1sos Citations

Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase.

Proc Natl Acad Sci U S A 89 6109-13 (1992)
Cited: 165 times
EuropePMC logo PMID: 1463506

Abstract

Superoxide dismutase enzymes protect aerobic organisms from oxygen-mediated free-radical damage. Crystallographic structures of recombinant human Cu,Zn superoxide dismutase have been determined, refined, and analyzed at 2.5 A resolution for wild-type and a designed thermostable double-mutant enzyme (Cys-6----Ala, Cys-111----Ser). The 10 subunits (five dimers) in the crystallographic asymmetric unit form an unusual stable open lattice with 80-A-diameter channels. The 10 independently fit and refined subunits provide high accuracy, error analysis, and insights on loop conformations. There is a helix dipole interaction with the Zn site, and 14 residues form two or more structurally conserved side-chain to main-chain hydrogen bonds that appear critical to active-site architecture, loop conformation, and the increased stability resulting from the Cys-111----Ser mutation.

Reviews - 1sos mentioned but not cited (1)

  1. The structural biochemistry of the superoxide dismutases. Perry JJ, Shin DS, Getzoff ED, Tainer JA. Biochim. Biophys. Acta 1804 245-262 (2010)

Articles - 1sos mentioned but not cited (10)

  1. Sonication of proteins causes formation of aggregates that resemble amyloid. Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM. Protein Sci 13 3017-3027 (2004)
  2. Dimer destabilization in superoxide dismutase may result in disease-causing properties: structures of motor neuron disease mutants. Hough MA, Grossmann JG, Antonyuk SV, Strange RW, Doucette PA, Rodriguez JA, Whitson LJ, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS. Proc. Natl. Acad. Sci. U.S.A. 101 5976-5981 (2004)
  3. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Herrmann T, Emsley L, Pintacuda G. Proc. Natl. Acad. Sci. U.S.A. 109 11095-11100 (2012)
  4. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A. Galaleldeen A, Strange RW, Whitson LJ, Antonyuk SV, Narayana N, Taylor AB, Schuermann JP, Holloway SP, Hasnain SS, Hart PJ. Arch. Biochem. Biophys. 492 40-47 (2009)
  5. Design of fast enzymes by optimizing interaction potential in active site. Zhou HX, Wong KY, Vijayakumar M. Proc. Natl. Acad. Sci. U.S.A. 94 12372-12377 (1997)
  6. Nonamyloid aggregates arising from mature copper/zinc superoxide dismutases resemble those observed in amyotrophic lateral sclerosis. Hwang YM, Stathopulos PB, Dimmick K, Yang H, Badiei HR, Tong MS, Rumfeldt JA, Chen P, Karanassios V, Meiering EM. J. Biol. Chem. 285 41701-41711 (2010)
  7. Purification and crystallization of human Cu/Zn superoxide dismutase recombinantly produced in the protozoan Leishmania tarentolae. Gazdag EM, Cirstea IC, Breitling R, Lukes J, Blankenfeldt W, Alexandrov K. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 871-877 (2010)
  8. Structural evidence for a copper-bound carbonate intermediate in the peroxidase and dismutase activities of superoxide dismutase. Strange RW, Hough MA, Antonyuk SV, Hasnain SS. PLoS ONE 7 e44811 (2012)
  9. Influence of the Viral Superoxide Dismutase (SOD) Homologue on Lumpy Skin Disease Virus (LSDV) Growth, Histopathology and Pathogenicity. Douglass N, Munyanduki H, Omar R, Gers S, Mutowembwa P, Heath L, Williamson AL. Vaccines (Basel) 8 E664 (2020)
  10. Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints. Kuenze G, Bonneau R, Leman JK, Meiler J. Structure 27 1721-1734.e5 (2019)


Reviews citing this publication (13)

  1. Regulation of superoxide dismutase genes: implications in disease. Miao L, St Clair DK. Free Radic. Biol. Med. 47 344-356 (2009)
  2. Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Chattopadhyay M, Valentine JS. Antioxid. Redox Signal. 11 1603-1614 (2009)
  3. Emerging critical roles of Fe-S clusters in DNA replication and repair. Fuss JO, Tsai CL, Ishida JP, Tainer JA. Biochim. Biophys. Acta 1853 1253-1271 (2015)
  4. A role for copper in the toxicity of zinc-deficient superoxide dismutase to motor neurons in amyotrophic lateral sclerosis. Trumbull KA, Beckman JS. Antioxid. Redox Signal. 11 1627-1639 (2009)
