1svn Citations

Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution.

J Mol Biol 223 427-45 (1992)
Cited: 82 times
EuropePMC logo PMID: 1738156

Abstract

Savinase (EC3.4.21.14) is secreted by the alkalophilic bacterium Bacillus lentus and is a representative of that subgroup of subtilisin enzymes with maximum stability in the pH range 7 to 10 and high activity in the range 8 to 12. It is therefore of major industrial importance for use in detergents. The crystal structure of the native form of Savinase has been refined using X-ray diffraction data to 1.4 A resolution. The starting model was that of subtilisin Carlsberg. A comparison to the structures of the closely related subtilisins Carlsberg and BPN' and to the more distant thermitase and proteinase K is presented. The structure of Savinase is very similar to those of homologous Bacillus subtilisins. There are two calcium ions in the structure, equivalent to the strong and the weak calcium-binding sites in subtilisin Carlsberg and subtilisin BPN', well known for their stabilizing effect on the subtilisins. The structure of Savinase shows novel features that can be related to its stability and activity. The relatively high number of salt bridges in Savinase is likely to contribute to its high thermal stability. The non-conservative substitutions and deletions in the hydrophobic binding pocket S1 result in the most significant structural differences from the other subtilisins. The different composition of the S1 binding loop as well as the more hydrophobic character of the substrate-binding region probably contribute to the alkaline activity profile of the enzyme. The model of Savinase contains 1880 protein atoms, 159 water molecules and two calcium ions. The crystallographic R-factor [formula; see text].

Articles - 1svn mentioned but not cited (15)

  1. Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis ICh, Vajda S. Proteins 78 3124-3130 (2010)
  2. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. Brookes E, Demeler B, Rosano C, Rocco M. Eur Biophys J 39 423-435 (2010)
  3. Performance of ZDOCK and ZRANK in CAPRI rounds 13-19. Hwang H, Vreven T, Pierce BG, Hung JH, Weng Z. Proteins 78 3104-3110 (2010)
  4. The subtilisin-like protease AprV2 is required for virulence and uses a novel disulphide-tethered exosite to bind substrates. Kennan RM, Wong W, Dhungyel OP, Han X, Wong D, Parker D, Rosado CJ, Law RH, McGowan S, Reeve SB, Levina V, Powers GA, Pike RN, Bottomley SP, Smith AI, Marsh I, Whittington RJ, Whisstock JC, Porter CJ, Rood JI. PLoS Pathog 6 e1001210 (2010)
  5. MDockPP: A hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Huang SY, Zou X. Proteins 78 3096-3103 (2010)
  6. Multiple structural alignment by secondary structures: algorithm and applications. Dror O, Benyamini H, Nussinov R, Wolfson HJ. Protein Sci 12 2492-2507 (2003)
  7. A generalized approach to sampling backbone conformations with RosettaDock for CAPRI rounds 13-19. Sircar A, Chaudhury S, Kilambi KP, Berrondo M, Gray JJ. Proteins 78 3115-3123 (2010)
  8. On side-chain conformational entropy of proteins. Zhang J, Liu JS. PLoS Comput Biol 2 e168 (2006)
  9. Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining. Dauter Z, Wlodawer A, Minor W, Jaskolski M, Rupp B. IUCrJ 1 179-193 (2014)
  10. Cell-free Directed Evolution of a Protease in Microdroplets at Ultrahigh Throughput. Holstein JM, Gylstorff C, Hollfelder F. ACS Synth Biol 10 252-257 (2021)
  11. Dynamic heterogeneity controls diffusion and viscosity near biological interfaces. Pronk S, Lindahl E, Kasson PM. Nat Commun 5 3034 (2014)
  12. Similarity search for local protein structures at atomic resolution by exploiting a database management system. Kinjo AR, Nakamura H. Biophysics (Nagoya-shi) 3 75-84 (2007)
  13. Recombining low homology, functionally rich regions of bacterial subtilisins by combinatorial fragment exchange. Jones DD. PLoS One 6 e24319 (2011)
  14. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules. Zuk PJ, Cichocki B, Szymczak P. Biophys J 115 782-800 (2018)
  15. The effects of rigid motions on elastic network model force constants. Lezon TR. Proteins 80 1133-1142 (2012)


Reviews citing this publication (6)

  1. Structural basis of substrate specificity in the serine proteases. Perona JJ, Craik CS. Protein Sci 4 337-360 (1995)
  2. Protein engineering of subtilisin. Bryan PN. Biochim Biophys Acta 1543 203-222 (2000)
  3. An overview of Bacillus proteases: from production to application. Contesini FJ, Melo RR, Sato HH. Crit Rev Biotechnol 38 321-334 (2018)
  4. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. Saeki K, Ozaki K, Kobayashi T, Ito S. J Biosci Bioeng 103 501-508 (2007)
  5. Industrial applications of alkaliphiles and their enzymes--past, present and future. Fujinami S, Fujisawa M. Environ Technol 31 845-856 (2010)
  6. Protein engineering for unusual environments. Arnold FH. Curr Opin Biotechnol 4 450-455 (1993)

