1rgy Citations

Hydrolysis of third-generation cephalosporins by class C beta-lactamases. Structures of a transition state analog of cefotoxamine in wild-type and extended spectrum enzymes.

J Biol Chem 279 9344-52 (2004)
Cited: 35 times
EuropePMC logo PMID: 14660590

Abstract

Bacterial resistance to the third-generation cephalosporins is an issue of great concern in current antibiotic therapeutics. An important source of this resistance is from production of extended-spectrum (ES) beta-lactamases by bacteria. The Enterobacter cloacae GC1 enzyme is an example of a class C ES beta-lactamase. Unlike wild-type (WT) forms, such as the E. cloacae P99 and Citrobacter freundii enzymes, the ES GC1 beta-lactamase is able to rapidly hydrolyze third-generation cephalosporins such as cefotaxime and ceftazidime. To understand the basis for this ES activity, m-nitrophenyl 2-(2-aminothiazol-4-yl)-2-[(Z)-methoxyimino]acetylaminomethyl phosphonate has been synthesized and characterized. This phosphonate was designed to generate a transition state analog for turnover of cefotaxime. The crystal structures of complexes of the phosphonate with both ES GC1 and WT C. freundii GN346 beta-lactamases have been determined to high resolution (1.4-1.5 Angstroms). The serine-bound analog of the tetrahedral transition state for deacylation exhibits a very different binding geometry in each enzyme. In the WT beta-lactamase the cefotaxime-like side chain is crowded against the Omega loop and must protrude from the binding site with its methyloxime branch exposed. In the ES enzyme, a mutated Omega loop adopts an alternate conformation allowing the side chain to be much more buried. During the binding and turnover of the cefotaxime substrate by this ES enzyme, it is proposed that ligand-protein contacts and intra-ligand contacts are considerably relieved relative to WT, facilitating positioning and activation of the hydrolytic water molecule. The ES beta-lactamase is thus able to efficiently inactivate third-generation cephalosporins.

Articles - 1rgy mentioned but not cited (5)

  1. ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides. Dubois D, Baron O, Cougnoux A, Delmas J, Pradel N, Boury M, Bouchon B, Bringer MA, Nougayrède JP, Oswald E, Bonnet R. J Biol Chem 286 35562-35570 (2011)
  2. Structure of the extended-spectrum class C β-lactamase ADC-1 from Acinetobacter baumannii. Bhattacharya M, Toth M, Antunes NT, Smith CA, Vakulenko SB. Acta Crystallogr D Biol Crystallogr 70 760-771 (2014)
  3. Two alternative modes for optimizing nylon-6 byproduct hydrolytic activity from a carboxylesterase with a beta-lactamase fold: X-ray crystallographic analysis of directly evolved 6-aminohexanoate-dimer hydrolase. Ohki T, Shibata N, Higuchi Y, Kawashima Y, Takeo M, Kato D, Negoro S. Protein Sci 18 1662-1673 (2009)
  4. Hydrolysis spectrum extension of CMY-2-like β-lactamases resulting from structural alteration in the Y-X-N loop. Dahyot S, Mammeri H. Antimicrob Agents Chemother 56 1151-1156 (2012)
  5. Influence of C-H...O interactions on the structural stability of β-lactamases. Lavanya P, Ramaiah S, Anbarasu A. J Biol Phys 39 649-663 (2013)


Reviews citing this publication (4)

  1. Three decades of beta-lactamase inhibitors. Drawz SM, Bonomo RA. Clin Microbiol Rev 23 160-201 (2010)
  2. Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine β-Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches. van den Akker F, Bonomo RA. Front Microbiol 9 622 (2018)
  3. Substrate deacylation mechanisms of serine-beta-lactamases. Hata M, Fujii Y, Tanaka Y, Ishikawa H, Ishii M, Neya S, Tsuda M, Hoshino T. Biol Pharm Bull 29 2151-2159 (2006)
  4. Class C β-Lactamases: Molecular Characteristics. Philippon A, Arlet G, Labia R, Iorga BI. Clin Microbiol Rev 35 e0015021 (2022)

Articles citing this publication (26)