  5. The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products. Zhang H, Andrekopoulos C, Joseph J, Crow J, Kalyanaraman B. Free Radic. Biol. Med. 36 1355-1365 (2004)
  6. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Perry JJ, Fan L, Tainer JA. Neuroscience 145 1280-1299 (2007)
  7. Transgenic mouse models of neurodegenerative disease: opportunities for therapeutic development. Jankowsky JL, Savonenko A, Schilling G, Wang J, Xu G, Borchelt DR. Curr Neurol Neurosci Rep 2 457-464 (2002)
  8. The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors. Bresciani G, Cruz IB, de Paz JA, Cuevas MJ, González-Gallego J. Free Radic. Res. 47 781-792 (2013)
  9. Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Joshi-Barr S, de Gracia Lux C, Mahmoud E, Almutairi A. Antioxid. Redox Signal. 21 730-754 (2014)
  10. Neurodegenerative disease. Oxidative stress and motorneuron disease. Sendtner M, Thoenen H. Curr. Biol. 4 1036-1039 (1994)
  11. The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals. D'Alessandro A, Zolla L. Expert Rev Proteomics 8 405-421 (2011)
  12. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse. Greek R, Hansen LA. Prog. Biophys. Mol. Biol. 113 231-253 (2013)
  13. Protein Glutathionylation in the Pathogenesis of Neurodegenerative Diseases. Cha SJ, Kim H, Choi HJ, Lee S, Kim K. Oxid Med Cell Longev 2017 2818565 (2017)

Articles citing this publication (141)

  1. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX. Nature 362 59-62 (1993)
  2. Letter ALS, SOD and peroxynitrite. Beckman JS, Carson M, Smith CD, Koppenol WH. Nature 364 584 (1993)
  3. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ. Proc. Natl. Acad. Sci. U.S.A. 96 2042-2047 (1999)
  4. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. Nagai M, Aoki M, Miyoshi I, Kato M, Pasinelli P, Kasai N, Brown RH, Itoyama Y. J. Neurosci. 21 9246-9254 (2001)
  5. Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. Hayward LJ, Rodriguez JA, Kim JW, Tiwari A, Goto JJ, Cabelli DE, Valentine JS, Brown RH. J. Biol. Chem. 277 15923-15931 (2002)
  6. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG, Jenkins NA, Borchelt DR. Hum. Mol. Genet. 12 2753-2764 (2003)
  7. Genome-wide analysis of vaccinia virus protein-protein interactions. McCraith S, Holtzman T, Moss B, Fields S. Proc. Natl. Acad. Sci. U.S.A. 97 4879-4884 (2000)
  8. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL. Biochemistry 39 13760-13771 (2000)
  9. Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, Borchelt DR. Neurobiol. Dis. 10 128-138 (2002)
  10. Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Stathopulos PB, Rumfeldt JA, Scholz GA, Irani RA, Frey HE, Hallewell RA, Lepock JR, Meiering EM. Proc. Natl. Acad. Sci. U.S.A. 100 7021-7026 (2003)
  11. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA. Protein Sci 9 332-343 (2000)
  12. Common denominator of Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: decreased stability of the apo state. Lindberg MJ, Tibell L, Oliveberg M. Proc. Natl. Acad. Sci. U.S.A. 99 16607-16612 (2002)
  13. ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. DiDonato M, Craig L, Huff ME, Thayer MM, Cardoso RM, Kassmann CJ, Lo TP, Bruns CK, Powers ET, Kelly JW, Getzoff ED, Tainer JA. J. Mol. Biol. 332 601-615 (2003)
  14. The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. Strange RW, Antonyuk S, Hough MA, Doucette PA, Rodriguez JA, Hart PJ, Hayward LJ, Valentine JS, Hasnain SS. J. Mol. Biol. 328 877-891 (2003)
  15. Site-specific PEGylation of proteins containing unnatural amino acids. Deiters A, Cropp TA, Summerer D, Mukherji M, Schultz PG. Bioorg. Med. Chem. Lett. 14 5743-5745 (2004)
  16. Folding of human superoxide dismutase: disulfide reduction prevents dimerization and produces marginally stable monomers. Lindberg MJ, Normark J, Holmgren A, Oliveberg M. Proc. Natl. Acad. Sci. U.S.A. 101 15893-15898 (2004)
  17. Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Ratovitski T, Corson LB, Strain J, Wong P, Cleveland DW, Culotta VC, Borchelt DR. Hum. Mol. Genet. 8 1451-1460 (1999)