Articles citing this publication (61)

  1. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Cornilescu G, Delaglio F, Bax A. J Biomol NMR 13 289-302 (1999)
  2. Microbial alkaline proteases: from a bioindustrial viewpoint. Kumar CG, Takagi H. Biotechnol Adv 17 561-594 (1999)
  3. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. Mulder FA, Schipper D, Bott R, Boelens R. J Mol Biol 292 111-123 (1999)
  4. Directed evolution study of temperature adaptation in a psychrophilic enzyme. Miyazaki K, Wintrode PL, Grayling RA, Rubingh DN, Arnold FH. J Mol Biol 297 1015-1026 (2000)
  5. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Haddar A, Agrebi R, Bougatef A, Hmidet N, Sellami-Kamoun A, Nasri M. Bioresour Technol 100 3366-3373 (2009)
  6. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution. Smith CA, Toogood HS, Baker HM, Daniel RM, Baker EN. J Mol Biol 294 1027-1040 (1999)
  7. Directed evolution of a subtilisin with calcium-independent stability. Strausberg SL, Alexander PA, Gallagher DT, Gilliland GL, Barnett BL, Bryan PN. Biotechnology (N Y) 13 669-673 (1995)
  8. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Jaouadi B, Aghajari N, Haser R, Bejar S. Biochimie 92 360-369 (2010)
  9. Structural and mutational analyses of the interaction between the barley alpha-amylase/subtilisin inhibitor and the subtilisin savinase reveal a novel mode of inhibition. Micheelsen PO, Vévodová J, De Maria L, Ostergaard PR, Friis EP, Wilson K, Skjøt M. J Mol Biol 380 681-690 (2008)
  10. Adsorption-Induced Conformational Changes in the Serine Proteinase Savinase: A Tryptophan Fluorescence and Circular Dichroism Study. Maste MCL, Norde W, Visser AJWG. J Colloid Interface Sci 196 224-230 (1997)
  11. Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I. Kristjánsson MM, Magnússon OT, Gudmundsson HM, Alfredsson GA, Matsuzawa H. Eur J Biochem 260 752-760 (1999)
  12. Engineering a substrate-specific cold-adapted subtilisin. Tindbaek N, Svendsen A, Oestergaard PR, Draborg H. Protein Eng Des Sel 17 149-156 (2004)
  13. Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation. Govindarajan S, Ness JE, Kim S, Mundorff EC, Minshull J, Gustafsson C. J Mol Biol 328 1061-1069 (2003)
  14. Site-selective chemical protein glycosylation protects from autolysis and proteolytic degradation. Russell D, Oldham NJ, Davis BG. Carbohydr Res 344 1508-1514 (2009)
  15. Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. Urbániková L, Vršanská M, Mørkeberg Krogh KB, Hoff T, Biely P. FEBS J 278 2105-2116 (2011)
  16. The excluding effects of sucrose on a protein chemical degradation pathway: methionine oxidation in subtilisin. DePaz RA, Barnett CC, Dale DA, Carpenter JF, Gaertner AL, Randolph TW. Arch Biochem Biophys 384 123-132 (2000)
  17. The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site. Martin JR, Mulder FA, Karimi-Nejad Y, van der Zwan J, Mariani M, Schipper D, Boelens R. Structure 5 521-532 (1997)
  18. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors. Legendre D, Laraki N, Gräslund T, Bjørnvad ME, Bouchet M, Nygren PA, Borchert TV, Fastrez J. J Mol Biol 296 87-102 (2000)
  19. The crystal structure of the Bacillus lentus alkaline protease, subtilisin BL, at 1.4 A resolution. Goddette DW, Paech C, Yang SS, Mielenz JR, Bystroff C, Wilke ME, Fletterick RJ. J Mol Biol 228 580-595 (1992)
  20. 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus. Remerowski ML, Domke T, Groenewegen A, Pepermans HA, Hilbers CW, van de Ven FJ. J Biomol NMR 4 257-278 (1994)
  21. Protein engineering of subtilisins to improve stability in detergent formulations. von der Osten C, Branner S, Hastrup S, Hedegaard L, Rasmussen MD, Bisgård-Frantzen H, Carlsen S, Mikkelsen JM. J Biotechnol 28 55-68 (1993)
  22. Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic Bacillus spp.: enzymatic properties, sequences, and evolutionary relationships. Saeki K, Okuda M, Hatada Y, Kobayashi T, Ito S, Takami H, Horikoshi K. Biochem Biophys Res Commun 279 313-319 (2000)
