1rh3 Citations

Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence.

Biochemistry 36 586-603 (1997)
Related entries: 1dre, 1ra1, 1ra2, 1ra3, 1ra8, 1ra9, 1rb2, 1rb3, 1rc4, 1rd7, 1re7, 1rf7, 1rg7, 1rx1, 1rx2, 1rx3, 1rx4, 1rx5, 1rx6, 1rx7, 1rx8, 1rx9

Cited: 386 times
EuropePMC logo PMID: 9012674

Abstract

The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) cycles through five detectable kinetic intermediates: holoenzyme, Michaelis complex, ternary product complex, tetrahydrofolate (THF) binary complex, and THF.NADPH complex. Isomorphous crystal structures analogous to these five intermediates and to the transition state (as represented by the methotrexate-NADPH complex) have been used to assemble a 2.1 A resolution movie depicting loop and subdomain movements during the catalytic cycle (see Supporting Information). The structures suggest that the M20 loop is predominantly closed over the reactants in the holoenzyme, Michaelis, and transition state complexes. But, during the remainder of the cycle, when nicotinamide is not bound, the loop occludes (protrudes into) the nicotinamide-ribose binding pocket. Upon changing from the closed to the occluded conformation, the central portion of the loop rearranges from beta-sheet to 3(10) helix. The change may occur by way of an irregularly structured open loop conformation, which could transiently admit a water molecule into position to protonate N5 of dihydrofolate. From the Michaelis to the transition state analogue complex, rotation between two halves of ecDHFR, the adenosine binding subdomain and loop subdomain, closes the (p-aminobenzoyl)glutamate (pABG) binding crevice by approximately 0.5 A. Resulting enhancement of contacts with the pABG moiety may stabilize puckering at C6 of the pteridine ring in the transition state. The subdomain rotation is further adjusted by cofactor-induced movements (approximately 0.5 A) of helices B and C, producing a larger pABG cleft in the THF.NADPH analogue complex than in the THF analogue complex. Such movements may explain how THF release is assisted by NADPH binding. Subdomain rotation is not observed in vertebrate DHFR structures, but an analogous loop movement (residues 59-70) appears to similarly adjust the pABG cleft width, suggesting that these movements are important for catalysis. Loop movement, also unobserved in vertebrate DHFR structures, may preferentially weaken NADP+ vs NADPH binding in ecDHFR, an evolutionary adaptation to reduce product inhibition in the NADP+ rich environment of prokaryotes.

Articles - 1rh3 mentioned but not cited (11)

  1. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Liu CT, Hanoian P, French JB, Pringle TH, Hammes-Schiffer S, Benkovic SJ. Proc Natl Acad Sci U S A 110 10159-10164 (2013)
  2. Single-Molecule Analyte Recognition with ClyA Nanopores Equipped with Internal Protein Adaptors. Soskine M, Biesemans A, Maglia G. J Am Chem Soc 137 5793-5797 (2015)
  3. Chemically self-assembled antibody nanorings (CSANs): design and characterization of an anti-CD3 IgM biomimetic. Li Q, So CR, Fegan A, Cody V, Sarikaya M, Vallera DA, Wagner CR. J Am Chem Soc 132 17247-17257 (2010)
  4. A Protein Rotaxane Controls the Translocation of Proteins Across a ClyA Nanopore. Biesemans A, Soskine M, Maglia G. Nano Lett 15 6076-6081 (2015)
  5. Modular Pore-Forming Immunotoxins with Caged Cytotoxicity Tailored by Directed Evolution. Mutter NL, Soskine M, Huang G, Albuquerque IS, Bernardes GJL, Maglia G. ACS Chem Biol 13 3153-3160 (2018)
  6. Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL. Bandyopadhyay B, Goldenzweig A, Unger T, Adato O, Fleishman SJ, Unger R, Horovitz A. J Biol Chem 292 20583-20591 (2017)
  7. Kinetic and structural characterization of dihydrofolate reductase from Streptococcus pneumoniae. Lee J, Yennawar NH, Gam J, Benkovic SJ. Biochemistry 49 195-206 (2010)
  8. NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. Feeney J, Birdsall B, Kovalevskaya NV, Smurnyy YD, Navarro Peran EM, Polshakov VI. Biochemistry 50 3609-3620 (2011)
  9. A trimethoprim derivative impedes antibiotic resistance evolution. Manna MS, Tamer YT, Gaszek I, Poulides N, Ahmed A, Wang X, Toprak FCR, Woodard DR, Koh AY, Williams NS, Borek D, Atilgan AR, Hulleman JD, Atilgan C, Tambar U, Toprak E. Nat Commun 12 2949 (2021)
  10. Two different unique cardiac isoforms of protein 4.1R in zebrafish, Danio rerio, and insights into their cardiac functions as related to their unique structures. Murata K, Nunomura W, Takakuwa Y, Cherr GN. Dev Growth Differ 52 591-602 (2010)
  11. Mutational analysis confirms the presence of distal inhibitor-selectivity determining residues in B. stearothermophilus dihydrofolate reductase. Eck T, Patel S, Candela T, Leon H K, Little M, Reis NE, Liyanagunawardana U, Gubler U, Janson CA, Catalano J, Goodey NM. Arch Biochem Biophys 692 108545 (2020)


Reviews citing this publication (50)

  1. Understanding protein non-folding. Uversky VN, Dunker AK. Biochim Biophys Acta 1804 1231-1264 (2010)
  2. Relating protein motion to catalysis. Hammes-Schiffer S, Benkovic SJ. Annu Rev Biochem 75 519-541 (2006)
  3. Implications of protein flexibility for drug discovery. Teague SJ. Nat Rev Drug Discov 2 527-541 (2003)
  4. Allostery: absence of a change in shape does not imply that allostery is not at play. Tsai CJ, del Sol A, Nussinov R. J Mol Biol 378 1-11 (2008)
  5. Structure, dynamics, and catalytic function of dihydrofolate reductase. Schnell JR, Dyson HJ, Wright PE. Annu Rev Biophys Biomol Struct 33 119-140 (2004)
  6. Halophilic enzymes: proteins with a grain of salt. Mevarech M, Frolow F, Gloss LM. Biophys Chem 86 155-164 (2000)
  7. Mechanisms and free energies of enzymatic reactions. Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG. Chem Rev 106 3188-3209 (2006)
  8. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Pu J, Gao J, Truhlar DG. Chem Rev 106 3140-3169 (2006)
  9. Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Hammes GG, Benkovic SJ, Hammes-Schiffer S. Biochemistry 50 10422-10430 (2011)
  10. Coupled motions in enzyme catalysis. Nashine VC, Hammes-Schiffer S, Benkovic SJ. Curr Opin Chem Biol 14 644-651 (2010)
  11. Perspectives on electrostatics and conformational motions in enzyme catalysis. Hanoian P, Liu CT, Hammes-Schiffer S, Benkovic S. Acc Chem Res 48 482-489 (2015)
  12. Protein dynamics and function from solution state NMR spectroscopy. Kovermann M, Rogne P, Wolf-Watz M. Q Rev Biophys 49 e6 (2016)
  13. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. PLoS Comput Biol 12 e1004619 (2016)
  14. Stretching exercises--flexibility in dihydrofolate reductase catalysis. Miller GP, Benkovic SJ. Chem Biol 5 R105-13 (1998)
  15. Conformational dynamics and enzyme evolution. Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. J R Soc Interface 15 20180330 (2018)
  16. DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Raimondi MV, Randazzo O, La Franca M, Barone G, Vignoni E, Rossi D, Collina S. Molecules 24 E1140 (2019)
  17. Conformational change in substrate binding, catalysis and product release: an open and shut case? Gutteridge A, Thornton J. FEBS Lett 567 67-73 (2004)
  18. Catalytic efficiency of enzymes: a theoretical analysis. Hammes-Schiffer S. Biochemistry 52 2012-2020 (2013)
  19. Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Bhabha G, Biel JT, Fraser JS. Acc Chem Res 48 423-430 (2015)
  20. Sequential vs. parallel protein-folding mechanisms: experimental tests for complex folding reactions. Wallace LA, Matthews CR. Biophys Chem 101-102 113-131 (2002)
  21. Active site flexibility in enzyme catalysis. Tsou CL. Ann N Y Acad Sci 864 1-8 (1998)
  22. Preorganization and protein dynamics in enzyme catalysis. Rajagopalan PT, Benkovic SJ. Chem Rec 2 24-36 (2002)
  23. Searching sequence space: two different approaches to dihydrofolate reductase catalysis. Howell EE. Chembiochem 6 590-600 (2005)
  24. LOVely enzymes - towards engineering light-controllable biocatalysts. Krauss U, Lee J, Benkovic SJ, Jaeger KE. Microb Biotechnol 3 15-23 (2010)
  25. Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Bourne CR. Antibiotics (Basel) 3 1-28 (2014)
  26. Harnessing Conformational Plasticity to Generate Designer Enzymes. Crean RM, Gardner JM, Kamerlin SCL. J Am Chem Soc 142 11324-11342 (2020)
  27. Engineered control of enzyme structural dynamics and function. Boehr DD, D'Amico RN, O'Rourke KF. Protein Sci 27 825-838 (2018)
  28. Successes and challenges in simulating the folding of large proteins. Gershenson A, Gosavi S, Faccioli P, Wintrode PL. J Biol Chem 295 15-33 (2020)
  29. Thermodynamic and functional characteristics of deep-sea enzymes revealed by pressure effects. Ohmae E, Miyashita Y, Kato C. Extremophiles 17 701-709 (2013)