  18. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. Palhano FL, Lee J, Grimster NP, Kelly JW. J. Am. Chem. Soc. 135 7503-7510 (2013)
  19. Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau TL, Tew DJ, Perez K, Wade JD, Bush AI, Drew SC, Separovic F, Masters CL, Cappai R, Barnham KJ. J Biol Chem 281 15145-15154 (2006)
  20. Mutations in all five exons of SOD-1 may cause ALS. Shaw CE, Enayat ZE, Chioza BA, Al-Chalabi A, Radunovic A, Powell JF, Leigh PN. Ann. Neurol. 43 390-394 (1998)
  21. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. Roberts BR, Tainer JA, Getzoff ED, Malencik DA, Anderson SR, Bomben VC, Meyers KR, Karplus PA, Beckman JS. J. Mol. Biol. 373 877-890 (2007)
  22. A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. Karch CM, Borchelt DR. J. Biol. Chem. 283 13528-13537 (2008)
  23. Methylation of the imidazole side chains of the Alzheimer disease amyloid-beta peptide results in abolition of superoxide dismutase-like structures and inhibition of neurotoxicity. Tickler AK, Smith DG, Ciccotosto GD, Tew DJ, Curtain CC, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R, Wade JD, Barnham KJ. J. Biol. Chem. 280 13355-13363 (2005)
  24. Subunit asymmetry in the three-dimensional structure of a human CuZnSOD mutant found in familial amyotrophic lateral sclerosis. Hart PJ, Liu H, Pellegrini M, Nersissian AM, Gralla EB, Valentine JS, Eisenberg D. Protein Sci. 7 545-555 (1998)
  25. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM. J. Mol. Biol. 341 1271-1281 (2004)
  26. Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Emsley L, Lesage A, Herrmann T, Pintacuda G. Angew. Chem. Int. Ed. Engl. 50 11697-11701 (2011)
  27. Mapping superoxide dismutase 1 domains of non-native interaction: roles of intra- and intermolecular disulfide bonding in aggregation. Wang J, Xu G, Borchelt DR. J. Neurochem. 96 1277-1288 (2006)
  28. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. Oztug Durer ZA, Cohlberg JA, Dinh P, Padua S, Ehrenclou K, Downes S, Tan JK, Nakano Y, Bowman CJ, Hoskins JL, Kwon C, Mason AZ, Rodriguez JA, Doucette PA, Shaw BF, Valentine JS. PLoS ONE 4 e5004 (2009)
  29. Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal. Hough MA, Hasnain SS. J. Mol. Biol. 287 579-592 (1999)
  30. The coupling between disulphide status, metallation and dimer interface strength in Cu/Zn superoxide dismutase. Hörnberg A, Logan DT, Marklund SL, Oliveberg M. J. Mol. Biol. 365 333-342 (2007)
  31. Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis-associated Cu,Zn superoxide dismutase mutants and H2O2. Singh RJ, Karoui H, Gunther MR, Beckman JS, Mason RP, Kalyanaraman B. Proc. Natl. Acad. Sci. U.S.A. 95 6675-6680 (1998)
  32. Insights into Lou Gehrig's disease from the structure and instability of the A4V mutant of human Cu,Zn superoxide dismutase. Cardoso RM, Thayer MM, DiDonato M, Lo TP, Bruns CK, Getzoff ED, Tainer JA. J. Mol. Biol. 324 247-256 (2002)
  33. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Phillips JP, Tainer JA, Getzoff ED, Boulianne GL, Kirby K, Hilliker AJ. Proc. Natl. Acad. Sci. U.S.A. 92 8574-8578 (1995)
  34. Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. Shin DS, Didonato M, Barondeau DP, Hura GL, Hitomi C, Berglund JA, Getzoff ED, Cary SC, Tainer JA. J. Mol. Biol. 385 1534-1555 (2009)
  35. Superoxide dismutase: an emerging target for cancer therapeutics. Hileman EA, Achanta G, Huang P. Expert Opin Ther Targets 5 697-710 (2001)
  36. An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. Chen S, Schultz PG, Brock A. J. Mol. Biol. 371 112-122 (2007)
  37. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis. Fisher CL, Cabelli DE, Tainer JA, Hallewell RA, Getzoff ED. Proteins 19 24-34 (1994)
  38. Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli, revealed by X-ray crystallography. Pesce A, Capasso C, Battistoni A, Folcarelli S, Rotilio G, Desideri A, Bolognesi M. J. Mol. Biol. 274 408-420 (1997)
