada M. BMC Bioinformatics 22 554 (2021)
  153. TRBP-Dicer interaction may enhance HIV-1 TAR RNA translation via TAR RNA processing, repressing host-cell apoptosis. Komori C, Takahashi T, Nakano Y, Ui-Tei K. Biol Open 9 bio050435 (2020)
  154. News siRNAs at RISC. Joshua-Tor L. Structure 12 1120-1122 (2004)
  155. Piwi1 is essential for gametogenesis in mollusk Chlamys farreri. Ma X, Ji A, Zhang Z, Yang D, Liang S, Wang Y, Qin Z. PeerJ 5 e3412 (2017)
  156. Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy. Maiti M, Nauwelaerts K, Lescrinier E, Herdewijn P. Chemistry 17 1519-1528 (2011)
  157. Congress The blossoming of RNA biology: Novel insights from plant systems. Bove J, Hord CL, Mullen MA. RNA 12 2035-2046 (2006)
  158. Genome-wide investigation of the WRKY transcription factor gene family in weeping forsythia: expression profile and cold and drought stress responses. Yang YL, Cushman SA, Wang SC, Wang F, Li Q, Liu HL, Li Y. Genetica 151 153-165 (2023)
  159. The Piwil1 N domain is required for germ cell survival in Atlantic salmon. F L A, K O S, E A, L K, R B E, B N, P G F, T J H, R W S, A W. Front Cell Dev Biol 10 977779 (2022)
  160. The Potential Role of the Piwi Gene in the Development and Reproduction of Plutella xylostella. Liu D, Asad M, Liao J, Chen J, Li J, Chu X, Pang S, Tariq M, Abbas AN, Yang G. Int J Mol Sci 24 12321 (2023)
  161. What's new about RNAi? Meeting on siRNAs and miRNAs. Ketting RF, Plasterk RH. EMBO Rep 5 762-765 (2004)
  162. 3'-Poly(A) tail enhances siRNA activity against exogenous reporter genes in MCF-7 cells. Li J, Yang G, Li S, Cao G, Zhao Q, Liu X, Fan M, Shen B, Shao N. J RNAi Gene Silencing 2 195-204 (2006)
  163. News Gauging length: recognition of small interfering RNAs. Park HH, Wu H. Structure 12 172-173 (2004)
  164. Genome-wide identification of DCL, AGO, and RDR gene families in wheat (Triticum aestivum L.) and their expression analysis in response to heat stress. Mishra S, Sharma P, Singh R, Ahlawat OP, Singh G. Physiol Mol Biol Plants 29 1525-1541 (2023)
  165. MicroRNA-320a enhances LRWD1 expression through the AGO2/FXR1-dependent pathway to affect cell behaviors and the oxidative stress response in human testicular embryonic carcinoma cells. Lin YH, Su CH, Chen HM, Wu MS, Pan HA, Chang CN, Cheng YS, Chang WT, Chiu CC, Teng YN. Aging (Albany NY) 16 3973-3988 (2024)
  166. RNA folding and hydrolysis terms explain ATP independence of RNA interference in human systems. Ali N, Manoharan VN. Oligonucleotides 19 341-346 (2009)