  30. Mutational 'hot-spots' in mammalian, bacterial and protozoal dihydrofolate reductases associated with antifolate resistance: sequence and structural comparison. Volpato JP, Pelletier JN. Drug Resist Updat 12 28-41 (2009)
  31. The importance of ensemble averaging in enzyme kinetics. Masgrau L, Truhlar DG. Acc Chem Res 48 431-438 (2015)
  32. Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Bertacine Dias MV, Santos JC, Libreros-Zúñiga GA, Ribeiro JA, Chavez-Pacheco SM. Future Med Chem 10 935-959 (2018)
  33. The principle of conformational signaling. Tompa P. Chem Soc Rev 45 4252-4284 (2016)
  34. Linking protein motion to enzyme catalysis. Singh P, Abeysinghe T, Kohen A. Molecules 20 1192-1209 (2015)
  35. A surprising role for conformational entropy in protein function. Wand AJ, Moorman VR, Harpole KW. Top Curr Chem 337 69-94 (2013)
  36. Mining electron density for functionally relevant protein polysterism in crystal structures. Fraser JS, Jackson CJ. Cell Mol Life Sci 68 1829-1841 (2011)
  37. Catalytic Principles from Natural Enzymes and Translational Design Strategies for Synthetic Catalysts. Li WL, Head-Gordon T. ACS Cent Sci 7 72-80 (2021)
  38. Relationship of femtosecond-picosecond dynamics to enzyme-catalyzed H-transfer. Cheatum CM, Kohen A. Top Curr Chem 337 1-39 (2013)
  39. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase. Arora K, Brooks CL. Top Curr Chem 337 165-187 (2013)
  40. Therapeutic potential of pteridine derivatives: A comprehensive review. Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Med Res Rev 39 461-516 (2019)
  41. Thermodynamics and solvent linkage of macromolecule-ligand interactions. Duff MR, Howell EE. Methods 76 51-60 (2015)
  42. New approaches to rational drug design. Farber GK. Pharmacol Ther 84 327-332 (1999)
  43. Seeing the forest for the trees: fluorescence studies of single enzymes in the context of ensemble experiments. Tan YW, Yang H. Phys Chem Chem Phys 13 1709-1721 (2011)
  44. Synchrotron radiation applications to macromolecular crystallography. Moffat K, Ren Z. Curr Opin Struct Biol 7 689-696 (1997)
  45. Enzymes from piezophiles. Ichiye T. Semin Cell Dev Biol 84 138-146 (2018)
  46. Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance. Kordus SL, Baughn AD. Medchemcomm 10 880-895 (2019)
  47. Advances in methods for atomic resolution macromolecular structure determination. Thompson MC, Yeates TO, Rodriguez JA. F1000Res 9 F1000 Faculty Rev-667 (2020)
  48. Dihydrofolate reductase as a model for studies of enzyme dynamics and catalysis. Kohen A. F1000Res 4 F1000 Faculty Rev-1464 (2015)
  49. Distal Regions Regulate Dihydrofolate Reductase-Ligand Interactions. Goldstein M, Goodey NM. Methods Mol Biol 2253 185-219 (2021)
  50. Evolutionarily Related Dihydrofolate Reductases Perform Coequal Functions Yet Show Divergence in Their Trajectories. Rashid N, Chaudhuri Chattopadhyay P, Chaudhuri Chattopadhyay P. Protein J 37 301-310 (2018)

Articles citing this publication (325)

  1. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Petoukhov MV, Svergun DI. Biophys J 89 1237-1250 (2005)
  2. Molecular dynamics and protein function. Karplus M, Kuriyan J. Proc Natl Acad Sci U S A 102 6679-6685 (2005)
  3. Protein flexibility predictions using graph theory. Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF. Proteins 44 150-165 (2001)
  4. Conformational selection or induced fit: a flux description of reaction mechanism. Hammes GG, Chang YC, Oas TG. Proc Natl Acad Sci U S A 106 13737-13741 (2009)
  5. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE. Science 332 234-238 (2011)
  6. Network of coupled promoting motions in enzyme catalysis. Agarwal PK, Billeter SR, Rajagopalan PT, Benkovic SJ, Hammes-Schiffer S. Proc Natl Acad Sci U S A 99 2794-2799 (2002)
  7. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Pelletier JN, Campbell-Valois FX, Michnick SW. Proc Natl Acad Sci U S A 95 12141-12146 (1998)
  8. Surface sites for engineering allosteric control in proteins. Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, Benkovic SJ, Ranganathan R. Science 322 438-442 (2008)
  9. Insights into antifolate resistance from malarial DHFR-TS structures. Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y. Nat Struct Biol 10 357-365 (2003)
  10. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Pan H, Lee JC, Hilser VJ. Proc Natl Acad Sci U S A 97 12020-12025 (2000)
  11. Correlated motion and the effect of distal mutations in dihydrofolate reductase. Rod TH, Radkiewicz JL, Brooks CL. Proc Natl Acad Sci U S A 100 6980-6985 (2003)
  12. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Rajagopalan PT, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Proc Natl Acad Sci U S A 99 13481-13486 (2002)
  13. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Wang L, Goodey NM, Benkovic SJ, Kohen A. Proc Natl Acad Sci U S A 103 15753-15758 (2006)
  14. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. McElheny D, Schnell JR, Lansing JC, Dyson HJ, Wright PE. Proc Natl Acad Sci U S A 102 5032-5037 (2005)
  15. Constrained geometric simulation of diffusive motion in proteins. Wells S, Menor S, Hespenheide B, Thorpe MF. Phys Biol 2 S127-36 (2005)
  16. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Wong KF, Selzer T, Benkovic SJ, Hammes-Schiffer S. Proc Natl Acad Sci U S A 102 6807-6812 (2005)
  17. Selected-fit versus induced-fit protein binding: kinetic differences and mutational analysis. Weikl TR, von Deuster C. Proteins 75 104-110 (2009)
  18. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. Li R, Sirawaraporn R, Chitnumsub P, Sirawaraporn W, Wooden J, Athappilly F, Turley S, Hol WG. J Mol Biol 295 307-323 (2000)
  19. Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Bhabha G, Ekiert DC, Jennewein M, Zmasek CM, Tuttle LM, Kroon G, Dyson HJ, Godzik A, Wilson IA, Wright PE. Nat Struct Mol Biol 20 1243-1249 (2013)
  20. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Boehr DD, McElheny D, Dyson HJ, Wright PE. Proc Natl Acad Sci U S A 107 1373-1378 (2010)
  21. Conformational changes observed in enzyme crystal structures upon substrate binding. Gutteridge A, Thornton J. J Mol Biol 346 21-28 (2005)
  22. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Bottoms CA, Smith PE, Tanner JJ. Protein Sci 11 2125-2137 (2002)
  23. Automated identification of functional dynamic contact networks from X-ray crystallography. van den Bedem H, Bhabha G, Yang K, Wright PE, Fraser JS. Nat Methods 10 896-902 (2013)
  24. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG, Ludwig ML. Proc Natl Acad Sci U S A 101 3729-3736 (2004)
  25. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Griss R, Schena A, Reymond L, Patiny L, Werner D, Tinberg CE, Baker D, Johnsson K. Nat Chem Biol 10 598-603 (2014)
  26. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Luk LY, Javier Ruiz-Pernía J, Dawson WM, Roca M, Loveridge EJ, Glowacki DR, Harvey JN, Mulholland AJ, Tuñón I, Moliner V, Allemann RK. Proc Natl Acad Sci U S A 110 16344-16349 (2013)
  27. Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction. Stojković V, Perissinotti LL, Willmer D, Benkovic SJ, Kohen A. J Am Chem Soc 134 1738-1745 (2012)
  28. Ligand binding modulates the mechanical stability of dihydrofolate reductase. Ainavarapu SR, Li L, Badilla CL, Fernandez JM. Biophys J 89 3337-3344 (2005)
  29. Direct determination of vibrational density of states change on ligand binding to a protein. Balog E, Becker T, Oettl M, Lechner R, Daniel R, Finney J, Smith JC. Phys Rev Lett 93 028103 (2004)
  30. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Argyrou A, Vetting MW, Aladegbami B, Blanchard JS. Nat Struct Mol Biol 13 408-413 (2006)
  31. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer. Nagel ZD, Klinman JP. Chem Rev 110 PR41-67 (2010)
  32. Addition of missing loops and domains to protein models by x-ray solution scattering. Petoukhov MV, Eady NA, Brown KA, Svergun DI. Biophys J 83 3113-3125 (2002)
  33. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. Dams T, Auerbach G, Bader G, Jacob U, Ploom T, Huber R, Jaenicke R. J Mol Biol 297 659-672 (2000)
  34. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Keedy DA, van den Bedem H, Sivak DA, Petsko GA, Ringe D, Wilson MA, Fraser JS. Structure 22 899-910 (2014)
  35. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. Ramanathan A, Agarwal PK. PLoS Biol 9 e1001193 (2011)
  36. Second-generation covalent TMP-tag for live cell imaging. Chen Z, Jing C, Gallagher SS, Sheetz MP, Cornish VW. J Am Chem Soc 134 13692-13699 (2012)
  37. Enzymes: An integrated view of structure, dynamics and function. Agarwal PK. Microb Cell Fact 5 2 (2006)
  38. An in vivo covalent TMP-tag based on proximity-induced reactivity. Gallagher SS, Sable JE, Sheetz MP, Cornish VW. ACS Chem Biol 4 547-556 (2009)
  39. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Pieper U, Kapadia G, Mevarech M, Herzberg O. Structure 6 75-88 (1998)