  39. Folding of Cu, Zn superoxide dismutase and familial amyotrophic lateral sclerosis. Khare SD, Ding F, Dokholyan NV. J. Mol. Biol. 334 515-525 (2003)
  40. Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase. Bordo D, Matak D, Djinovic-Carugo K, Rosano C, Pesce A, Bolognesi M, Stroppolo ME, Falconi M, Battistoni A, Desideri A. J. Mol. Biol. 285 283-296 (1999)
  41. Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. de Beus MD, Chung J, Colón W. Protein Sci. 13 1347-1355 (2004)
  42. Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase. Kayatekin C, Zitzewitz JA, Matthews CR. J. Mol. Biol. 384 540-555 (2008)
  43. Mapping the folding free energy surface for metal-free human Cu,Zn superoxide dismutase. Svensson AK, Bilsel O, Kondrashkina E, Zitzewitz JA, Matthews CR. J. Mol. Biol. 364 1084-1102 (2006)
  44. The solution structure of reduced dimeric copper zinc superoxide dismutase. The structural effects of dimerization. Banci L, Bertini I, Cramaro F, Del Conte R, Viezzoli MS. Eur. J. Biochem. 269 1905-1915 (2002)
  45. Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases. Rumfeldt JA, Stathopulos PB, Chakrabarrty A, Lepock JR, Meiering EM. J. Mol. Biol. 355 106-123 (2006)
  46. Structure and dynamics of copper-free SOD: The protein before binding copper. Banci L, Bertini I, Cantini F, D'Onofrio M, Viezzoli MS. Protein Sci. 11 2479-2492 (2002)
  47. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Marin EP, Derakhshan B, Lam TT, Davalos A, Sessa WC. Circ. Res. 110 1336-1344 (2012)
  48. Barrel structures in proteins: automatic identification and classification including a sequence analysis of TIM barrels. Nagano N, Hutchinson EG, Thornton JM. Protein Sci 8 2072-2084 (1999)
  49. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code. Nehring S, Budisa N, Wiltschi B. PLoS ONE 7 e31992 (2012)
  50. Unfolding and folding kinetics of amyotrophic lateral sclerosis-associated mutant Cu,Zn superoxide dismutases. Rumfeldt JA, Lepock JR, Meiering EM. J. Mol. Biol. 385 278-298 (2009)
  51. Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. Wang J, Caruano-Yzermans A, Rodriguez A, Scheurmann JP, Slunt HH, Cao X, Gitlin J, Hart PJ, Borchelt DR. J. Biol. Chem. 282 345-352 (2007)
  52. Isolation and characterization of a rat cDNA clone encoding a secreted superoxide dismutase reveals the epididymis to be a major site of its expression. Perry AC, Jones R, Hall L. Biochem. J. 293 ( Pt 1) 21-25 (1993)
  53. The crystal structure of the monomeric human SOD mutant F50E/G51E/E133Q at atomic resolution. The enzyme mechanism revisited. Ferraroni M, Rypniewski W, Wilson KS, Viezzoli MS, Banci L, Bertini I, Mangani S. J. Mol. Biol. 288 413-426 (1999)
  54. Amino acid sequence of chicken Cu, Zn-containing superoxide dismutase and identification of glutathionyl adducts at exposed cysteine residues. Schininà ME, Carlini P, Polticelli F, Zappacosta F, Bossa F, Calabrese L. Eur. J. Biochem. 237 433-439 (1996)
  55. Solid-state NMR spectroscopy of a paramagnetic protein: assignment and study of human dimeric oxidized CuII-ZnII superoxide dismutase (SOD). Pintacuda G, Giraud N, Pierattelli R, Böckmann A, Bertini I, Emsley L. Angew. Chem. Int. Ed. Engl. 46 1079-1082 (2007)
  56. The vaccinia virus superoxide dismutase-like protein (A45R) is a virion component that is nonessential for virus replication. Almazán F, Tscharke DC, Smith GL. J. Virol. 75 7018-7029 (2001)
  57. A critical assessment of the evidence from XAFS and crystallography for the breakage of the imidazolate bridge during catalysis in CuZn superoxide dismutase. Murphy LM, Strange RW, Hasnain SS. Structure 5 371-379 (1997)
  58. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS. Milani P, Gagliardi S, Cova E, Cereda C. Neurol Res Int 2011 458427 (2011)
  59. Dynamics of hydrogen atoms in superoxide dismutase by quasielastic neutron scattering. Andreani C, Filabozzi A, Menzinger F, Desideri A, Deriu A, Di Cola D. Biophys. J. 68 2519-2523 (1995)
  60. FALS mutations in Cu, Zn superoxide dismutase destabilize the dimer and increase dimer dissociation propensity: a large-scale thermodynamic analysis. Khare SD, Caplow M, Dokholyan NV. Amyloid 13 226-235 (2006)
