1tiw Citations

Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.

Biochemistry 43 12539-48 (2004)
Related entries: 1tj0, 1tj1, 1tj2

Cited: 65 times
EuropePMC logo PMID: 15449943

Abstract

Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the flavin-dependent oxidation of proline to Delta(1)-pyrroline-5-carboxylate. Here we present a structure-based study of the PRODH active site of the multifunctional Escherichia coli proline utilization A (PutA) protein using X-ray crystallography, enzyme kinetic measurements, and site-directed mutagenesis. Structures of the PutA PRODH domain complexed with competitive inhibitors acetate (K(i) = 30 mM), L-lactate (K(i) = 1 mM), and L-tetrahydro-2-furoic acid (L-THFA, K(i) = 0.2 mM) have been determined to high-resolution limits of 2.1-2.0 A. The discovery of acetate as a competitive inhibitor suggests that the carboxyl is the minimum functional group recognized by the active site, and the structures show how the enzyme exploits hydrogen-bonding and nonpolar interactions to optimize affinity for the substrate. The PRODH/L-THFA complex is the first structure of PRODH with a five-membered ring proline analogue bound in the active site and thus provides new insights into substrate recognition and the catalytic mechanism. The ring of L-THFA is nearly parallel to the middle ring of the FAD isoalloxazine, with the inhibitor C5 atom 3.3 A from the FAD N5. This geometry suggests direct hydride transfer as a plausible mechanism. Mutation of conserved active site residue Leu432 to Pro caused a 5-fold decrease in k(cat) and a severe loss in thermostability. These changes are consistent with the location of Leu432 in the hydrophobic core near residues that directly contact FAD. Our results suggest that the molecular basis for increased plasma proline levels in schizophrenic subjects carrying the missense mutation L441P is due to decreased stability of human PRODH2.

Reviews - 1tiw mentioned but not cited (3)

  1. Structural biology of proline catabolism. Tanner JJ. Amino Acids 35 719-730 (2008)
  2. Structure, function, and mechanism of proline utilization A (PutA). Liu LK, Becker DF, Tanner JJ. Arch Biochem Biophys 632 142-157 (2017)
  3. Flavin redox switching of protein functions. Becker DF, Zhu W, Moxley MA. Antioxid Redox Signal 14 1079-1091 (2011)

Articles - 1tiw mentioned but not cited (16)

  1. The Proline Cycle As a Potential Cancer Therapy Target. Tanner JJ, Fendt SM, Becker DF. Biochemistry 57 3433-3444 (2018)
  2. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. White TA, Krishnan N, Becker DF, Tanner JJ. J Biol Chem 282 14316-14327 (2007)
  3. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. Zhang M, White TA, Schuermann JP, Baban BA, Becker DF, Tanner JJ. Biochemistry 43 12539-12548 (2004)
  4. Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli. Moxley MA, Tanner JJ, Becker DF. Arch Biochem Biophys 516 113-120 (2011)
  5. Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria. Summitt CB, Johnson LC, Jönsson TJ, Parsonage D, Holmes RP, Lowther WT. Biochem J 466 273-281 (2015)
  6. The structure of the proline utilization a proline dehydrogenase domain inactivated by N-propargylglycine provides insight into conformational changes induced by substrate binding and flavin reduction. Srivastava D, Zhu W, Johnson WH, Whitman CP, Becker DF, Tanner JJ. Biochemistry 49 560-569 (2010)
  7. Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release. Luo M, Arentson BW, Srivastava D, Becker DF, Tanner JJ. Biochemistry 51 10099-10108 (2012)
  8. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor. Krishnan N, Becker DF. Biochemistry 44 9130-9139 (2005)
  9. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein. Moxley MA, Becker DF. Biochemistry 51 511-520 (2012)
  10. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate. Ostrander EL, Larson JD, Schuermann JP, Tanner JJ. Biochemistry 48 951-959 (2009)
  11. Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition. Scott GK, Yau C, Becker BC, Khateeb S, Mahoney S, Jensen MB, Hann B, Cowen BJ, Pegan SD, Benz CC. Mol Cancer Ther 18 1374-1385 (2019)
  12. Involvement of the β3-α3 loop of the proline dehydrogenase domain in allosteric regulation of membrane association of proline utilization A. Zhu W, Haile AM, Singh RK, Larson JD, Smithen D, Chan JY, Tanner JJ, Becker DF. Biochemistry 52 4482-4491 (2013)
  13. Small-angle X-ray scattering studies of the oligomeric state and quaternary structure of the trifunctional proline utilization A (PutA) flavoprotein from Escherichia coli. Singh RK, Larson JD, Zhu W, Rambo RP, Hura GL, Becker DF, Tanner JJ. J Biol Chem 286 43144-43153 (2011)
  14. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein. Moxley MA, Zhang L, Christgen S, Tanner JJ, Becker DF. Biochemistry 56 3078-3088 (2017)
  15. Structure-affinity relationships of reversible proline analog inhibitors targeting proline dehydrogenase. Bogner AN, Tanner JJ. Org Biomol Chem 20 895-905 (2022)
  16. Computational insights on the hydride and proton transfer mechanisms of L-proline dehydrogenase. Yildiz I. PLoS One 18 e0290901 (2023)