  40. Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding: modulation of dynamics within a structural state. Mauldin RV, Carroll MJ, Lee AL. Structure 17 386-394 (2009)
  41. On the relationship between thermal stability and catalytic power of enzymes. Roca M, Liu H, Messer B, Warshel A. Biochemistry 46 15076-15088 (2007)
  42. Application of torsion angle molecular dynamics for efficient sampling of protein conformations. Chen J, Im W, Brooks CL. J Comput Chem 26 1565-1578 (2005)
  43. Effects of a distal mutation on active site chemistry. Wang L, Tharp S, Selzer T, Benkovic SJ, Kohen A. Biochemistry 45 1383-1392 (2006)
  44. Crystal structure of dihydrofolate reductase from Plasmodium vivax: pyrimethamine displacement linked with mutation-induced resistance. Kongsaeree P, Khongsuk P, Leartsakulpanich U, Chitnumsub P, Tarnchompoo B, Walkinshaw MD, Yuthavong Y. Proc Natl Acad Sci U S A 102 13046-13051 (2005)
  45. Dependence of amino acid side chain 13C shifts on dihedral angle: application to conformational analysis. London RE, Wingad BD, Mueller GA. J Am Chem Soc 130 11097-11105 (2008)
  46. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. Wright DB, Banks DD, Lohman JR, Hilsenbeck JL, Gloss LM. J Mol Biol 323 327-344 (2002)
  47. A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase. Boehr DD, Schnell JR, McElheny D, Bae SH, Duggan BM, Benkovic SJ, Dyson HJ, Wright PE. Biochemistry 52 4605-4619 (2013)
  48. Evidence that a 'dynamic knockout' in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis. Loveridge EJ, Behiry EM, Guo J, Allemann RK. Nat Chem 4 292-297 (2012)
  49. Evidence for dynamics in proteins as a mechanism for ligand dissociation. Carroll MJ, Mauldin RV, Gromova AV, Singleton SF, Collins EJ, Lee AL. Nat Chem Biol 8 246-252 (2012)
  50. Microsecond hydrophobic collapse in the folding of Escherichia coli dihydrofolate reductase, an alpha/beta-type protein. Arai M, Kondrashkina E, Kayatekin C, Matthews CR, Iwakura M, Bilsel O. J Mol Biol 368 219-229 (2007)
  51. Recovering the true targets of specific ligands by virtual screening of the protein data bank. Paul N, Kellenberger E, Bret G, Müller P, Rognan D. Proteins 54 671-680 (2004)
  52. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back. Chen J, Dima RI, Thirumalai D. J Mol Biol 374 250-266 (2007)
  53. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis. Boehr DD, Dyson HJ, Wright PE. Biochemistry 47 9227-9233 (2008)
  54. Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase. Fan Y, Cembran A, Ma S, Gao J. Biochemistry 52 2036-2049 (2013)
  55. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase. Liu CT, Layfield JP, Stewart RJ, French JB, Hanoian P, Asbury JB, Hammes-Schiffer S, Benkovic SJ. J Am Chem Soc 136 10349-10360 (2014)
  56. A Biophysical Perspective on Enzyme Catalysis. Agarwal PK. Biochemistry 58 438-449 (2019)
  57. Structure and activity of NADPH-dependent reductase Q1EQE0 from Streptomyces kanamyceticus, which catalyses the R-selective reduction of an imine substrate. Rodríguez-Mata M, Frank A, Wells E, Leipold F, Turner NJ, Hart S, Turkenburg JP, Grogan G. Chembiochem 14 1372-1379 (2013)
  58. Barrier Crossing in Dihydrofolate Reductasedoes not involve a rate-promoting vibration. Dametto M, Antoniou D, Schwartz SD. Mol Phys 110 531-536 (2012)
  59. High throughput screening identifies novel inhibitors of Escherichia coli dihydrofolate reductase that are competitive with dihydrofolate. Zolli-Juran M, Cechetto JD, Hartlen R, Daigle DM, Brown ED. Bioorg Med Chem Lett 13 2493-2496 (2003)
  60. Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Zhang Z, Rajagopalan PT, Selzer T, Benkovic SJ, Hammes GG. Proc Natl Acad Sci U S A 101 2764-2769 (2004)
  61. Extension and limits of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Singh P, Sen A, Francis K, Kohen A. J Am Chem Soc 136 2575-2582 (2014)
  62. FamClash: a method for ranking the activity of engineered enzymes. Saraf MC, Horswill AR, Benkovic SJ, Maranas CD. Proc Natl Acad Sci U S A 101 4142-4147 (2004)
  63. Structures of Leishmania major pteridine reductase complexes reveal the active site features important for ligand binding and to guide inhibitor design. Schüttelkopf AW, Hardy LW, Beverley SM, Hunter WN. J Mol Biol 352 105-116 (2005)
  64. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Wan Q, Bennett BC, Wilson MA, Kovalevsky A, Langan P, Howell EE, Dealwis C. Proc Natl Acad Sci U S A 111 18225-18230 (2014)
  65. A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging. Jing C, Cornish VW. ACS Chem Biol 8 1704-1712 (2013)
  66. IPRO: an iterative computational protein library redesign and optimization procedure. Saraf MC, Moore GL, Goodey NM, Cao VY, Benkovic SJ, Maranas CD. Biophys J 90 4167-4180 (2006)
  67. Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate. Bennett B, Langan P, Coates L, Mustyakimov M, Schoenborn B, Howell EE, Dealwis C. Proc Natl Acad Sci U S A 103 18493-18498 (2006)
  68. Structural evidence for direct hydride transfer from NADH to cytochrome P450nor. Oshima R, Fushinobu S, Su F, Zhang L, Takaya N, Shoun H. J Mol Biol 342 207-217 (2004)
  69. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. Kitahara R, Hata K, Li H, Williamson MP, Akasaka K. Prog Nucl Magn Reson Spectrosc 71 35-58 (2013)
  70. Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. Wang Z, Singh P, Czekster CM, Kohen A, Schramm VL. J Am Chem Soc 136 8333-8341 (2014)
  71. Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate. Dawson A, Gibellini F, Sienkiewicz N, Tulloch LB, Fyfe PK, McLuskey K, Fairlamb AH, Hunter WN. Mol Microbiol 61 1457-1468 (2006)
  72. Atomic structures of human dihydrofolate reductase complexed with NADPH and two lipophilic antifolates at 1.09 a and 1.05 a resolution. Klon AE, Héroux A, Ross LJ, Pathak V, Johnson CA, Piper JR, Borhani DW. J Mol Biol 320 677-693 (2002)
  73. Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. Arora K, Brooks Iii CL. J Am Chem Soc 131 5642-5647 (2009)
  74. Probing minimal independent folding units in dihydrofolate reductase by molecular dissection. Gegg CV, Bowers KE, Matthews CR. Protein Sci 6 1885-1892 (1997)
  75. Highly divergent dihydrofolate reductases conserve complex folding mechanisms. Wallace LA, Robert Matthews C. J Mol Biol 315 193-211 (2002)
  76. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. Oyen D, Fenwick RB, Stanfield RL, Dyson HJ, Wright PE. J Am Chem Soc 137 9459-9468 (2015)
  77. Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes. Osborne MJ, Venkitakrishnan RP, Dyson HJ, Wright PE. Protein Sci 12 2230-2238 (2003)
  78. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Maglia G, Javed MH, Allemann RK. Biochem J 374 529-535 (2003)
  79. Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase. Garcia-Viloca M, Truhlar DG, Gao J. J Mol Biol 327 549-560 (2003)
  80. Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase. Ruiz-Pernia JJ, Luk LY, García-Meseguer R, Martí S, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. J Am Chem Soc 135 18689-18696 (2013)
  81. Ligand binding and circular permutation modify residue interaction network in DHFR. Hu Z, Bowen D, Southerland WM, del Sol A, Pan Y, Nussinov R, Ma B. PLoS Comput Biol 3 e117 (2007)
  82. Preservation of protein dynamics in dihydrofolate reductase evolution. Francis K, Stojkovic V, Kohen A. J Biol Chem 288 35961-35968 (2013)
  83. Very empirical treatment of solvation and entropy: a force field derived from log Po/w. Kellogg GE, Burnett JC, Abraham DJ. J Comput Aided Mol Des 15 381-393 (2001)
  84. Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature? Xu Y, Feller G, Gerday C, Glansdorff N. J Bacteriol 185 5519-5526 (2003)
  85. Detection of dihydrofolate reductase conformational change by FRET using two fluorescent amino acids. Chen S, Fahmi NE, Wang L, Bhattacharya C, Benkovic SJ, Hecht SM. J Am Chem Soc 135 12924-12927 (2013)
  86. Directed evolution of trimethoprim resistance in Escherichia coli. Watson M, Liu JW, Ollis D. FEBS J 274 2661-2671 (2007)
  87. Sampling protein conformations and pathways. Lei M, Zavodszky MI, Kuhn LA, Thorpe MF. J Comput Chem 25 1133-1148 (2004)
  88. Are the catalytic properties of enzymes from piezophilic organisms pressure adapted? Hay S, Evans RM, Levy C, Loveridge EJ, Wang X, Leys D, Allemann RK, Scrutton NS. Chembiochem 10 2348-2353 (2009)
  89. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies. Agarwal PK. Proteins 56 449-463 (2004)
  90. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Nyerges Á, Csörgő B, Draskovits G, Kintses B, Szili P, Ferenc G, Révész T, Ari E, Nagy I, Bálint B, Vásárhelyi BM, Bihari P, Számel M, Balogh D, Papp H, Kalapis D, Papp B, Pál C. Proc Natl Acad Sci U S A 115 E5726-E5735 (2018)
  91. Heavy enzymes--experimental and computational insights in enzyme dynamics. Swiderek K, Ruiz-Pernía JJ, Moliner V, Tuñón I. Curr Opin Chem Biol 21 11-18 (2014)