  61. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue. Ferreira ST, Stella L, Gratton E. Biophys. J. 66 1185-1196 (1994)
  62. Contribution of human manganese superoxide dismutase tyrosine 34 to structure and catalysis. Perry JJ, Hearn AS, Cabelli DE, Nick HS, Tainer JA, Silverman DN. Biochemistry 48 3417-3424 (2009)
  63. Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Auclair JR, Boggio KJ, Petsko GA, Ringe D, Agar JN. Proc. Natl. Acad. Sci. U.S.A. 107 21394-21399 (2010)
  64. Oxidative stress and superoxide dismutase in development, aging and gene regulation. Allen RG. Age (Omaha) 21 47-76 (1998)
  65. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Pratt AJ, Shin DS, Merz GE, Rambo RP, Lancaster WA, Dyer KN, Borbat PP, Poole FL, Adams MW, Freed JH, Crane BR, Tainer JA, Getzoff ED. Proc. Natl. Acad. Sci. U.S.A. 111 E4568-76 (2014)
  66. Thermal fluctuations of immature SOD1 lead to separate folding and misfolding pathways. Sekhar A, Rumfeldt JA, Broom HR, Doyle CM, Bouvignies G, Meiering EM, Kay LE. Elife 4 e07296 (2015)
  67. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface. Forest KT, Langford PR, Kroll JS, Getzoff ED. J. Mol. Biol. 296 145-153 (2000)
  68. Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1. Varabyova A, Topf U, Kwiatkowska P, Wrobel L, Kaus-Drobek M, Chacinska A. FEBS J. 280 4943-4959 (2013)
  69. Cu,Zn-superoxide dismutase increases toxicity of mutant and zinc-deficient superoxide dismutase by enhancing protein stability. Sahawneh MA, Ricart KC, Roberts BR, Bomben VC, Basso M, Ye Y, Sahawneh J, Franco MC, Beckman JS, Estévez AG. J. Biol. Chem. 285 33885-33897 (2010)
  70. Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant system of chicken. Pappas AC, Zoidis E, Georgiou CA, Demiris N, Surai PF, Fegeros K. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28 446-454 (2011)
  71. Function of the Greek key connection analysed using circular permutants of superoxide dismutase. Boissinot M, Karnas S, Lepock JR, Cabelli DE, Tainer JA, Getzoff ED, Hallewell RA. EMBO J. 16 2171-2178 (1997)
  72. Heat-stable chloroplastic Cu/Zn superoxide dismutase in Chenopodium murale. Khanna-Chopra R, Sabarinath S. Biochem. Biophys. Res. Commun. 320 1187-1192 (2004)
  73. Prolongation of life in an experimental model of aging in Drosophila melanogaster. Jordens RG, Berry MD, Gillott C, Boulton AA. Neurochem. Res. 24 227-233 (1999)
  74. Crystal structure of the cyanide-inhibited Xenopus laevis Cu,Zn superoxide dismutase at 98 K. Djinovic Carugo K, Battistoni A, Carri MT, Polticelli F, Desideri A, Rotilio G, Coda A, Bolognesi M. FEBS Lett. 349 93-98 (1994)
  75. Role of disulfide cross-linking of mutant SOD1 in the formation of inclusion-body-like structures. Roberts BL, Patel K, Brown HH, Borchelt DR. PLoS ONE 7 e47838 (2012)
  76. Oxidative modification of cysteine 111 promotes disulfide bond-independent aggregation of SOD1. Chen X, Shang H, Qiu X, Fujiwara N, Cui L, Li XM, Gao TM, Kong J. Neurochem. Res. 37 835-845 (2012)
  77. Palmitoylation of superoxide dismutase 1 (SOD1) is increased for familial amyotrophic lateral sclerosis-linked SOD1 mutants. Antinone SE, Ghadge GD, Lam TT, Wang L, Roos RP, Green WN. J. Biol. Chem. 288 21606-21617 (2013)
  78. Aggregation modulating elements in mutant human superoxide dismutase 1. Karch CM, Borchelt DR. Arch. Biochem. Biophys. 503 175-182 (2010)
  79. On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases. Stroppolo ME, Nuzzo S, Pesce A, Rosano C, Battistoni A, Bolognesi M, Mobilio S, Desideri A. Biochem. Biophys. Res. Commun. 249 579-582 (1998)
  80. Synthesis and characterization of a monomeric mutant Cu/Zn superoxide dismutase with partially reconstituted enzymic activity. Banci L, Bertini I, Chiu CY, Mullenbach GT, Viezzoli MS. Eur. J. Biochem. 234 855-860 (1995)
  81. Structures of mouse SOD1 and human/mouse SOD1 chimeras. Seetharaman SV, Taylor AB, Holloway S, Hart PJ. Arch. Biochem. Biophys. 503 183-190 (2010)
