1st2 Citations

The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8 A and an analysis of the structural consequences of peroxide inactivation.

J Biol Chem 263 7895-906 (1988)
Cited: 76 times
EuropePMC logo PMID: 3286644

Abstract

The three-dimensional structure of the subtilisin from Bacillus amyloliquefaciens (BAS) has been refined to 1.8 A using the amino acid sequence deduced from the DNA coding sequence. The structure is essentially the same as the previously reported structures of subtilisin BPN' (Wright, C.S., Alden, R.A., and Kraut, J. (1969) Nature 221, 235-242) and Novo (Drenth, J., Hol, W. G. J., Jansonius, J. N., and Koekoek, R. (1972) Eur. J. Biochem. 26, 177-181) determined in different crystal forms, at 2.5 and 2.8 A resolution, respectively. The largest differences in the three crystallographic models are seen in regions where the amino acid sequence used in the fit to the electron density maps of BPN' and Novo differs from the gene sequence of BAS (Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983) Nucleic Acids Res. 11, 7911-7925). The refined BAS model shows new features of cation binding, hydrogen bonding, and internal solvent structure. The refined BAS model has served as a basis for the analysis of stereochemical factors involved in the peroxide inactivation of the enzyme. Methionine 222, which is adjacent to the catalytic Ser221, is quantitatively oxidized to the sulfoxide by hydrogen peroxide as had been previously shown for the related Bacillus licheniformis enzyme (Stauffer, C. E., and Etson, D. (1969) J. Biol. Chem. 244, 5333-5338). In addition to this site of modification, we observe partial to full oxidation of two of the four remaining methionines. The oxidation of the methionines does not correlate well with their solvent accessibility calculated from the x-ray structure coordinates; in addition, only one of the two possible stereoisomers of methionine sulfoxide is formed. We also detect hydrogen peroxide-induced modification of the hydroxyl groups of two tyrosines. Modeling suggests that most of the observed effect of oxidation on the enzyme's catalytic efficiency can be attributed to unfavorable interactions at the oxyanion binding site between the sulfoxide group at 222 and the carbonyl oxygen of the scissile peptide bond of the bound substrate.

Articles - 1st2 mentioned but not cited (3)

  1. Multiple structural alignment by secondary structures: algorithm and applications. Dror O, Benyamini H, Nussinov R, Wolfson HJ. Protein Sci 12 2492-2507 (2003)
  2. A Monoclonal Antibody to Cryptococcus neoformans Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. Bowen A, Wear MP, Cordero RJ, Oscarson S, Casadevall A. J Biol Chem 292 417-434 (2017)
  3. Quantitative first principles calculations of protein circular dichroism in the near-ultraviolet. Li Z, Hirst JD. Chem Sci 8 4318-4333 (2017)


Reviews citing this publication (5)

  1. Subtilisin--an enzyme designed to be engineered. Wells JA, Estell DA. Trends Biochem Sci 13 291-297 (1988)
  2. Geometry of nonbonded interactions involving planar groups in proteins. Chakrabarti P, Bhattacharyya R. Prog Biophys Mol Biol 95 83-137 (2007)
  3. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. Saeki K, Ozaki K, Kobayashi T, Ito S. J Biosci Bioeng 103 501-508 (2007)
  4. Degradative covalent reactions important to protein stability. Volkin DB, Mach H, Middaugh CR. Mol Biotechnol 8 105-122 (1997)
  5. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Morgan HE, Turnbull WB, Webb ME. Chem Soc Rev 51 4121-4145 (2022)

Articles citing this publication (68)