  92. The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase. Thorpe IF, Brooks CL. Proteins 57 444-457 (2004)
  93. The role of enzyme dynamics and tunnelling in catalysing hydride transfer: studies of distal mutants of dihydrofolate reductase. Wang L, Goodey NM, Benkovic SJ, Kohen A. Philos Trans R Soc Lond B Biol Sci 361 1307-1315 (2006)
  94. Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease. Huang YT, Liaw YC, Gorbatyuk VY, Huang TH. J Mol Biol 307 1075-1090 (2001)
  95. Ensemble-based signatures of energy propagation in proteins: a new view of an old phenomenon. Liu T, Whitten ST, Hilser VJ. Proteins 62 728-738 (2006)
  96. Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: temporal order and the roles of Asp27 and Tyr100. Liu CT, Francis K, Layfield JP, Huang X, Hammes-Schiffer S, Kohen A, Benkovic SJ. Proc Natl Acad Sci U S A 111 18231-18236 (2014)
  97. Identifying residue-residue clashes in protein hybrids by using a second-order mean-field approach. Moore GL, Maranas CD. Proc Natl Acad Sci U S A 100 5091-5096 (2003)
  98. Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli. Cho Y, Zhang X, Pobre KF, Liu Y, Powers DL, Kelly JW, Gierasch LM, Powers ET. Cell Rep 11 321-333 (2015)
  99. Temperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency. Oyeyemi OA, Sours KM, Lee T, Resing KA, Ahn NG, Klinman JP. Proc Natl Acad Sci U S A 107 10074-10079 (2010)
  100. Anisotropic rotational diffusion in model-free analysis for a ternary DHFR complex. Osborne MJ, Wright PE. J Biomol NMR 19 209-230 (2001)
  101. Protein motions and dynamic effects in enzyme catalysis. Luk LY, Loveridge EJ, Allemann RK. Phys Chem Chem Phys 17 30817-30827 (2015)
  102. Constraining enzyme conformational change by an antibody leads to hyperbolic inhibition. Oyen D, Srinivasan V, Steyaert J, Barlow JN. J Mol Biol 407 138-148 (2011)
  103. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase. Swanwick RS, Maglia G, Tey LH, Allemann RK. Biochem J 394 259-265 (2006)
  104. Network of remote and local protein dynamics in dihydrofolate reductase catalysis. Singh P, Francis K, Kohen A. ACS Catal 5 3067-3073 (2015)
  105. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Cammarata M, Thyer R, Lombardo M, Anderson A, Wright D, Ellington A, Brodbelt JS. Chem Sci 8 4062-4072 (2017)
  106. Conformational change of the methionine 20 loop of Escherichia coli dihydrofolate reductase modulates pKa of the bound dihydrofolate. Khavrutskii IV, Price DJ, Lee J, Brooks CL. Protein Sci 16 1087-1100 (2007)
  107. Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Galenkamp NS, Biesemans A, Maglia G. Nat Chem 12 481-488 (2020)
  108. Probing the interactions between the folding elements early in the folding of Escherichia coli dihydrofolate reductase by systematic sequence perturbation analysis. Arai M, Iwakura M. J Mol Biol 347 337-353 (2005)
  109. Structure, Activity and Stereoselectivity of NADPH-Dependent Oxidoreductases Catalysing the S-Selective Reduction of the Imine Substrate 2-Methylpyrroline. Man H, Wells E, Hussain S, Leipold F, Hart S, Turkenburg JP, Turner NJ, Grogan G. Chembiochem 16 1052-1059 (2015)
  110. Carbon-deuterium bonds as probes of dihydrofolate reductase. Thielges MC, Case DA, Romesberg FE. J Am Chem Soc 130 6597-6603 (2008)
  111. Testing the relationship between foldability and the early folding events of dihydrofolate reductase from Escherichia coli. Arai M, Maki K, Takahashi H, Iwakura M. J Mol Biol 328 273-288 (2003)
  112. Changing the surface of a virus shell fusion of an enzyme to polyoma VP1. Gleiter S, Stubenrauch K, Lilie H. Protein Sci 8 2562-2569 (1999)
  113. Crystal structure of Bacillus anthracis dihydrofolate reductase with the dihydrophthalazine-based trimethoprim derivative RAB1 provides a structural explanation of potency and selectivity. Bourne CR, Bunce RA, Bourne PC, Berlin KD, Barrow EW, Barrow WW. Antimicrob Agents Chemother 53 3065-3073 (2009)
  114. First three-dimensional structure of Toxoplasma gondii thymidylate synthase-dihydrofolate reductase: insights for catalysis, interdomain interactions, and substrate channeling. Sharma H, Landau MJ, Vargo MA, Spasov KA, Anderson KS. Biochemistry 52 7305-7317 (2013)
  115. High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection. Tamer YT, Gaszek IK, Abdizadeh H, Batur TA, Reynolds KA, Atilgan AR, Atilgan C, Toprak E. Mol Biol Evol 36 1533-1550 (2019)
  116. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes. Wang Q, Hammes-Schiffer S. J Chem Phys 125 184102 (2006)
  117. Testing the role of chain connectivity on the stability and structure of dihydrofolate reductase from E. coli: fragment complementation and circular permutation reveal stable, alternatively folded forms. Smith VF, Matthews CR. Protein Sci 10 116-128 (2001)
  118. Crystal structure of a type II dihydrofolate reductase catalytic ternary complex. Krahn JM, Jackson MR, DeRose EF, Howell EE, London RE. Biochemistry 46 14878-14888 (2007)
  119. Efforts toward the direct experimental characterization of enzyme microenvironments: tyrosine100 in dihydrofolate reductase. Groff D, Thielges MC, Cellitti S, Schultz PG, Romesberg FE. Angew Chem Int Ed Engl 48 3478-3481 (2009)
  120. Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB. Ergel B, Gill ML, Brown L, Yu B, Palmer AG, Hunt JF. J Biol Chem 289 29584-29601 (2014)
  121. Structure and dynamics of the G121V dihydrofolate reductase mutant: lessons from a transition-state inhibitor complex. Mauldin RV, Sapienza PJ, Petit CM, Lee AL. PLoS One 7 e33252 (2012)
  122. The role of large-scale motions in catalysis by dihydrofolate reductase. Loveridge EJ, Tey LH, Behiry EM, Dawson WM, Evans RM, Whittaker SB, Günther UL, Williams C, Crump MP, Allemann RK. J Am Chem Soc 133 20561-20570 (2011)
  123. Conformational heterogeneity and low-frequency vibrational modes of proteins. Balog E, Smith JC, Perahia D. Phys Chem Chem Phys 8 5543-5548 (2006)
  124. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase. Loveridge EJ, Allemann RK. Chembiochem 12 1258-1262 (2011)
  125. Effects of the difference in the unfolded-state ensemble on the folding of Escherichia coli dihydrofolate reductase. Arai M, Kataoka M, Kuwajima K, Matthews CR, Iwakura M. J Mol Biol 329 779-791 (2003)
  126. In pursuit of virtual lead optimization: the role of the receptor structure and ensembles in accurate docking. Bolstad ES, Anderson AC. Proteins 73 566-580 (2008)
  127. Insights into the slow-onset tight-binding inhibition of Escherichia coli dihydrofolate reductase: detailed mechanistic characterization of pyrrolo [3,2-f] quinazoline-1,3-diamine and its derivatives as novel tight-binding inhibitors. Srinivasan B, Skolnick J. FEBS J 282 1922-1938 (2015)
  128. Protein Conformational Changes Are Detected and Resolved Site Specifically by Second-Harmonic Generation. Moree B, Connell K, Mortensen RB, Liu CT, Benkovic SJ, Salafsky J. Biophys J 109 806-815 (2015)
  129. Role of water in the catalytic cycle of E. coli dihydrofolate reductase. Shrimpton P, Allemann RK. Protein Sci 11 1442-1451 (2002)
  130. Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. Vanichtanankul J, Taweechai S, Yuvaniyama J, Vilaivan T, Chitnumsub P, Kamchonwongpaisan S, Yuthavong Y. ACS Chem Biol 6 905-911 (2011)
  131. Evolutional design of a hyperactive cysteine- and methionine-free mutant of Escherichia coli dihydrofolate reductase. Iwakura M, Maki K, Takahashi H, Takenawa T, Yokota A, Katayanagi K, Kamiyama T, Gekko K. J Biol Chem 281 13234-13246 (2006)
  132. Histidine hydrogen-deuterium exchange mass spectrometry for probing the microenvironment of histidine residues in dihydrofolate reductase. Miyagi M, Wan Q, Ahmad MF, Gokulrangan G, Tomechko SE, Bennett B, Dealwis C. PLoS One 6 e17055 (2011)
  133. Localizing Conformational Hinges by NMR: Where Do Hepatitis B Virus Core Proteins Adapt for Capsid Assembly? Lecoq L, Wang S, Wiegand T, Bressanelli S, Nassal M, Meier BH, Böckmann A. Chemphyschem 19 1336-1340 (2018)
  134. Global structures of IgG isotypes expressing identical variable regions. Eryilmaz E, Janda A, Kim J, Cordero RJ, Cowburn D, Casadevall A. Mol Immunol 56 588-598 (2013)
  135. Here be dragons: docking and screening in an uncharted region of chemical space. Brenk R, Irwin JJ, Shoichet BK. J Biomol Screen 10 667-674 (2005)
  136. Nuclear magnetic resonance study of the role of M42 in the solution dynamics of Escherichia coli dihydrofolate reductase. Mauldin RV, Lee AL. Biochemistry 49 1606-1615 (2010)
  137. Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine antifolates. Gangjee A, Qiu Y, Li W, Kisliuk RL. J Med Chem 51 5789-5797 (2008)
  138. Catalysis by dihydrofolate reductase from the psychropiezophile Moritella profunda. Evans RM, Behiry EM, Tey LH, Guo J, Loveridge EJ, Allemann RK. Chembiochem 11 2010-2017 (2010)