  82. Expanding the genetic code of Saccharomyces cerevisiae with methionine analogues. Wiltschi B, Wenger W, Nehring S, Budisa N. Yeast 25 775-786 (2008)
  83. Dimer asymmetry in superoxide dismutase studied by molecular dynamics simulation. Falconi M, Gallimbeni R, Paci E. J. Comput. Aided Mol. Des. 10 490-498 (1996)
  84. Solid-State NMR of PEGylated Proteins. Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Angew. Chem. Int. Ed. Engl. 55 2446-2449 (2016)
  85. A free cysteine residue at the dimer interface decreases conformational stability of Xenopus laevis copper,zinc superoxide dismutase. Bonaccorsi di Patti MC, Carrì MT, Gabbianelli R, Da Gai R, Volpe C, Giartosio A, Rotilio G, Battistoni A. Arch. Biochem. Biophys. 377 284-289 (2000)
  86. An Italian dominant FALS Leu144Phe SOD1 mutation: genotype-phenotype correlation. Ferrera L, Caponnetto C, Marini V, Rizzi D, Bordo D, Penco S, Amoroso A, Origone P, Garrè C. Amyotroph Lateral Scler Other Motor Neuron Disord 4 167-170 (2003)
  87. Computational, pulse-radiolytic, and structural investigations of lysine-136 and its role in the electrostatic triad of human Cu,Zn superoxide dismutase. Fisher CL, Cabelli DE, Hallewell RA, Beroza P, Lo TP, Getzoff ED, Tainer JA. Proteins 29 103-112 (1997)
  88. Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases. Gabbianelli R, D'Orazio M, Pacello F, O'Neill P, Nicolini L, Rotilio G, Battistoni A. Biol. Chem. 385 749-754 (2004)
  89. Molecular cloning and expression of two cytosolic copper-zinc superoxide dismutases genes from Nelumbo nucifera. Dong C, Zheng X, Li G, Zhu H, Zhou M, Hu Z. Appl. Biochem. Biotechnol. 163 679-691 (2011)
  90. Direct observation of defects and increased ion permeability of a membrane induced by structurally disordered Cu/Zn-superoxide dismutase aggregates. Choi I, Song HD, Lee S, Yang YI, Nam JH, Kim SJ, Sung JJ, Kang T, Yi J. PLoS ONE 6 e28982 (2011)
  91. Disulfide bonding in neurodegenerative misfolding diseases. Mossuto MF. Int J Cell Biol 2013 318319 (2013)
  92. Mechanistic aspects of hSOD1 maturation from the solution structure of Cu(I) -loaded hCCS domain 1 and analysis of disulfide-free hSOD1 mutants. Banci L, Cantini F, Kozyreva T, Rubino JT. Chembiochem 14 1839-1844 (2013)
  93. A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS. Nagano S, Takahashi Y, Yamamoto K, Masutani H, Fujiwara N, Urushitani M, Araki T. Hum. Mol. Genet. 24 3427-3439 (2015)
  94. An essential role for the conserved Glu-133 in the anion interaction with superoxide dismutase. Banci L, Cabelli DE, Getzoff ED, Hallewell RA, Viezzoli MS. J. Inorg. Biochem. 50 89-100 (1993)
  95. Features of wild-type human SOD1 limit interactions with misfolded aggregates of mouse G86R Sod1. Qualls DA, Prudencio M, Roberts BL, Crosby K, Brown H, Borchelt DR. Mol Neurodegener 8 46 (2013)
  96. Involvement of superoxide dismutase in oxidative stress in the oriental fruit fly, Bactrocera dorsalis: molecular cloning and expression profiles. Gao XM, Jia FX, Shen GM, Jiang HQ, Dou W, Wang JJ. Pest Manag. Sci. 69 1315-1325 (2013)
  97. Molecular dynamics studies on mutants of Cu,Zn superoxide dismutase: the functional role of charged residues in the electrostatic loop VII. Banci L, Carloni P, Orioli PL. Proteins 18 216-230 (1994)
  98. Role of loops in the folding and stability of yeast phosphoglycerate kinase. Collinet B, Garcia P, Minard P, Desmadril M. Eur. J. Biochem. 268 5107-5118 (2001)
  99. A model for the incorporation of metal from the copper chaperone CCS into Cu,Zn superoxide dismutase. Falconi M, Iovino M, Desideri A. Structure 7 903-908 (1999)
  100. Cu,Zn superoxide dismutase from Trematomus bernacchii: functional conservation and erratic molecular evolution in Antarctic teleosts. Santovito G, Cassini A, Piccinni E. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 143 444-454 (2006)
  101. Cytotoxicity of superoxide dismutase 1 in cultured cells is linked to Zn2+ chelation. Johansson AS, Vestling M, Zetterström P, Lang L, Leinartaitė L, Karlström M, Danielsson J, Marklund SL, Oliveberg M. PLoS ONE 7 e36104 (2012)