Reviews citing this publication (8)

  1. Natural expansion of the genetic code. Ambrogelly A, Palioura S, Söll D. Nat Chem Biol 3 29-35 (2007)
  2. Structural Biology of Proline Catabolic Enzymes. Tanner JJ. Antioxid Redox Signal 30 650-673 (2019)
  3. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes. Fitzpatrick PF. Biochim Biophys Acta 1854 1746-1755 (2015)
  4. Substrate channeling in proline metabolism. Arentson BW, Sanyal N, Becker DF. Front Biosci (Landmark Ed) 17 375-388 (2012)
  5. Unique structural features and sequence motifs of proline utilization A (PutA). Singh RK, Tanner JJ. Front Biosci (Landmark Ed) 17 556-568 (2012)
  6. L-proline dehydrogenases in hyperthermophilic archaea: distribution, function, structure, and application. Kawakami R, Satomura T, Sakuraba H, Ohshima T. Appl Microbiol Biotechnol 93 83-93 (2012)
  7. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis. Ding Z, Ericksen RE, Lee QY, Han W. Amino Acids 53 1807-1815 (2021)
  8. Proline dehydrogenase in cancer: apoptosis, autophagy, nutrient dependency and cancer therapy. Liu Y, Mao C, Liu S, Xiao D, Shi Y, Tao Y. Amino Acids 53 1891-1902 (2021)

Articles citing this publication (38)