  1. Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Lahiri SD, Johnstone MR, Ross PL, McLaughlin RE, Olivier NB, Alm RA. Antimicrob Agents Chemother 58 5704-5713 (2014)
  2. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C beta-lactamase. Kim JY, Jung HI, An YJ, Lee JH, Kim SJ, Jeong SH, Lee KJ, Suh PG, Lee HS, Lee SH, Cha SS. Mol Microbiol 60 907-916 (2006)
  3. Structural bases for stability-function tradeoffs in antibiotic resistance. Thomas VL, McReynolds AC, Shoichet BK. J Mol Biol 396 47-59 (2010)
  4. Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo. Eidam O, Romagnoli C, Dalmasso G, Barelier S, Caselli E, Bonnet R, Shoichet BK, Prati F. Proc Natl Acad Sci U S A 109 17448-17453 (2012)
  5. Enhancing resistance to cephalosporins in class C beta-lactamases: impact of Gly214Glu in CMY-2. Endimiani A, Doi Y, Bethel CR, Taracila M, Adams-Haduch JM, O'Keefe A, Hujer AM, Paterson DL, Skalweit MJ, Page MG, Drawz SM, Bonomo RA. Biochemistry 49 1014-1023 (2010)
  6. Kinetic properties of four plasmid-mediated AmpC beta-lactamases. Bauvois C, Ibuka AS, Celso A, Alba J, Ishii Y, Frère JM, Galleni M. Antimicrob Agents Chemother 49 4240-4246 (2005)
  7. CMY-31 and CMY-36 cephalosporinases encoded by ColE1-like plasmids. Zioga A, Whichard JM, Kotsakis SD, Tzouvelekis LS, Tzelepi E, Miriagou V. Antimicrob Agents Chemother 53 1256-1259 (2009)
  8. Increasing chemical space coverage by combining empirical and computational fragment screens. Barelier S, Eidam O, Fish I, Hollander J, Figaroa F, Nachane R, Irwin JJ, Shoichet BK, Siegal G. ACS Chem Biol 9 1528-1535 (2014)
  9. Structural basis for the β-lactamase activity of EstU1, a family VIII carboxylesterase. Cha SS, An YJ, Jeong CS, Kim MK, Jeon JH, Lee CM, Lee HS, Kang SG, Lee JH. Proteins 81 2045-2051 (2013)
  10. Nylon-oligomer degrading enzyme/substrate complex: catalytic mechanism of 6-aminohexanoate-dimer hydrolase. Negoro S, Ohki T, Shibata N, Sasa K, Hayashi H, Nakano H, Yasuhira K, Kato D, Takeo M, Higuchi Y. J Mol Biol 370 142-156 (2007)
  11. Substrate deconstruction and the nonadditivity of enzyme recognition. Barelier S, Cummings JA, Rauwerdink AM, Hitchcock DS, Farelli JD, Almo SC, Raushel FM, Allen KN, Shoichet BK. J Am Chem Soc 136 7374-7382 (2014)
  12. X-ray crystallographic analysis of the 6-aminohexanoate cyclic dimer hydrolase: catalytic mechanism and evolution of an enzyme responsible for nylon-6 byproduct degradation. Yasuhira K, Shibata N, Mongami G, Uedo Y, Atsumi Y, Kawashima Y, Hibino A, Tanaka Y, Lee YH, Kato D, Takeo M, Higuchi Y, Negoro S. J Biol Chem 285 1239-1248 (2010)
  13. Extended-spectrum properties of CMY-30, a Val211Gly mutant of CMY-2 cephalosporinase. Kotsakis SD, Papagiannitsis CC, Tzelepi E, Tzouvelekis LS, Miriagou V. Antimicrob Agents Chemother 53 3520-3523 (2009)
  14. Crystal structure and functional characterization of a D-stereospecific amino acid amidase from Ochrobactrum anthropi SV3, a new member of the penicillin-recognizing proteins. Okazaki S, Suzuki A, Komeda H, Yamaguchi S, Asano Y, Yamane T. J Mol Biol 368 79-91 (2007)
  15. Letter Contribution of asparagine 346 residue to the carbapenemase activity of CMY-2 β-lactamase. Dahyot S, Broutin I, de Champs C, Guillon H, Mammeri H. FEMS Microbiol Lett 345 147-153 (2013)
  16. Crystal structure of Mox-1, a unique plasmid-mediated class C β-lactamase with hydrolytic activity towards moxalactam. Oguri T, Furuyama T, Okuno T, Ishii Y, Tateda K, Bonomo RA, Shimizu-Ibuka A. Antimicrob Agents Chemother 58 3914-3920 (2014)
  17. Effects of the Val211Gly substitution on molecular dynamics of the CMY-2 cephalosporinase: implications on hydrolysis of expanded-spectrum cephalosporins. Kotsakis SD, Tzouvelekis LS, Petinaki E, Tzelepi E, Miriagou V. Proteins 79 3180-3192 (2011)
  18. Structural studies of the mechanism for biosensing antibiotics in a fluorescein-labeled β-lactamase. Wong WT, Au HW, Yap HK, Leung YC, Wong KY, Zhao Y. BMC Struct Biol 11 15 (2011)
  19. Flexibility Correlation between Active Site Regions Is Conserved across Four AmpC β-Lactamase Enzymes. Brown JR, Livesay DR. PLoS One 10 e0125832 (2015)
  20. Structural analysis of the Asn152Gly mutant of P99 cephalosporinase. Ruble JF, Lefurgy ST, Cornish VW, Powers RA. Acta Crystallogr D Biol Crystallogr 68 1189-1193 (2012)
  21. Investigation of the mechanism of resistance to third-generation cephalosporins by class C beta-lactamases by using chemical complementation. Carter BT, Lin H, Goldberg SD, Althoff EA, Raushel J, Cornish VW. Chembiochem 6 2055-2067 (2005)
  22. Letter Minimising antibiotic resistance. Lee SH, Jeong SH, Cha SS. Lancet Infect Dis 5 668-670 (2005)
  23. Crystal structure of AmpC BER and molecular docking lead to the discovery of broad inhibition activities of halisulfates against β-lactamases. Jeong BG, Na JH, Bae DW, Park SB, Lee HS, Cha SS. Comput Struct Biotechnol J 19 145-152 (2021)
  24. Characterization of Two Novel AmpC Beta-Lactamases from the Emerging Opportunistic Pathogen, Cedecea neteri. Sharkady SM, Bailey B, Thompson DK. Antibiotics (Basel) 12 219 (2023)
  25. Molecular modeling of Henry-Michaelis and acyl-enzyme complexes between imipenem and Enterobacter cloacae P99 beta-lactamase. Fenollar-Ferrer C, Donoso J, Frau J, Muñoz F. Chem Biodivers 2 645-656 (2005)
  26. Letter Mutations affecting the internal equilibrium of the reaction catalyzed by 6-aminohexanoate-dimer hydrolase. Negoro S, Kawashima Y, Shibata N, Kobayashi T, Baba T, Lee YH, Kamiya K, Shigeta Y, Nagai K, Takehara I, Kato D, Takeo M, Higuchi Y. FEBS Lett 590 3133-3143 (2016)