  23. Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Yamagata Y, Isshiki K, Ichishima E. Enzyme Microb Technol 17 653-663 (1995)
  24. Engineered Bacillus lentus subtilisins having altered flexibility. Graycar T, Knapp M, Ganshaw G, Dauberman J, Bott R. J Mol Biol 292 97-109 (1999)
  25. Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends. Quartinello F, Vecchiato S, Weinberger S, Kremenser K, Skopek L, Pellis A, Guebitz GM. Polymers (Basel) 10 E1107 (2018)
  26. Mutational replacements in subtilisin 309. Val104 has a modulating effect on the P4 substrate preference. Bech LM, Sørensen SB, Breddam K. Eur J Biochem 209 869-874 (1992)
  27. Functional requirements for the optimal catalytic configuration of the AChE active center. Shafferman A, Barak D, Kaplan D, Ordentlich A, Kronman C, Velan B. Chem Biol Interact 157-158 123-131 (2005)
  28. Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp. Kageyama Y, Takaki Y, Shimamura S, Nishi S, Nogi Y, Uchimura K, Kobayashi T, Hitomi J, Ozaki K, Kawai S, Ito S, Horikoshi K. Extremophiles 11 597-603 (2007)
  29. Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements. Remerowski ML, Pepermans HA, Hilbers CW, Van De Ven FJ. Eur J Biochem 235 629-640 (1996)
  30. Crystallographic studies of Savinase, a subtilisin-like proteinase, at pH 10.5. Lange G, Betzel C, Branner S, Wilson KS. Eur J Biochem 224 507-518 (1994)
  31. Purification and characterization of the beta-trefoil fold protein barley alpha-amylase/subtilisin inhibitor overexpressed in Escherichia coli. Bønsager BC, Praetorius-Ibba M, Nielsen PK, Svensson B. Protein Expr Purif 30 185-193 (2003)
  32. Selective protein degradation by ligand-targeted enzymes: towards the creation of catalytic antagonists. Davis BG, Sala RF, Hodgson DR, Ullman A, Khumtaveeporn K, Estell DA, Sanford K, Bott RR, Jones JB. Chembiochem 4 533-537 (2003)
  33. De novo protein structure prediction using ultra-fast molecular dynamics simulation. Cheung NJ, Yu W. PLoS One 13 e0205819 (2018)
  34. Differences in the specificities of the highly alkalophilic proteinases Savinase and Esperase imposed by changes in the rigidity and geometry of the substrate binding sites. Georgieva DN, Stoeva S, Voelter W, Genov N, Betzel C. Arch Biochem Biophys 387 197-201 (2001)
  35. Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis. Sättler A, Kanka S, Maurer KH, Riesner D. Electrophoresis 17 784-792 (1996)
  36. Isolation and characterization of a new cold-active protease from psychrotrophic bacteria of Western Himalayan glacial soil. Farooq S, Nazir R, Ganai SA, Ganai BA. Sci Rep 11 12768 (2021)
  37. Temperature-gradient gel electrophoresis for analysis and screening of thermostable proteases. Sättler A, Riesner D. Electrophoresis 14 782-788 (1993)
  38. The structure of subtilisin ALP I from alkalophilic Bacillus sp. NKS-21. Yamagata Y, Sato T, Hanzawa S, Ichishima E. Curr Microbiol 30 201-209 (1995)
  39. Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. Falkenberg F, Rahba J, Fischer D, Bott M, Bongaerts J, Siegert P. FEBS Open Bio 12 1729-1746 (2022)
  40. CAPRI targets T29-T42: proving ground for new docking procedures. Eisenstein M, Ben-Shimon A, Frankenstein Z, Kowalsman N. Proteins 78 3174-3181 (2010)
  41. Co-solvent effects on structure and function properties of savinase: solvent-induced thermal stabilization. Nasiripourdori A, Naderi-Manesh H, Ranjbar B, Khajeh K. Int J Biol Macromol 44 311-315 (2009)
  42. Fluorescence properties of subtilisins and related proteinases (subtilases): relation to X-ray models. Genov N, Nicolov P, Betzel C, Wilson K, Dolashka P. J Photochem Photobiol B 18 265-272 (1993)
  43. Rapid analysis of enzymatic digests of a bacterial protease of the subtilisin type and a "bio-engineered" variant by high-performance liquid chromatography-frit fast atom bombardment mass spectrometry. van Dongen WD, Versluis C, van Wassenaar PD, de Koster CG, Heerma W, Haverkamp J. J Chromatogr 647 301-309 (1993)
  44. Hydrophobic interactions between the secondary structures on the molecular surface reinforce the alkaline stability of serine protease. Oguchi Y, Maeda H, Abe K, Nakajima T, Uchida T, Yamagata Y. Biotechnol Lett 28 1383-1391 (2006)