  139. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductases. Luk LY, Loveridge EJ, Allemann RK. J Am Chem Soc 136 6862-6865 (2014)
  140. Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering. Tehei M, Smith JC, Monk C, Ollivier J, Oettl M, Kurkal V, Finney JL, Daniel RM. Biophys J 90 1090-1097 (2006)
  141. Extreme biophysics: Enzymes under pressure. Huang Q, Rodgers JM, Hemley RJ, Ichiye T. J Comput Chem 38 1174-1182 (2017)
  142. In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Bolstad ES, Anderson AC. Proteins 75 62-74 (2009)
  143. Letter NMR-based solution structure of the complex of Lactobacillus casei dihydrofolate reductase with trimethoprim and NADPH. Polshakov VI, Smirnov EG, Birdsall B, Kelly G, Feeney J. J Biomol NMR 24 67-70 (2002)
  144. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects. Roston D, Cui Q. J Am Chem Soc 138 11946-11957 (2016)
  145. Biosynthesis of riboflavin: structure and properties of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate reductase of Methanocaldococcus jannaschii. Chatwell L, Krojer T, Fidler A, Römisch W, Eisenreich W, Bacher A, Huber R, Fischer M. J Mol Biol 359 1334-1351 (2006)
  146. Charged Nonclassical Antifolates with Activity Against Gram-Positive and Gram-Negative Pathogens. Scocchera E, Reeve SM, Keshipeddy S, Lombardo MN, Hajian B, Sochia AE, Alverson JB, Priestley ND, Anderson AC, Wright DL. ACS Med Chem Lett 7 692-696 (2016)
  147. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion. Oyen D, Fenwick RB, Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. J Am Chem Soc 139 11233-11240 (2017)
  148. Effects of fluorine substitution on the structure and dynamics of complexes of dihydrofolate reductase (Escherichia coli). Lau EY, Gerig JT. Biophys J 73 1579-1592 (1997)
  149. Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors. Santos-Filho OA, Mishra RK, Hopfinger AJ. J Comput Aided Mol Des 15 787-810 (2001)
  150. Mechanism of inhibition of wt-dihydrofolate reductase from E. coli by tea epigallocatechin-gallate. Spina M, Cuccioloni M, Mozzicafreddo M, Montecchia F, Pucciarelli S, Eleuteri AM, Fioretti E, Angeletti M. Proteins 72 240-251 (2008)
  151. Molecular dynamics simulation of Escherichia coli dihydrofolate reductase and its protein fragments: relative stabilities in experiment and simulations. Sham YY, Ma B, Tsai CJ, Nussinov R. Protein Sci 10 135-148 (2001)
  152. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E. Ohmae E, Miyashita Y, Tate S, Gekko K, Kitazawa S, Kitahara R, Kuwajima K. Biochim Biophys Acta 1834 2782-2794 (2013)
  153. The solution structure of the complex of Lactobacillus casei dihydrofolate reductase with methotrexate. Gargaro AR, Soteriou A, Frenkiel TA, Bauer CJ, Birdsall B, Polshakov VI, Barsukov IL, Roberts GC, Feeney J. J Mol Biol 277 119-134 (1998)
  154. Tight binding ligand approach to oligosaccharide-grafted protein. Totani K, Matsuo I, Ito Y. Bioorg Med Chem Lett 14 2285-2289 (2004)
  155. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase. Luk LY, Ruiz-Pernía JJ, Adesina AS, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Angew Chem Int Ed Engl 54 9016-9020 (2015)
  156. Crystal Structures of Trimethoprim-Resistant DfrA1 Rationalize Potent Inhibition by Propargyl-Linked Antifolates. Lombardo MN, G-Dayanandan N, Wright DL, Anderson AC. ACS Infect Dis 2 149-156 (2016)
  157. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase. Srinivasan B, Tonddast-Navaei S, Skolnick J. Eur J Med Chem 103 600-614 (2015)
  158. Localized, stereochemically sensitive hydrophobic packing in an early folding intermediate of dihydrofolate reductase from Escherichia coli. O'Neill JC, Robert Matthews C. J Mol Biol 295 737-744 (2000)
  159. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli. Oyen D, Wechselberger R, Srinivasan V, Steyaert J, Barlow JN. Biochim Biophys Acta 1834 2147-2157 (2013)
  160. Minimization of dynamic effects in the evolution of dihydrofolate reductase. Ruiz-Pernía JJ, Behiry E, Luk LYP, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Chem Sci 7 3248-3255 (2016)
  161. Prolyl isomerases do not catalyze isomerization of non-prolyl peptide bonds. Scholz C, Scherer G, Mayr LM, Schindler T, Fischer G, Schmid FX. Biol Chem 379 361-365 (1998)
  162. Protein motions during catalysis by dihydrofolate reductases. Allemann RK, Evans RM, Tey LH, Maglia G, Pang J, Rodriguez R, Shrimpton PJ, Swanwick RS. Philos Trans R Soc Lond B Biol Sci 361 1317-1321 (2006)
  163. Solvent effects on environmentally coupled hydrogen tunnelling during catalysis by dihydrofolate reductase from Thermotoga maritima. Loveridge EJ, Evans RM, Allemann RK. Chemistry 14 10782-10788 (2008)
  164. Structure and dynamics in solution of the complex of Lactobacillus casei dihydrofolate reductase with the new lipophilic antifolate drug trimetrexate. Polshakov VI, Birdsall B, Frenkiel TA, Gargaro AR, Feeney J. Protein Sci 8 467-481 (1999)
  165. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism. Stenmark P, Moche M, Gurmu D, Nordlund P. J Mol Biol 373 48-64 (2007)
  166. Tuning of the H-transfer coordinate in primitive versus well-evolved enzymes. Yahashiri A, Howell EE, Kohen A. Chemphyschem 9 980-982 (2008)
  167. Virtual ligand screening against Escherichia coli dihydrofolate reductase: improving docking enrichment using physics-based methods. Bernacki K, Kalyanaraman C, Jacobson MP. J Biomol Screen 10 675-681 (2005)
  168. Design of combinatorial protein libraries of optimal size. Saraf MC, Gupta A, Maranas CD. Proteins 60 769-777 (2005)
  169. Enzyme conformational dynamics during catalysis and in the 'resting state' monitored by hydrogen/deuterium exchange mass spectrometry. Liu YH, Konermann L. FEBS Lett 580 5137-5142 (2006)
  170. Homology modeling of wild type and pyrimethamine/cycloguanil-cross resistant mutant type Plasmodium falciparum dihydrofolate reductase. A model for antimalarial chemotherapy resistance. Santos-Filho OA, de Alencastro RB, Figueroa-Villar JD. Biophys Chem 91 305-317 (2001)
  171. Increased thermal stability of site-selectively glycosylated dihydrofolate reductase. Swanwick RS, Daines AM, Tey LH, Flitsch SL, Allemann RK. Chembiochem 6 1338-1340 (2005)
  172. Molecular dynamics simulation of thermal unfolding of Thermatoga maritima DHFR. Pang J, Allemann RK. Phys Chem Chem Phys 9 711-718 (2007)
  173. Mycobacterium tuberculosis dihydrofolate reductase reveals two conformational states and a possible low affinity mechanism to antifolate drugs. Dias MV, Tyrakis P, Domingues RR, Paes Leme AF, Blundell TL. Structure 22 94-103 (2014)
  174. Novel non-active site inhibitor of Cryptosporidium hominis TS-DHFR identified by a virtual screen. Martucci WE, Udier-Blagovic M, Atreya C, Babatunde O, Vargo MA, Jorgensen WL, Anderson KS. Bioorg Med Chem Lett 19 418-423 (2009)
  175. Pathogenic Nocardia cyriacigeorgica and Nocardia nova Evolve To Resist Trimethoprim-Sulfamethoxazole by both Expected and Unexpected Pathways. Mehta H, Weng J, Prater A, Elworth RAL, Han X, Shamoo Y. Antimicrob Agents Chemother 62 e00364-18 (2018)
  176. Side-chain conformational heterogeneity of intermediates in the Escherichia coli dihydrofolate reductase catalytic cycle. Tuttle LM, Dyson HJ, Wright PE. Biochemistry 52 3464-3477 (2013)
  177. X-ray structure of the ternary MTX.NADPH complex of the anthrax dihydrofolate reductase: a pharmacophore for dual-site inhibitor design. Bennett BC, Wan Q, Ahmad MF, Langan P, Dealwis CG. J Struct Biol 166 162-171 (2009)
  178. Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme. Thompson S, Zhang Y, Ingle C, Reynolds KA, Kortemme T. Elife 9 e53476 (2020)
  179. Are there dynamical effects in enzyme catalysis? Some thoughts concerning the enzymatic chemical step. Tuñón I, Laage D, Hynes JT. Arch Biochem Biophys 582 42-55 (2015)
  180. Conformational selection and induced changes along the catalytic cycle of Escherichia coli dihydrofolate reductase. Weikl TR, Boehr DD. Proteins 80 2369-2383 (2012)
  181. Effects of mutation at methionine-42 of Escherichia coli dihydrofolate reductase on stability and function: implication of hydrophobic interactions. Ohmae E, Fukumizu Y, Iwakura M, Gekko K. J Biochem 137 643-652 (2005)
  182. Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR. Bhabha G, Tuttle L, Martinez-Yamout MA, Wright PE. FEBS Lett 585 3528-3532 (2011)
  183. Monomerization alters the dynamics of the lid region in Campylobacter jejuni CstII: an MD simulation study. Prabhakar PK, Srivastava A, Rao KK, Balaji PV. J Biomol Struct Dyn 34 778-791 (2016)
  184. The crystal structure of a tetrahydrofolate-bound dihydrofolate reductase reveals the origin of slow product release. Cao H, Gao M, Zhou H, Skolnick J. Commun Biol 1 226 (2018)