  102. Different immunoreactivity against monoclonal antibodies between wild-type and mutant copper/zinc superoxide dismutase linked to amyotrophic lateral sclerosis. Fujiwara N, Miyamoto Y, Ogasahara K, Takahashi M, Ikegami T, Takamiya R, Suzuki K, Taniguchi N. J. Biol. Chem. 280 5061-5070 (2005)
  103. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. Tompa DR, Kadhirvel S. J. Biomol. Struct. Dyn. 36 4085-4098 (2018)
  104. Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Sekhar A, Rumfeldt JAO, Broom HR, Doyle CM, Sobering RE, Meiering EM, Kay LE. Proc. Natl. Acad. Sci. U.S.A. 113 E6939-E6945 (2016)
  105. Relationship between mutant Cu/Zn superoxide dismutase 1 maturation and inclusion formation in cell models. Ayers JI, McMahon B, Gill S, Lelie HL, Fromholt S, Brown H, Valentine JS, Whitelegge JP, Borchelt DR. J. Neurochem. 140 140-150 (2017)
  106. cDNA cloning, high-level expression, purification, and characterization of an avian Cu,Zn superoxide dismutase from Peking duck. Liu W, Zhu RH, Li GP, Wang DC. Protein Expr. Purif. 25 379-388 (2002)
  107. Association of SOD1 and SOD2 single nucleotide polymorphisms with susceptibility to gastric cancer in a Korean population. Han L, Lee SW, Yoon JH, Park YG, Choi YJ, Nam SW, Lee JY, Wang YP, Park WS. APMIS 121 246-256 (2013)
  108. Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus. Pratt AJ, DiDonato M, Shin DS, Cabelli DE, Bruns CK, Belzer CA, Gorringe AR, Langford PR, Tabatabai LB, Kroll JS, Tainer JA, Getzoff ED. J. Bacteriol. 197 3834-3847 (2015)
  109. Amino acids flanking the central core of Cu,Zn superoxide dismutase are important in retaining enzyme activity after autoclaving. Kumar A, Randhawa V, Acharya V, Singh K, Kumar S. J. Biomol. Struct. Dyn. 34 475-485 (2016)
  110. Characterization of Cu,Zn superoxide dismutase from the bathophile fish, Lampanyctus crocodilus. Capo C, Stroppolo ME, Galtieri A, Lania A, Costanzo S, Petruzzelli R, Calabrese L, Polticelli F, Desideri A. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 117 403-407 (1997)
  111. Crystallization and preliminary X-ray analysis of the monomeric Cu,Zn superoxide dismutase from Escherichia coli. Battistoni A, Folcarelli S, Rotilio G, Capasso C, Pesce A, Bolognesi M, Desideri A. Protein Sci. 5 2125-2127 (1996)
  112. Identification and analysis of a Cu/Zn superoxide dismutase from Haliotis diversicolor supertexta with abalone juvenile detached syndrome. Li H, Sun X, Cai Z, Cai G, Xing K. J. Invertebr. Pathol. 103 116-123 (2010)
  113. Structural switching of Cu,Zn-superoxide dismutases at loop VI: insights from the crystal structure of 2-mercaptoethanol-modified enzyme. Ihara K, Fujiwara N, Yamaguchi Y, Torigoe H, Wakatsuki S, Taniguchi N, Suzuki K. Biosci. Rep. 32 539-548 (2012)
  114. Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Mortazavi M, Hosseinkhani S. Enzyme Microb. Technol. 96 47-59 (2017)
  115. The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain. Bafaro EM, Antala S, Nguyen TV, Dzul SP, Doyon B, Stemmler TL, Dempski RE. Metallomics 7 1319-1330 (2015)
  116. Analysis of mutant SOD1 electrophoretic mobility by Blue Native gel electrophoresis; evidence for soluble multimeric assemblies. Brown HH, Borchelt DR. PLoS ONE 9 e104583 (2014)
  117. Effects of maturation on the conformational free-energy landscape of SOD1. Culik RM, Sekhar A, Nagesh J, Deol H, Rumfeldt JAO, Meiering EM, Kay LE. Proc. Natl. Acad. Sci. U.S.A. 115 E2546-E2555 (2018)
  118. Molecular dynamics simulations of Cu,Zn superoxide dismutase: effect of temperature on dimer asymmetry. Falconi M, Melchionna S, Desideri A. Biophys. Chem. 81 197-205 (1999)
  119. Purification and characterization of thermostable monomeric chloroplastic Cu/Zn superoxide dismutase from Chenopodium murale. Sundaram S, Khanna S, Khanna-Chopra R. Physiol Mol Biol Plants 15 199-209 (2009)
  120. A highly stable Cu/Zn superoxide dismutase from Withania somnifera plant: gene cloning, expression and characterization of the recombinant protein. Madanala R, Gupta V, Deeba F, Upadhyay SK, Pandey V, Singh PK, Tuli R. Biotechnol. Lett. 33 2057-2063 (2011)