  45. X-ray structure determination and comparison of two crystal forms of a variant (Asn115Arg) of the alkaline protease from Bacillus alcalophilus refined at 1.85 A resolution. Sobek H, Hecht HJ, Aehle W, Schomburg D. J Mol Biol 228 108-117 (1992)
  46. Alkaliphilic Bacillus sp. strain KSM-LD1 contains a record number of subtilisin-like serine proteases genes. Takimura Y, Saito K, Okuda M, Kageyama Y, Saeki K, Ozaki K, Ito S, Kobayashi T. Appl Microbiol Biotechnol 76 395-405 (2007)
  47. Capillary electrophoretic determination of the protease Savinase in cultivation broth. Vinther A, Petersen J, Søeberg H. J Chromatogr 608 205-210 (1992)
  48. The molecular surface of proteolytic enzymes has an important role in stability of the enzymatic activity in extraordinary environments. Yamagata Y, Maeda H, Nakajima T, Ichishima E. Eur J Biochem 269 4577-4585 (2002)
  49. Occupational asthma in female factory worker resulting from exposure to savinase in dishwashing tablets-a case study. Lipińska-Ojrzanowska A, Świerczyńska-Machura D, Tymoszuk D, Nowakowska-Świrta E, Walusiak-Skorupa J. J Occup Health 55 318-321 (2013)
  50. On the rational design of substrate mimetics: The function of docking approaches for the prediction of protease specificities. Günther R, Elsner C, Schmidt S, Hofmann HJ, Bordusa F. Org Biomol Chem 2 1442-1446 (2004)
  51. Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae. Falkenberg F, Bott M, Bongaerts J, Siegert P. Front Microbiol 13 1017978 (2022)
  52. Analysis of an industrial production suspension of Bacillus lentus subtilisin crystals by powder diffraction: a powerful quality-control tool. Frankaer CG, Moroz OV, Turkenburg JP, Aspmo SI, Thymark M, Friis EP, Stahl K, Nielsen JE, Wilson KS, Harris P. Acta Crystallogr D Biol Crystallogr 70 1115-1123 (2014)
  53. Conformational heterogeneity of Savinase from NMR, HDX-MS and X-ray diffraction analysis. Wu S, Nguyen TTTN, Moroz OV, Turkenburg JP, Nielsen JE, Wilson KS, Rand KD, Teilum K. PeerJ 8 e9408 (2020)
  54. Exploring the molecular mechanism of cold-adaption of an alkaline protease mutant by molecular dynamics simulations and residue interaction network. Huang A, Lu F, Liu F. Protein Sci 32 e4837 (2023)
  55. Inactivation of a solid-state detergent protease by hydrogen peroxide vapor and humidity. Biran S, Jensen AD, Kiil S, Bach P, Simonsen O. J Biotechnol 141 73-79 (2009)
  56. Mutational analysis of the pro-peptide of a marine intracellular subtilisin protease supports its role in inhibition. Bjerga GEK, Larsen Ø, Arsın H, Williamson A, García-Moyano A, Leiros I, Puntervoll P. Proteins 86 965-977 (2018)
  57. New robust subtilisins from halotolerant and halophilic Bacillaceae. Falkenberg F, Voß L, Bott M, Bongaerts J, Siegert P. Appl Microbiol Biotechnol 107 3939-3954 (2023)
  58. Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822T. Falkenberg F, Kohn S, Bott M, Bongaerts J, Siegert P. FEBS Open Bio 13 2035-2046 (2023)
  59. Rapid identification of specific mutations in the sequence of an enzyme variant produced by protein engineering using high-performance liquid chromatographic/fast atom bombardment mass spectrometric techniques. van Dongen WD, van Bommel JH, van Wassenaar PD, Heerma W, Haverkamp J. Biol Mass Spectrom 23 675-681 (1994)
  60. Steady-state and time-resolved fluorescence of Esperase: comparison with the X-ray structure in the region of the two tryptophans. Georgieva DN, Nikolov P, Betzel C. Spectrochim Acta A Mol Biomol Spectrosc 54A 1109-1116 (1998)
  61. Structural and functional aspects of an industrial lipase. Egmond MR, Antheunisse WP, van Bemmel CM, Ravestein P, Frenken LG. Ann N Y Acad Sci 750 195-201 (1995)


Related citations provided by authors (1)

  1. Crystallization and preliminary X-ray diffraction studies of an alkaline protease from Bacillus lentus.. Betzel C, Dauter Z, Dauter M, Ingelman M, Papendorf G, Wilson KS, Branner S J Mol Biol 204 803-4 (1988)