  1. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. Mulder FA, Schipper D, Bott R, Boelens R. J Mol Biol 292 111-123 (1999)
  2. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. van de Ven WJ, Voorberg J, Fontijn R, Pannekoek H, van den Ouweland AM, van Duijnhoven HL, Roebroek AJ, Siezen RJ. Mol Biol Rep 14 265-275 (1990)
  3. Molecular markers of serine protease evolution. Krem MM, Di Cera E. EMBO J 20 3036-3045 (2001)
  4. Enzymatic catalysis and dynamics in low-water environments. Affleck R, Xu ZF, Suzawa V, Focht K, Clark DS, Dordick JS. Proc Natl Acad Sci U S A 89 1100-1104 (1992)
  5. Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Pedersen LC, Yee VC, Bishop PD, Le Trong I, Teller DC, Stenkamp RE. Protein Sci 3 1131-1135 (1994)
  6. Crystal structure of thermitase at 1.4 A resolution. Teplyakov AV, Kuranova IP, Harutyunyan EH, Vainshtein BK, Frömmel C, Höhne WE, Wilson KS. J Mol Biol 214 261-279 (1990)
  7. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution. Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS. J Mol Biol 223 427-445 (1992)
  8. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. Smith CA, Toogood HS, Baker HM, Daniel RM, Baker EN. J Mol Biol 294 1027-1040 (1999)
  9. Refined crystal structure of the complex of subtilisin BPN' and Streptomyces subtilisin inhibitor at 1.8 A resolution. Takeuchi Y, Satow Y, Nakamura KT, Mitsui Y. J Mol Biol 221 309-325 (1991)
  10. Selection for improved subtiligases by phage display. Atwell S, Wells JA. Proc Natl Acad Sci U S A 96 9497-9502 (1999)
  11. Molecular dynamics refinement of a thermitase-eglin-c complex at 1.98 A resolution and comparison of two crystal forms that differ in calcium content. Gros P, Betzel C, Dauter Z, Wilson KS, Hol WG. J Mol Biol 210 347-367 (1989)
  12. Predicting calcium-binding sites in proteins - a graph theory and geometry approach. Deng H, Chen G, Yang W, Yang JJ. Proteins 64 34-42 (2006)
  13. Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Kannan Y, Koga Y, Inoue Y, Haruki M, Takagi M, Imanaka T, Morikawa M, Kanaya S. Appl Environ Microbiol 67 2445-2452 (2001)
  14. Four new crystal structures of Tk-subtilisin in unautoprocessed, autoprocessed and mature forms: insight into structural changes during maturation. Tanaka SI, Matsumura H, Koga Y, Takano K, Kanaya S. J Mol Biol 372 1055-1069 (2007)
  15. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Jaouadi B, Aghajari N, Haser R, Bejar S. Biochimie 92 360-369 (2010)
  16. Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I. Kristjánsson MM, Magnússon OT, Gudmundsson HM, Alfredsson GA, Matsuzawa H. Eur J Biochem 260 752-760 (1999)
  17. Long-range structural changes in proteinase K triggered by calcium ion removal. Bajorath J, Raghunathan S, Hinrichs W, Saenger W. Nature 337 481-484 (1989)
  18. Tautomerism, acid-base equilibria, and H-bonding of the six histidines in subtilisin BPN' by NMR. Day RM, Thalhauser CJ, Sudmeier JL, Vincent MP, Torchilin EV, Sanford DG, Bachovchin CW, Bachovchin WW. Protein Sci 12 794-810 (2003)
  19. The excluding effects of sucrose on a protein chemical degradation pathway: methionine oxidation in subtilisin. DePaz RA, Barnett CC, Dale DA, Carpenter JF, Gaertner AL, Randolph TW. Arch Biochem Biophys 384 123-132 (2000)
  20. The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site. Martin JR, Mulder FA, Karimi-Nejad Y, van der Zwan J, Mariani M, Schipper D, Boelens R. Structure 5 521-532 (1997)
  21. The crystal structure of the Bacillus lentus alkaline protease, subtilisin BL, at 1.4 A resolution. Goddette DW, Paech C, Yang SS, Mielenz JR, Bystroff C, Wilke ME, Fletterick RJ. J Mol Biol 228 580-595 (1992)
  22. Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF. Cheng G, Zhao P, Tang XF, Tang B. Microbiology (Reading) 155 3661-3672 (2009)
  23. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M. AoB Plants 7 plu093 (2015)
  24. 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus. Remerowski ML, Domke T, Groenewegen A, Pepermans HA, Hilbers CW, van de Ven FJ. J Biomol NMR 4 257-278 (1994)
  25. A novel alkaline protease from alkaliphilic Idiomarina sp. C9-1 with potential application for eco-friendly enzymatic dehairing in the leather industry. Zhou C, Qin H, Chen X, Zhang Y, Xue Y, Ma Y. Sci Rep 8 16467 (2018)