  121. Characterization of the spectroscopic properties of the Cu,Co cluster in a prokaryotic superoxide dismutase. Venerini F, Sette M, Stroppolo ME, De Martino A, Desideri A. Arch. Biochem. Biophys. 366 70-74 (1999)
  122. Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Xu WC, Liang JZ, Li C, He ZX, Yuan HY, Huang BY, Liu XL, Tang B, Pang DW, Du HN, Yang Y, Yang Y, Chen J, Wang L, Zhang M, Liang Y. Cell Death Dis 9 67 (2018)
  123. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Kumar V, Prakash A, Lynn AM. Biopolymers 109 e23102 (2018)
  124. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Epithelium Injury by Co-Regulating the PI3K/Akt and IκBα/NF-κB Signaling. Chen J, Luo Y, Li Y, Chen D, Yu B, He J. Antioxidants (Basel) 10 1915 (2021)
  125. Defense Responses to Short-term Hypoxia and Seawater Acidification in the Thick Shell Mussel Mytilus coruscus. Sui Y, Liu Y, Zhao X, Dupont S, Hu M, Wu F, Huang X, Li J, Lu W, Wang Y. Front Physiol 8 145 (2017)
  126. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study. Keerthana SP, Kolandaivel P. J. Biol. Inorg. Chem. 20 509-522 (2015)
  127. Nucleation and kinetics of SOD1 aggregation in human cells for ALS1. Workman A. Mol Cell Biochem 466 117-128 (2020)
  128. Toxic SOD1 trimers are off-pathway in the formation of amyloid-like fibrils in ALS. Hnath B, Dokholyan NV. Biophys J 121 2084-2095 (2022)
  129. A Novel SOD1 Intermediate Oligomer, Role of Free Thiols and Disulfide Exchange. Koo BK, Munroe W, Gralla EB, Valentine JS, Whitelegge JP. Front Neurosci 14 619279 (2020)
  130. A liquid-to-solid phase transition of Cu/Zn superoxide dismutase 1 initiated by oxidation and disease mutation. Gu S, Xu M, Chen L, Shi X, Luo SZ. J Biol Chem 299 102857 (2023)
  131. Anion-Dependent Synthesis of Cu(II) Complexes with 2-(1H-Tetrazol-5-yl)-1H-indole: Synthesis, X-Ray Structures, and Radical Scavenging Activity. Halaš P, Kuchár J, Herchel R. Bioinorg Chem Appl 2021 6736908 (2021)
  132. Bacterial Evolutionary Precursors of Eukaryotic Copper-Zinc Superoxide Dismutases. Wright GSA. Mol Biol Evol 38 3789-3803 (2021)
  133. Caffeine Intake and Its Association with Body Composition Measures and Macronutrient Intakes in People Living with HIV in the Miami Adult Studies on HIV Cohort. Ramamoorthy V, Campa A, Rubens M, Martinez SS, Fleetwood C, Stewart T, Liuzzi JP, George F, Khan H, Li Y, Baum M. J Caffeine Adenosine Res 8 10-17 (2018)
  134. Effect of hydrostatic pressure on the fluorescence of indole derivatives. Louzada PR, Scaramello ME, Maya-Monteiro C, Rietveld AW, Ferreira ST. J Fluoresc 6 231-236 (1996)
  135. Experimental Mutations in Superoxide Dismutase 1 Provide Insight into Potential Mechanisms Involved in Aberrant Aggregation in Familial Amyotrophic Lateral Sclerosis. Crown AM, Roberts BL, Crosby K, Brown H, Ayers JI, Hart PJ, Borchelt DR. G3 (Bethesda) 9 719-728 (2019)
  136. Loss of charge mutations in solvent exposed Lys residues of superoxide dismutase 1 do not induce inclusion formation in cultured cell models. Crosby K, Crown AM, Roberts BL, Brown H, Ayers JI, Borchelt DR. PLoS ONE 13 e0206751 (2018)
  137. Molecular Mechanisms of Aggregation of Canine SOD1 E40K Amyloidogenic Mutant Protein. Wakayama K, Kimura S, Kobatake Y, Kamishina H, Nishii N, Takashima S, Honda R, Kamatari YO. Molecules 28 156 (2022)
  138. N-terminal Domain of TDP43 Enhances Liquid-Liquid Phase Separation of Globular Proteins. Carter GC, Hsiung CH, Simpson L, Yang H, Zhang X. J Mol Biol 433 166948 (2021)
  139. Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Baek Y, Woo TG, Ahn J, Lee D, Kwon Y, Park BJ, Ha NC. Commun Biol 5 1085 (2022)
  140. Superoxide dismutase from venom of the ectoparasitoid Scleroderma guani inhibits melanization of hemolymph. Liu NY, Huang JM, Ren XM, Xu ZW, Yan NS, Zhu JY. Arch. Insect Biochem. Physiol. 99 e21503 (2018)
  141. The structural analysis of the pro-oxidant copper-binding site of denatured apo-H43R SOD1 and the elucidation of the origin of the acquisition of the pro-oxidant activity. Fujimaki N, Miura T, Nakabayashi T. Phys Chem Chem Phys 18 4468-4475 (2016)