  185. Tryptophan-based fluorophores for studying protein conformational changes. Talukder P, Chen S, Liu CT, Baldwin EA, Benkovic SJ, Hecht SM. Bioorg Med Chem 22 5924-5934 (2014)
  186. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein-ligand interactions including a structural basis for observed antifolate resistance. Anderson AC. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 258-262 (2005)
  187. A Structural Basis for Biguanide Activity. Gabel SA, Duff MR, Pedersen LC, DeRose EF, Krahn JM, Howell EE, London RE. Biochemistry 56 4786-4798 (2017)
  188. Effect of N-terminal truncation of Plasmodium falciparum dihydrofolate reductase on dihydrofolate reductase and thymidylate synthase activity. Wattanarangsan J, Chusacultanachai S, Yuvaniyama J, Kamchonwongpaisan S, Yuthavong Y. Mol Biochem Parasitol 126 97-102 (2003)
  189. Implementation of umbrella integration within the framework of the empirical valence bond approach. Chakravorty DK, Kumarasiri M, Soudackov AV, Hammes-Schiffer S. J Chem Theory Comput 4 1974-1980 (2008)
  190. Large cosolutes, small cosolutes, and dihydrofolate reductase activity. Acosta LC, Perez Goncalves GM, Pielak GJ, Gorensek-Benitez AH. Protein Sci 26 2417-2425 (2017)
  191. Modulating Enzyme Activity by Altering Protein Dynamics with Solvent. Duff MR, Borreguero JM, Cuneo MJ, Ramanathan A, He J, Kamath G, Chennubhotla SC, Meilleur F, Howell EE, Herwig KW, Myles DAA, Agarwal PK. Biochemistry 57 4263-4275 (2018)
  192. NMR Signal Quenching from Bound Biradical Affinity Reagents in DNP Samples. Rogawski R, Sergeyev IV, Zhang Y, Tran TH, Li Y, Tong L, McDermott AE. J Phys Chem B 121 10770-10781 (2017)
  193. REACH coarse-grained biomolecular simulation: transferability between different protein structural classes. Moritsugu K, Smith JC. Biophys J 95 1639-1648 (2008)
  194. An amino acid substitution in the Babesia bovis dihydrofolate reductase-thymidylate synthase gene is correlated to cross-resistance against pyrimethamine and WR99210. Gaffar FR, Wilschut K, Franssen FF, de Vries E. Mol Biochem Parasitol 133 209-219 (2004)
  195. Consideration of the pH-dependent inhibition of dihydrofolate reductase by methotrexate. Cannon WR, Garrison BJ, Benkovic SJ. J Mol Biol 271 656-668 (1997)
  196. Determination of protein-ligand binding modes using fast multi-dimensional NMR with hyperpolarization. Wang Y, Kim J, Hilty C. Chem Sci 11 5935-5943 (2020)
  197. Direct detection of structurally resolved dynamics in a multiconformation receptor-ligand complex. Carroll MJ, Gromova AV, Miller KR, Tang H, Wang XS, Tripathy A, Singleton SF, Collins EJ, Lee AL. J Am Chem Soc 133 6422-6428 (2011)
  198. How Accurate Are Transition States from Simulations of Enzymatic Reactions? Doron D, Kohen A, Nam K, Major DT. J Chem Theory Comput 10 1863-1871 (2014)
  199. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations. Hammes-Schiffer S, Watney JB. Philos Trans R Soc Lond B Biol Sci 361 1365-1373 (2006)
  200. Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in Trypanosoma brucei via Computational Structure-Based Approaches and in Vitro Inhibition Assays. Kimuda MP, Laming D, Hoppe HC, Tastan Bishop Ö. Molecules 24 E142 (2019)
  201. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance. Abdizadeh H, Tamer YT, Acar O, Toprak E, Atilgan AR, Atilgan C. Phys Chem Chem Phys 19 11416-11428 (2017)
  202. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength. Gloss LM, Topping TB, Binder AK, Lohman JR. J Mol Biol 376 1451-1462 (2008)
  203. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface. Zorgani MA, Patron K, Desvaux M. J Comput Aided Mol Des 28 721-734 (2014)
  204. The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase. Svensson AK, O'Neill JC, Matthews CR. J Mol Biol 326 569-583 (2003)
  205. The role of the Met20 loop in the hydride transfer in Escherichia coli dihydrofolate reductase. Mhashal AR, Vardi-Kilshtain A, Kohen A, Major DT. J Biol Chem 292 14229-14239 (2017)
  206. Experimentally validated novel inhibitors of Helicobacter pylori phosphopantetheine adenylyltransferase discovered by virtual high-throughput screening. Cheng CS, Jia KF, Chen T, Chang SY, Lin MS, Yin HS. PLoS One 8 e74271 (2013)
  207. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants. Srinivasan B, Rodrigues JV, Tonddast-Navaei S, Shakhnovich E, Skolnick J. ACS Chem Biol 12 1848-1857 (2017)
  208. Simulations of remote mutants of dihydrofolate reductase reveal the nature of a network of residues coupled to hydride transfer. Roston D, Kohen A, Doron D, Major DT. J Comput Chem 35 1411-1417 (2014)
  209. Stabilization of hyperactive dihydrofolate reductase by cyanocysteine-mediated backbone cyclization. Takahashi H, Arai M, Takenawa T, Sota H, Xie QH, Iwakura M. J Biol Chem 282 9420-9429 (2007)
  210. Structurally distributed surface sites tune allosteric regulation. McCormick JW, Russo MA, Thompson S, Blevins A, Reynolds KA. Elife 10 e68346 (2021)
  211. Critical role of substrate conformational change in the proton transfer process catalyzed by 4-oxalocrotonate tautomerase. Ruiz-Pernía JJ, Garcia-Viloca M, Bhattacharyya S, Gao J, Truhlar DG, Tuñón I. J Am Chem Soc 131 2687-2698 (2009)
  212. Fluorescent biphenyl derivatives of phenylalanine suitable for protein modification. Chen S, Fahmi NE, Bhattacharya C, Wang L, Jin Y, Benkovic SJ, Hecht SM. Biochemistry 52 8580-8589 (2013)
  213. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Roterman I, Stapor K, Fabian P, Konieczny L. Int J Mol Sci 22 10587 (2021)
  214. Molecular dynamics study on folding and allostery in RfaH. Xiong L, Liu Z. Proteins 83 1582-1592 (2015)
  215. Temporally overlapped but uncoupled motions in dihydrofolate reductase catalysis. Liu CT, Wang L, Goodey NM, Hanoian P, Benkovic SJ. Biochemistry 52 5332-5334 (2013)
  216. The effect of active-site isoleucine to alanine mutation on the DHFR catalyzed hydride-transfer. Stojković V, Perissinotti LL, Lee J, Benkovic SJ, Kohen A. Chem Commun (Camb) 46 8974-8976 (2010)
  217. The relationship between chain connectivity and domain stability in the equilibrium and kinetic folding mechanisms of dihydrofolate reductase from E.coli. Svensson AK, Zitzewitz JA, Matthews CR, Smith VF. Protein Eng Des Sel 19 175-185 (2006)
  218. Thermal adaptation of dihydrofolate reductase from the moderate thermophile Geobacillus stearothermophilus. Guo J, Luk LY, Loveridge EJ, Allemann RK. Biochemistry 53 2855-2863 (2014)
  219. A flap motif in human serine hydroxymethyltransferase is important for structural stabilization, ligand binding, and control of product release. Ubonprasert S, Jaroensuk J, Pornthanakasem W, Kamonsutthipaijit N, Wongpituk P, Mee-Udorn P, Rungrotmongkol T, Ketchart O, Chitnumsub P, Leartsakulpanich U, Chaiyen P, Maenpuen S. J Biol Chem 294 10490-10502 (2019)
  220. Computational studies of enzyme mechanism: linking theory with experiment in the analysis of enzymic H-tunnelling. Sutcliffe MJ, Scrutton NS. Phys Chem Chem Phys 8 4510-4516 (2006)
  221. Disruption of the crossover helix impairs dihydrofolate reductase activity in the bifunctional enzyme TS-DHFR from Cryptosporidium hominis. Vargo MA, Martucci WE, Anderson KS. Biochem J 417 757-764 (2009)
  222. Effects of salt on the structure, stability, and function of a halophilic dihydrofolate reductase from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1. Miyashita Y, Ohmae E, Nakasone K, Katayanagi K. Extremophiles 19 479-493 (2015)
  223. Enzyme polarization of substrates of dihydrofolate reductase by different theoretical methods. Greatbanks SP, Gready JE, Limaye AC, Rendell AP. Proteins 37 157-165 (1999)
  224. Highly site-selective stability increases by glycosylation of dihydrofolate reductase. Tey LH, Loveridge EJ, Swanwick RS, Flitsch SL, Allemann RK. FEBS J 277 2171-2179 (2010)
  225. Identification and energetic ranking of possible docking sites for pterin on dihydrofolate reductase. Bliznyuk AA, Gready JE. J Comput Aided Mol Des 12 325-333 (1998)
  226. Ligand binding to a high-energy partially unfolded protein. Kasper JR, Park C. Protein Sci 24 129-137 (2015)
  227. Multi-probe relaxation dispersion measurements increase sensitivity to protein dynamics. Fenwick RB, Oyen D, Wright PE. Phys Chem Chem Phys 18 5789-5798 (2016)
  228. Multiple ligand-binding modes in bacterial R67 dihydrofolate reductase. Alonso H, Gillies MB, Cummins PL, Bliznyuk AA, Gready JE. J Comput Aided Mol Des 19 165-187 (2005)
  229. One site fits both: a model for the ternary complex of folate + NADPH in R67 dihydrofolate reductase, a D2 symmetric enzyme. Howell EE, Shukla U, Hicks SN, Smiley RD, Kuhn LA, Zavodszky MI. J Comput Aided Mol Des 15 1035-1052 (2001)
  230. Parsimony in Protein Conformational Change. Chapman BK, Davulcu O, Skalicky JJ, Brüschweiler RP, Chapman MS. Structure 23 1190-1198 (2015)