  26. Crystal structures of subtilisin BPN' variants containing disulfide bonds and cavities: concerted structural rearrangements induced by mutagenesis. Katz B, Kossiakoff AA. Proteins 7 343-357 (1990)
  27. Protein engineering of subtilisins to improve stability in detergent formulations. von der Osten C, Branner S, Hastrup S, Hedegaard L, Rasmussen MD, Bisgård-Frantzen H, Carlsen S, Mikkelsen JM. J Biotechnol 28 55-68 (1993)
  28. Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic Bacillus spp.: enzymatic properties, sequences, and evolutionary relationships. Saeki K, Okuda M, Hatada Y, Kobayashi T, Ito S, Takami H, Horikoshi K. Biochem Biophys Res Commun 279 313-319 (2000)
  29. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Almog O, González A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL. Proteins 74 489-496 (2009)
  30. A highly active and oxidation-resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification. Grøn H, Bech LM, Branner S, Breddam K. Eur J Biochem 194 897-901 (1990)
  31. A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37. Phrommao E, Yongsawatdigul J, Rodtong S, Yamabhai M. BMC Biotechnol 11 65 (2011)
  32. Engineered Bacillus lentus subtilisins having altered flexibility. Graycar T, Knapp M, Ganshaw G, Dauberman J, Bott R. J Mol Biol 292 97-109 (1999)
  33. SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes. Krzeminski M, Loth K, Boelens R, Bonvin AM. BMC Bioinformatics 11 51 (2010)
  34. Complete 1H, 13C and 15N NMR assignments and secondary structure of the 269-residue serine protease PB92 from Bacillus alcalophilus. Fogh RH, Schipper D, Boelens R, Kaptein R. J Biomol NMR 5 259-270 (1995)
  35. Identification of novel halotolerant bacillopeptidase F-like proteinases from a moderately halophilic bacterium, Virgibacillus sp. SK37. Phrommao E, Rodtong S, Yongsawatdigul J. J Appl Microbiol 110 191-201 (2011)
  36. Applications of the class II lanthipeptide protease LicP for sequence-specific, traceless peptide bond cleavage. Tang W, Dong SH, Repka LM, He C, Nair SK, van der Donk WA. Chem Sci 6 6270-6279 (2015)
  37. Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements. Remerowski ML, Pepermans HA, Hilbers CW, Van De Ven FJ. Eur J Biochem 235 629-640 (1996)
  38. Crystallographic studies of Savinase, a subtilisin-like proteinase, at pH 10.5. Lange G, Betzel C, Branner S, Wilson KS. Eur J Biochem 224 507-518 (1994)
  39. Intrinsic Disorder-Based Design of Stable Globular Proteins. Nagibina GS, Glukhova KA, Uversky VN, Melnik TN, Melnik BS. Biomolecules 10 E64 (2019)
  40. Site-directed and random immobilization of subtilisin on functionalized membranes: activity determination in aqueous and organic media. Viswanath S, Wang J, Bachas LG, Butterfield DA, Bhattacharyya D. Biotechnol Bioeng 60 608-616 (1998)
  41. Structure of the proteinase inhibitor eglin c with hydrolysed reactive centre at 2.0 A resolution. Betzel C, Dauter Z, Genov N, Lamzin V, Navaza J, Schnebli HP, Visanji M, Wilson KS. FEBS Lett 317 185-188 (1993)
  42. Isolation and characterization of a new cold-active protease from psychrotrophic bacteria of Western Himalayan glacial soil. Farooq S, Nazir R, Ganai SA, Ganai BA. Sci Rep 11 12768 (2021)
  43. MD simulation of subtilisin BPN' in a crystal environment. Heiner AP, Berendsen HJ, van Gunsteren WF. Proteins 14 451-464 (1992)
  44. Resolution of heterogeneous fluorescence into component decay-associated excitation spectra. Application to subtilisins. Willis KJ, Szabo AG, Drew J, Zuker M, Ridgeway JM. Biophys J 57 183-189 (1990)
  45. Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis. Sättler A, Kanka S, Maurer KH, Riesner D. Electrophoresis 17 784-792 (1996)
  46. Addition of a methyl group changes both the catalytic velocity and thermostability of the neutral protease from Bacillus stearothermophilus. Takagi M, Imanaka T. FEBS Lett 254 43-46 (1989)
  47. Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. Falkenberg F, Rahba J, Fischer D, Bott M, Bongaerts J, Siegert P. FEBS Open Bio 12 1729-1746 (2022)