  1. Functional consequences of PRODH missense mutations. Bender HU, Almashanu S, Steel G, Hu CA, Lin WW, Willis A, Pulver A, Valle D. Am J Hum Genet 76 409-420 (2005)
  2. Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum. Srivastava D, Schuermann JP, White TA, Krishnan N, Sanyal N, Hura GL, Tan A, Henzl MT, Becker DF, Tanner JJ. Proc Natl Acad Sci U S A 107 2878-2883 (2010)
  3. Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA. Zhou Y, Larson JD, Bottoms CA, Arturo EC, Henzl MT, Jenkins JL, Nix JC, Becker DF, Tanner JJ. J Mol Biol 381 174-188 (2008)
  4. Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Singh H, Arentson BW, Becker DF, Tanner JJ. Proc Natl Acad Sci U S A 111 3389-3394 (2014)
  5. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding. Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF. Biochemistry 46 483-491 (2007)
  6. Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. Silao FGS, Ward M, Ryman K, Wallström A, Brindefalk B, Udekwu K, Ljungdahl PO. PLoS Genet 15 e1007976 (2019)
  7. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress. Krishnan N, Becker DF. J Bacteriol 188 1227-1235 (2006)
  8. Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. Apostolidis E, Kwon YI, Shetty K. Int J Food Microbiol 128 317-324 (2008)
  9. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. Natarajan SK, Becker DF. Cell Health Cytoskelet 2012 11-27 (2012)
  10. Purification and characterization of Put1p from Saccharomyces cerevisiae. Wanduragala S, Sanyal N, Liang X, Becker DF. Arch Biochem Biophys 498 136-142 (2010)
  11. Crystal structures of the DNA-binding domain of Escherichia coli proline utilization A flavoprotein and analysis of the role of Lys9 in DNA recognition. Larson JD, Jenkins JL, Schuermann JP, Zhou Y, Becker DF, Tanner JJ. Protein Sci 15 2630-2641 (2006)
  12. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function. Luo M, Gamage TT, Arentson BW, Schlasner KN, Becker DF, Tanner JJ. J Biol Chem 291 24065-24075 (2016)
  13. Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria. Schertl P, Cabassa C, Saadallah K, Bordenave M, Savouré A, Braun HP. FEBS J 281 2794-2804 (2014)
  14. Structural basis for the inactivation of Thermus thermophilus proline dehydrogenase by N-propargylglycine. White TA, Johnson WH, Whitman CP, Tanner JJ. Biochemistry 47 5573-5580 (2008)
  15. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions. Sanyal N, Arentson BW, Luo M, Tanner JJ, Becker DF. J Biol Chem 290 2225-2234 (2015)
  16. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. Korasick DA, Gamage TT, Christgen S, Stiers KM, Beamer LJ, Henzl MT, Becker DF, Tanner JJ. J Biol Chem 292 9652-9665 (2017)
  17. Investigating the molecular determinants for substrate channeling in BphI-BphJ, an aldolase-dehydrogenase complex from the polychlorinated biphenyls degradation pathway. Carere J, Baker P, Seah SY. Biochemistry 50 8407-8416 (2011)
  18. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure. Korasick DA, Singh H, Pemberton TA, Luo M, Dhatwalia R, Tanner JJ. FEBS J 284 3029-3049 (2017)
  19. Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex. Halouska S, Zhou Y, Becker DF, Powers R. Proteins 75 12-27 (2009)
  20. Kinetic and isotopic characterization of L-proline dehydrogenase from Mycobacterium tuberculosis. Serrano H, Blanchard JS. Biochemistry 52 5009-5015 (2013)
  21. Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline. Korasick DA, Pemberton TA, Arentson BW, Becker DF, Tanner JJ. Molecules 23 E32 (2017)
  22. Culture Volume Influences the Dynamics of Adaptation under Long-Term Stationary Phase. Gross J, Avrani S, Katz S, Hilau S, Hershberg R. Genome Biol Evol 12 2292-2301 (2020)
  23. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor. Huijbers MM, Martínez-Júlvez M, Westphal AH, Delgado-Arciniega E, Medina M, van Berkel WJ. Sci Rep 7 43880 (2017)
  24. A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq. Su Z, Zhu J, Xu Z, Xiao R, Zhou R, Li L, Chen H. PLoS One 11 e0152363 (2016)
  25. Proline metabolism in the moderately halophilic bacterium Halobacillus halophilus: differential regulation of isogenes in proline utilization. Köcher S, Tausendschön M, Thompson M, Saum SH, Müller V. Environ Microbiol Rep 3 443-448 (2011)
  26. Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus. Huijbers MME, van Alen I, Wu JW, Barendregt A, Heck AJR, van Berkel WJH. Molecules 23 E184 (2018)
  27. Involvement of proline oxidase (PutA) in programmed cell death of Xanthomonas. Wadhawan S, Gautam S, Sharma A. PLoS One 9 e96423 (2014)
  28. N-Propargylglycine: a unique suicide inhibitor of proline dehydrogenase with anticancer activity and brain-enhancing mitohormesis properties. Scott GK, Mahoney S, Scott M, Loureiro A, Lopez-Ramirez A, Tanner JJ, Ellerby LM, Benz CC. Amino Acids 53 1927-1939 (2021)
  29. Proline Dehydrogenase/Proline Oxidase (PRODH/POX) Is Involved in the Mechanism of Metformin-Induced Apoptosis in C32 Melanoma Cell Line. Oscilowska I, Rolkowski K, Baszanowska W, Huynh TYL, Lewoniewska S, Nizioł M, Sawicka M, Bielawska K, Szoka P, Miltyk W, Palka J. Int J Mol Sci 23 2354 (2022)
  30. L-Proline catabolism by the high G + C Gram-positive bacterium Paenarthrobacter aurescens strain TC1. Deutch CE. Antonie Van Leeuwenhoek 112 237-251 (2019)
  31. Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles. Campbell AC, Prater AR, Bogner AN, Quinn TP, Gates KS, Becker DF, Tanner JJ. ACS Chem Biol 16 2268-2279 (2021)
  32. Three crystal forms of the bifunctional enzyme proline utilization A (PutA) from Bradyrhizobium japonicum. Schuermann JP, White TA, Srivastava D, Karr DB, Tanner JJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 949-953 (2008)
  33. Inhibition of Distinct Proline- or N-Acetylglucosamine-Induced Hyphal Formation Pathways by Proline Analogs in Candida albicans. Sato T, Hoshida H, Akada R. Biomed Res Int 2020 7245782 (2020)
  34. Redox Modulation of Oligomeric State in Proline Utilization A. Korasick DA, Campbell AC, Christgen SL, Chakravarthy S, White TA, Becker DF, Tanner JJ. Biophys J 114 2833-2843 (2018)
  35. Rotational spectroscopy of chiral tetrahydro-2-furoic acid: Conformational landscape, conversion, and abundances. Xie F, Ng X, Seifert NA, Thomas J, Jäger W, Xu Y. J Chem Phys 149 224306 (2018)
  36. Tea polyphenol epigallocatechin-3-gallate inhibits cell proliferation in a patient-derived triple-negative breast cancer xenograft mouse model via inhibition of proline-dehydrogenase-induced effects. Lee WJ, Cheng TC, Yen Y, Fang CL, Liao YC, Kuo CC, Tu SH, Lin LC, Chang HW, Chen LC, Ho YS. J Food Drug Anal 29 113-127 (2021)
  37. Comparative analysis of the catalytic components in the archaeal dye-linked L-proline dehydrogenase complexes. Kawakami R, Noguchi C, Higashi M, Sakuraba H, Ohshima T. Appl Microbiol Biotechnol 97 3419-3427 (2013)
  38. Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery. Bogner AN, Ji J, Tanner JJ. Protein Eng Des Sel 35 gzac016 (2022)