  231. Simultaneous Control of Endogenous and User-Defined Genetic Pathways Using Unique ecDHFR Pharmacological Chaperones. Ramadurgum P, Woodard DR, Daniel S, Peng H, Mallipeddi PL, Niederstrasser H, Mihelakis M, Chau VQ, Douglas PM, Posner BA, Hulleman JD. Cell Chem Biol 27 622-634.e6 (2020)
  232. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding. Sathyapriya R, Vishveshwara S. Proteins 68 541-550 (2007)
  233. Adaptations for Pressure and Temperature Effects on Loop Motion in Escherichia coli and Moritella profunda Dihydrofolate Reductase. Huang Q, Rodgers JM, Hemley RJ, Ichiye T. High Press Res 39 225-237 (2019)
  234. Allostery and Epistasis: Emergent Properties of Anisotropic Networks. Campitelli P, Ozkan SB. Entropy (Basel) 22 E667 (2020)
  235. Computational methods for predicting sites of functionally important dynamics. Schuyler AD, Carlson HA, Feldman EL. J Phys Chem B 113 6613-6622 (2009)
  236. Detecting the native ligand orientation by interfacial rigidity: SiteInterlock. Raschka S, Bemister-Buffington J, Kuhn LA. Proteins 84 1888-1901 (2016)
  237. Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase. Shrimpton P, Mullaney A, Allemann RK. Proteins 51 216-223 (2003)
  238. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase. Reddish MJ, Vaughn MB, Fu R, Dyer RB. Biochemistry 55 1485-1493 (2016)
  239. NMR-derived folate-bound structure of dihydrofolate reductase 1 from the halophile Haloferax volcanii. Boroujerdi AF, Young JK. Biopolymers 91 140-144 (2009)
  240. Native SAD phasing at room temperature. Greisman JB, Dalton KM, Sheehan CJ, Klureza MA, Kurinov I, Hekstra DR. Acta Crystallogr D Struct Biol 78 986-996 (2022)
  241. Structure in an extreme environment: NMR at high salt. Binbuga B, Boroujerdi AF, Young JK. Protein Sci 16 1783-1787 (2007)
  242. Structure of a partially unfolded form of Escherichia coli dihydrofolate reductase provides insight into its folding pathway. Kasper JR, Liu PF, Park C. Protein Sci 23 1728-1737 (2014)
  243. Acceleration of catalysis in dihydrofolate reductase by transient, site-specific photothermal excitation. Kozlowski R, Zhao J, Dyer RB. Proc Natl Acad Sci U S A 118 e2014592118 (2021)
  244. Aspects of Weak Interactions between Folate and Glycine Betaine. Bhojane PP, Duff MR, Bafna K, Rimmer GP, Agarwal PK, Howell EE. Biochemistry 55 6282-6294 (2016)
  245. Effect of ligand binding on the intraminimum dynamics of proteins. Alakent B, Baskan S, Doruker P. J Comput Chem 32 483-496 (2011)
  246. Effects of Pressure and Temperature on the Atomic Fluctuations of Dihydrofolate Reductase from a Psychropiezophile and a Mesophile. Huang Q, Rodgers JM, Hemley RJ, Ichiye T. Int J Mol Sci 20 E1452 (2019)
  247. Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method. Sherman DB, Zhang S, Pitner JB, Tropsha A. Proteins 56 828-838 (2004)
  248. Flexible docking of an acetoxyethoxymethyl derivative of thiosemicarbazone into three different species of dihydrofolate reductase. Choi IH, Kim C. Arch Pharm Res 25 807-816 (2002)
  249. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. PLoS One 12 e0183327 (2017)
  250. Insight into the molecular mechanism about lowered dihydrofolate binding affinity to dihydrofolate reductase-like 1 (DHFRL1). Gao J, Cui W, Du Y, Ji M. J Mol Model 19 5187-5198 (2013)
  251. Quasiharmonic Analysis of the Energy Landscapes of Dihydrofolate Reductase from Piezophiles and Mesophiles. Huang Q, Rodgers JM, Hemley RJ, Ichiye T. J Phys Chem B 122 5527-5533 (2018)
  252. Self-assembled enzymatic monolayer directly bound to a gold surface: activity and molecular recognition force spectroscopy studies. Ditzler LR, Sen A, Gannon MJ, Kohen A, Tivanski AV. J Am Chem Soc 133 13284-13287 (2011)
  253. Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase. Wang Y, Ragavan M, Hilty C. J Biomol NMR 65 41-48 (2016)
  254. Structure-activity relationship for enantiomers of potent inhibitors of B. anthracis dihydrofolate reductase. Bourne CR, Wakeham N, Nammalwar B, Tseitin V, Bourne PC, Barrow EW, Mylvaganam S, Ramnarayan K, Bunce RA, Berlin KD, Barrow WW. Biochim Biophys Acta 1834 46-52 (2013)
  255. The role of arginine 28 in catalysis by dihydrofolate reductase from the hyperthermophile Thermotoga maritima. Loveridge EJ, Maglia G, Allemann RK. Chembiochem 10 2624-2627 (2009)
  256. Why are some Enzymes Dimers? Flexibility and Catalysis in Thermotoga Maritima Dihydrofolate Reductase. Ruiz-Pernía JJ, Tuñón I, Moliner V, Allemann RK. ACS Catal 9 5902-5911 (2019)
  257. Computational approach for ranking mutant enzymes according to catalytic reaction rates. Kumarasiri M, Baker GA, Soudackov AV, Hammes-Schiffer S. J Phys Chem B 113 3579-3583 (2009)
  258. Determination of concentration and activity of immobilized enzymes. Singh P, Morris H, Tivanski AV, Kohen A. Anal Biochem 484 169-172 (2015)
  259. Effects of Non-Natural Amino Acid Incorporation into the Enzyme Core Region on Enzyme Structure and Function. Wong HE, Kwon I. Int J Mol Sci 16 22735-22753 (2015)
  260. Folic acid-sulfonamide conjugates as antibacterial agents: design, synthesis and molecular docking studies. Shahzad S, Qadir MA, Ahmed M, Ahmad S, Khan MJ, Gulzar A, Muddassar M. RSC Adv 10 42983-42992 (2020)
  261. Frequency response of a protein to local conformational perturbations. Eren D, Alakent B. PLoS Comput Biol 9 e1003238 (2013)
  262. Generation of a flexible loop structural ensemble and its application to induced-fit structural changes following ligand binding. Watanabe YS, Fukunishi Y, Nakamura H. Biophysics (Nagoya-shi) 2 1-12 (2006)
  263. New Trimethoprim-Like Molecules: Bacteriological Evaluation and Insights into Their Action. Jorba M, Pedrola M, Ghashghaei O, Herráez R, Campos-Vicens L, Luque FJ, Lavilla R, Viñas M. Antibiotics (Basel) 10 709 (2021)
  264. Novel magnetic supports for small molecule affinity capture of proteins for use in proteomics. Sucholeiki I, Toledo-Sherman LM, Hosfield CM, Boutilier K, DeSouza LV, Stover DR. Mol Divers 8 9-19 (2004)
  265. Protein oxidation during long storage: identification of the oxidation sites in dihydrofolate reductase from Escherichia coli through LC-MS and fragment studies. Takenawa T, Yokota A, Oda M, Takahashi H, Iwakura M. J Biochem 145 517-523 (2009)
  266. Side chain conformational averaging in human dihydrofolate reductase. Tuttle LM, Dyson HJ, Wright PE. Biochemistry 53 1134-1145 (2014)
  267. The structure and competitive substrate inhibition of dihydrofolate reductase from Enterococcus faecalis reveal restrictions to cofactor docking. Bourne CR, Wakeham N, Webb N, Nammalwar B, Bunce RA, Berlin KD, Barrow WW. Biochemistry 53 1228-1238 (2014)
  268. The use of local surface properties for molecular superimposition. Manallack DT. J Mol Model 14 797-805 (2008)
  269. Adaptations for Pressure and Temperature in Dihydrofolate Reductases. Penhallurick RW, Durnal MD, Harold A, Ichiye T. Microorganisms 9 1706 (2021)
  270. Capturing the Catalytic Proton of Dihydrofolate Reductase: Implications for General Acid-Base Catalysis. Wan Q, Bennett BC, Wymore T, Li Z, Wilson MA, Brooks CL, Langan P, Kovalevsky A, Dealwis CG. ACS Catal 11 5873-5884 (2021)
  271. Chiral evasion and stereospecific antifolate resistance in Staphylococcus aureus. Wang S, Reeve SM, Holt GT, Ojewole AA, Frenkel MS, Gainza P, Keshipeddy S, Fowler VG, Wright DL, Donald BR. PLoS Comput Biol 18 e1009855 (2022)
  272. Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation. Cummins PL, Gready JE. J Comput Chem 26 561-568 (2005)
  273. Contribution of buried distal amino acid residues in horse liver alcohol dehydrogenase to structure and catalysis. Shanmuganatham KK, Wallace RS, Ting-I Lee A, Plapp BV. Protein Sci 27 750-768 (2018)
  274. Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold. Castells-Graells R, Meador K, Arbing MA, Sawaya MR, Gee M, Cascio D, Gleave E, Debreczeni JÉ, Breed J, Leopold K, Patel A, Jahagirdar D, Lyons B, Subramaniam S, Phillips C, Yeates TO. Proc Natl Acad Sci U S A 120 e2305494120 (2023)
  275. Development of antibacterial compounds that constrain evolutionary pathways to resistance. Zhang Y, Chowdhury S, Rodrigues JV, Shakhnovich E. Elife 10 e64518 (2021)
  276. Effect of circular permutations on transient partial unfolding in proteins. Chen C, Yun JH, Kim JH, Park C. Protein Sci 25 1483-1491 (2016)
  277. Electric Field Measurements Reveal the Pivotal Role of Cofactor-Substrate Interaction in Dihydrofolate Reductase Catalysis. Adesina AS, Świderek K, Luk LYP, Moliner V, Allemann RK. ACS Catal 10 7907-7914 (2020)
  278. Evolution Conserves the Network of Coupled Residues in Dihydrofolate Reductase. Li J, Fortunato G, Lin J, Agarwal PK, Kohen A, Singh P, Cheatum CM. Biochemistry 58 3861-3868 (2019)
  279. How adding a single methylene to dihydrofolate reductase can change its conformational dynamics. Penhallurick RW, Harold A, Durnal MD, Ichiye T. J Chem Phys 154 165103 (2021)