  48. Biochemical properties of Bacillus intermedius subtilisin-like proteinase secreted by a Bacillus subtilis recombinant strain in its stationary phase of growth. Mikhailova EO, Mardanova AM, Balaban NP, Rudenskaya GN, Ilyinskaya ON, Sharipova MR. Biochemistry (Mosc) 74 308-315 (2009)
  49. Effects of eglin-c binding to thermitase: three-dimensional structure comparison of native thermitase and thermitase eglin-c complexes. Gros P, Teplyakov AV, Hol WG. Proteins 12 63-74 (1992)
  50. Expression, purification, mass spectrometry, crystallization and multiwavelength anomalous diffraction of selenomethionyl PvuII DNA methyltransferase (cytosine-N4-specific). O'Gara M, Adams GM, Gong W, Kobayashi R, Blumenthal RM, Cheng X. Eur J Biochem 247 1009-1018 (1997)
  51. Temperature-gradient gel electrophoresis for analysis and screening of thermostable proteases. Sättler A, Riesner D. Electrophoresis 14 782-788 (1993)
  52. Engineering proteases with altered specificity. Leis JP, Cameron CE. Curr Opin Biotechnol 5 403-408 (1994)
  53. Enhancement of the catalytic activity of a 27 kDa subtilisin-like enzyme from Bacillus amyloliquefaciens CH51 by in vitro mutagenesis. Kim J, Kim JH, Choi KH, Kim JH, Song YS, Cha J. J Agric Food Chem 59 8675-8682 (2011)
  54. Fluorescence properties of subtilisins and related proteinases (subtilases): relation to X-ray models. Genov N, Nicolov P, Betzel C, Wilson K, Dolashka P. J Photochem Photobiol B 18 265-272 (1993)
  55. Increasing the tolerance of organophosphorus hydrolase to bleach LeJeune KE, Swers JS, Hetro AD, Donahey GP, Russell AJ. Biotechnol Bioeng 64 250-254 (1999)
  56. The putative propeptide of MycP1 in mycobacterial type VII secretion system does not inhibit protease activity but improves protein stability. Sun D, Liu Q, He Y, Wang C, Wu F, Tian C, Zang J. Protein Cell 4 921-931 (2013)
  57. A combinatorial approach to chemical modification of subtilisin Bacillus lentus. Plettner E, Khumtaveeporn K, Shang X, Jones JB. Bioorg Med Chem Lett 8 2291-2296 (1998)
  58. Altering the proteolytic activity of subtilisin through protein engineering. Graycar TP, Bott RR, Caldwell RM, Dauberman JL, Lad PJ, Power SD, Sagar IH, Silva RA, Weiss GL, Woodhouse LR. Ann N Y Acad Sci 672 71-79 (1992)
  59. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor. Khan M, Danielsen S, Johansen K, Lorenz L, Nelson S, Camper A. Biofouling 30 153-167 (2014)
  60. Recombining low homology, functionally rich regions of bacterial subtilisins by combinatorial fragment exchange. Jones DD. PLoS One 6 e24319 (2011)
  61. X-ray structure determination and comparison of two crystal forms of a variant (Asn115Arg) of the alkaline protease from Bacillus alcalophilus refined at 1.85 A resolution. Sobek H, Hecht HJ, Aehle W, Schomburg D. J Mol Biol 228 108-117 (1992)
  62. Using structural comparison as a guide in protein engineering. Bott R, Dauberman J, Caldwell R, Mitchinson C, Wilson L, Schmidt B, Simpson C, Power S, Lad P, Sagar IH. Ann N Y Acad Sci 672 10-19 (1992)
  63. New robust subtilisins from halotolerant and halophilic Bacillaceae. Falkenberg F, Voß L, Bott M, Bongaerts J, Siegert P. Appl Microbiol Biotechnol 107 3939-3954 (2023)
  64. Improved Enantioselectivity of Subtilisin Carlsberg towards Secondary Alcohols by Protein Engineering. Dorau R, Görbe T, Svedendahl Humble M. Chembiochem 19 338-346 (2018)
  65. Inactivation of a solid-state detergent protease by hydrogen peroxide vapor and humidity. Biran S, Jensen AD, Kiil S, Bach P, Simonsen O. J Biotechnol 141 73-79 (2009)
  66. Inhibitor-based validation of a homology model of the active-site of tripeptidyl peptidase II. De Winter H, Breslin H, Miskowski T, Kavash R, Somers M. J Mol Graph Model 23 409-418 (2005)
  67. Physicochemical properties of alkaline serine proteases in alcohol. Chen ST, Chen SY, Tu CC, Chiou SH, Wang KT. J Protein Chem 14 205-215 (1995)
  68. Spectroscopic studies on proteinase K and subtilisin DY. Relation to X-ray models. Dolashka P, Filippi B, Wilson KS, Betzel C, Genov N. Int J Pept Protein Res 40 465-471 (1992)


Related citations provided by authors (1)

  1. Cloning, Sequencing and Secretion of Bacillus Amyloliquefaciens Subtilisin in Bacillus Subtilis. Wells JA, Ferrari E, Henner DJ, Estell DA, Chen EY Nucleic Acids Res. 11 7911- (1983)