  280. Identification of the Molecular Mechanism of Trimethoprim Resistance in Listeria monocytogenes. Korsak D, Krawczyk-Balska A. Foodborne Pathog Dis 14 696-700 (2017)
  281. Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion. Fenwick RB, Oyen D, van den Bedem H, Dyson HJ, Wright PE. Biophys J 120 296-305 (2021)
  282. Peptide fragment studies on the folding elements of dihydrofolate reductase from Escherichia coli. Arai M, Iwakura M. Proteins 62 399-410 (2006)
  283. Pressure Adaptations in Deep-Sea Moritella Dihydrofolate Reductases: Compressibility versus Stability. Penhallurick RW, Ichiye T. Biology (Basel) 10 1211 (2021)
  284. Systematic alanine insertion reveals the essential regions that encode structure formation and activity of dihydrofolate reductase. Shiba R, Umeyama M, Tsukasa S, Kamikubo H, Yamazaki Y, Yamaguchi M, Iwakura M, Kataoka M. Biophysics (Nagoya-shi) 7 1-10 (2011)
  285. Activation of dihydrofolate reductase following thiol modification involves a conformational change at the active site. Fan YX, Li ZY, Zhu L, Zhou JM. Biochem J 335 ( Pt 3) 643-646 (1998)
  286. Allosteric regulatory control in dihydrofolate reductase is revealed by dynamic asymmetry. Kazan IC, Mills JH, Ozkan SB. Protein Sci 32 e4700 (2023)
  287. Collision-free poisson motion planning in ultra high-dimensional molecular conformation spaces. Fonseca R, Budday D, van den Bedem H. J Comput Chem 39 711-720 (2018)
  288. Crowders Steal Dihydrofolate Reductase Ligands through Quinary Interactions. Duff MR, Desai N, Craig MA, Agarwal PK, Howell EE. Biochemistry 58 1198-1213 (2019)
  289. Cryo-kinetics Reveal Dynamic Effects on the Chemistry of Human Dihydrofolate Reductase. Adesina AS, Luk LYP, Allemann RK. Chembiochem 22 2410-2414 (2021)
  290. Discovery of new non-pyrimidine scaffolds as Plasmodium falciparum DHFR inhibitors by fragment-based screening. Hoarau M, Vanichtanankul J, Srimongkolpithak N, Vitsupakorn D, Yuthavong Y, Kamchonwongpaisan S. J Enzyme Inhib Med Chem 36 198-206 (2021)
  291. Evaluating the accuracy of the AMBER protein force fields in modeling dihydrofolate reductase structures: misbalance in the conformational arrangements of the flexible loop domains. Love O, Pacheco Lima MC, Clark C, Cornillie S, Roalstad S, Cheatham Iii TE. J Biomol Struct Dyn 41 5946-5960 (2023)
  292. Halophilic mechanism of the enzymatic function of a moderately halophilic dihydrofolate reductase from Haloarcula japonica strain TR-1. Miyashita Y, Ohmae E, Ikura T, Nakasone K, Katayanagi K. Extremophiles 21 591-602 (2017)
  293. Hydrochlorothiazide and Indapamide bind the NADPH binding site of bacterial Dihydrofolate Reductase: results of an in-silico study and their implications. Kaur S, Bhattacharyya R, Banerjee D. In Silico Pharmacol 8 5 (2020)
  294. Hydrophobic Tagged Dihydrofolate Reductase for Creating Misfolded Glycoprotein Mimetics. Hachisu M, Seko A, Daikoku S, Takeda Y, Sakono M, Ito Y. Chembiochem 17 300-303 (2016)
  295. Identification of P218 as a potent inhibitor of Mycobacterium ulcerans DHFR. Riboldi GP, Zigweid R, Myler PJ, Mayclin SJ, Couñago RM, Staker BL. RSC Med Chem 12 103-109 (2021)
  296. Mapping protein pockets through their potential small-molecule binding volumes: QSCD applied to biological protein structures. Mason K, Patel NM, Ledel A, Moallemi CC, Wintner EA. J Comput Aided Mol Des 18 55-70 (2004)
  297. Editorial Pinpointing dynamic coupling in enzymes for efficient drug design. Loveridge EJ, Allemann RK. Future Sci OA 2 FSO95 (2016)
  298. Protein rethreading: A novel approach to protein design. Agah S, Poulos S, Yu A, Kucharska I, Faham S. Sci Rep 6 26847 (2016)
  299. Reduced susceptibility of Moritella profunda dihydrofolate reductase to trimethoprim is not due to glutamate 28. Loveridge EJ, Dawson WM, Evans RM, Sobolewska A, Allemann RK. Protein J 30 546-548 (2011)
  300. Sequence perturbation analysis: addressing amino acid indices to elucidate the C-terminal role of Escherichia coli dihydrofolate reductase. Takahashi H, Yokota A, Takenawa T, Iwakura M. J Biochem 145 751-762 (2009)
  301. Structural and Dynamics Perspectives on the Binding of Substrate and Inhibitors in Mycobacterium tuberculosis DHFR. Sittikornpaiboon P, Toochinda P, Lawtrakul L. Sci Pharm 85 E31 (2017)
  302. Structure and kinetics assays of recombinant Schistosoma mansoni dihydrofolate reductase. Serrão VHB, Romanello L, Cassago A, de Souza JRT, Cheleski J, DeMarco R, Brandão-Neto J, Pereira HD. Acta Trop 170 190-196 (2017)
  303. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Krucinska J, Lombardo MN, Erlandsen H, Estrada A, Si D, Viswanathan K, Wright DL. Commun Biol 5 459 (2022)
  304. Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations. Mhashal AR, Major DT. J Phys Chem B 125 1369-1377 (2021)
  305. Aliphatic (1)H, (13)C and (15)N chemical shift assignments of dihydrofolate reductase from the psychropiezophile Moritella profunda in complex with NADP(+) and folate. Loveridge EJ, Matthews SM, Williams C, Whittaker SB, Günther UL, Evans RM, Dawson WM, Crump MP, Allemann RK. Biomol NMR Assign 7 61-64 (2013)
  306. Angular Mapping of Protein Structure Using Nonlinear Optical Measurements. Clancy B, Moree B, Salafsky J. Biophys J 117 500-508 (2019)
  307. Coarse-grain simulations on NMR conformational ensembles highlight functional residues in proteins. Sacquin-Mora S. J R Soc Interface 16 20190075 (2019)
  308. Comparison of the Role of Protein Dynamics in Catalysis by Dihydrofolate Reductase from E. coli and H. sapiens. Andrews BA, Dyer RB. J Phys Chem B 126 7126-7134 (2022)
  309. Computational protein design repurposed to explore enzyme vitality and help predict antibiotic resistance. Michael E, Saint-Jalme R, Mignon D, Simonson T. Front Mol Biosci 9 905588 (2022)
  310. Concurrent Identification and Characterization of Protein Structure and Continuous Internal Dynamics with REDCRAFT. Omar H, Hein A, Cole CA, Valafar H. Front Mol Biosci 9 806584 (2022)
  311. Cryo-Cooling Effect on DHFR Crystal Studied by Replica-Exchange Molecular Dynamics Simulations. Nagai T, Tama F, Miyashita O. Biophys J 116 395-405 (2019)
  312. Crystal structure of dihydrofolate reductase from the filarial nematode W. bancrofti in complex with NADPH and folate. Lange K, Frey KM, Eck T, Janson CA, Gubler U, Goodey NM. PLoS Negl Trop Dis 17 e0011303 (2023)
  313. DHFR Mutants Modulate Their Synchronized Dynamics with the Substrate by Shifting Hydrogen Bond Occupancies. Cetin E, Atilgan AR, Atilgan C. J Chem Inf Model 62 6715-6726 (2022)
  314. Dual-Target Mycobacterium tuberculosis Inhibition: Insights into the Molecular Mechanism of Antifolate Drugs. Ramharack P, Salifu EY, Agoni C. Int J Mol Sci 24 14021 (2023)
  315. Effects of Distal Mutations on Ligand-Binding Affinity in E. coli Dihydrofolate Reductase. Huang CH, Chen YW, Huang TT, Kao YT. ACS Omega 6 26065-26076 (2021)
  316. Enzymatic and Mutational Analysis of the PruA Pteridine Reductase Required for Pterin-Dependent Control of Biofilm Formation in Agrobacterium tumefaciens. Labine M, DePledge L, Feirer N, Greenwich J, Fuqua C, Allen KD. J Bacteriol JB.00098-20 (2020)
  317. FtsH degrades dihydrofolate reductase by recognizing a partially folded species. Morehouse JP, Baker TA, Sauer RT. Protein Sci 31 e4410 (2022)
  318. Identification of Active Compounds against Melanoma Growth by Virtual Screening for Non-Classical Human DHFR Inhibitors. Vásquez AF, Gómez LA, González Barrios A, Riaño-Pachón DM. Int J Mol Sci 23 13946 (2022)
  319. Kinetic Barrier to Enzyme Inhibition Is Manipulated by Dynamical Local Interactions in E. coli DHFR. Cetin E, Guclu TF, Kantarcioglu I, Gaszek IK, Toprak E, Atilgan AR, Dedeoglu B, Atilgan C. J Chem Inf Model 63 4839-4849 (2023)
  320. Light activates reduction of methotrexate by NADPH in the ternary complex with Escherichia coli dihydrofolate reductase. Chen YQ, Gulotta M, Cheung HT, Callender R. Photochem Photobiol 69 77-85 (1999)
  321. Protein interface remodeling in a chemically induced protein dimer. White BR, Carlson JC, Kerns JL, Wagner CR. J Mol Recognit 25 393-403 (2012)
  322. Role of Active Site Loop Dynamics in Mediating Ligand Release from E. coli Dihydrofolate Reductase. Singh A, Fenwick RB, Dyson HJ, Wright PE. Biochemistry 60 2663-2671 (2021)
  323. Single-Molecule Sampling of Dihydrofolate Reductase Shows Kinetic Pauses and an Endosteric Effect Linked to Catalysis. Galenkamp NS, Maglia G. ACS Catal 12 1228-1236 (2022)
  324. Site-Specific Tryptophan Labels Reveal Local Microsecond-Millisecond Motions of Dihydrofolate Reductase. Vaughn MB, Biren C, Li Q, Ragupathi A, Dyer RB. Molecules 25 E3819 (2020)
  325. Structure elements can be predicted using the contact volume among protein residues. Takase Y, Yamazaki Y, Hayashi Y, Toma-Fukai S, Kamikubo H. Biophys Physicobiol 18 50-59 (2021)


Related citations provided by authors (3)