1tt5 Citations

A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8.

Nat Struct Mol Biol 11 927-35 (2004)
Cited: 95 times
EuropePMC logo PMID: 15361859

Abstract

Ubiquitin-like proteins (UBLs) such as NEDD8 are transferred to their targets by distinct, parallel, multienzyme cascades that involve the sequential action of E1, E2 and E3 enzymes. How do enzymes within a particular UBL conjugation cascade interact with each other? We report here that the unique N-terminal sequence of NEDD8's E2, Ubc12, selectively recruits NEDD8's E1 to promote thioester formation between Ubc12 and NEDD8. A peptide corresponding to Ubc12's N terminus (Ubc12N26) specifically binds and inhibits NEDD8's E1, the heterodimeric APPBP1-UBA3 complex. The structure of APPBP1-UBA3- Ubc12N26 reveals conserved Ubc12 residues docking in a groove generated by loops conserved in UBA3s but not other E1s. These data explain why the Ubc12-UBA3 interaction is unique to the NEDD8 pathway. These studies define a novel mechanism for E1-E2 interaction and show how enzymes within a particular UBL conjugation cascade can be tethered together by unique protein-protein interactions emanating from their common structural scaffolds.

Reviews - 1tt5 mentioned but not cited (3)

  1. Anticancer drug discovery by targeting cullin neddylation. Yu Q, Jiang Y, Sun Y. Acta Pharm Sin B 10 746-765 (2020)
  2. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. Fu DJ, Wang T. J Hematol Oncol 16 87 (2023)
  3. Discovery of neddylation E2s inhibitors with therapeutic activity. Mamun M, Liu Y, Geng YP, Zheng YC, Gao Y, Sun JG, Zhao LF, Zhao LJ, Liu HM. Oncogenesis 12 45 (2023)

Articles - 1tt5 mentioned but not cited (3)

  1. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF, Schulman BA. Nat Struct Mol Biol 11 927-935 (2004)
  2. Functional site plasticity in domain superfamilies. Dessailly BH, Dawson NL, Mizuguchi K, Orengo CA. Biochim Biophys Acta 1834 874-889 (2013)
  3. Genetic disruption of Arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. Sikder MM, Vestergård M, Kyndt T, Topalović O, Kudjordjie EN, Nicolaisen M. ISME J 16 2230-2241 (2022)


Reviews citing this publication (28)

  1. Building ubiquitin chains: E2 enzymes at work. Ye Y, Rape M. Nat Rev Mol Cell Biol 10 755-764 (2009)
  2. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Schulman BA, Harper JW. Nat Rev Mol Cell Biol 10 319-331 (2009)
  3. Drug discovery in the ubiquitin-proteasome system. Nalepa G, Rolfe M, Harper JW. Nat Rev Drug Discov 5 596-613 (2006)
  4. Protein neddylation: beyond cullin-RING ligases. Enchev RI, Schulman BA, Peter M. Nat Rev Mol Cell Biol 16 30-44 (2015)
  5. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem Rev 118 889-918 (2018)
  6. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. van Wijk SJ, Timmers HT. FASEB J 24 981-993 (2010)
  7. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. Rabut G, Peter M. EMBO Rep 9 969-976 (2008)
  8. E2s: structurally economical and functionally replete. Wenzel DM, Stoll KE, Klevit RE. Biochem J 433 31-42 (2011)
  9. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Bulatov E, Ciulli A. Biochem J 467 365-386 (2015)
  10. The cell cycle as a therapeutic target for Alzheimer's disease. Neve RL, McPhie DL. Pharmacol Ther 111 99-113 (2006)
  11. Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Abidi N, Xirodimas DP. Endocr Relat Cancer 22 T55-70 (2015)
  12. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol 11 65 (2013)
  13. Twists and turns in ubiquitin-like protein conjugation cascades. Schulman BA. Protein Sci 20 1941-1954 (2011)
  14. Adenosine and gastrointestinal inflammation. Colgan SP, Fennimore B, Ehrentraut SF. J Mol Med (Berl) 91 157-164 (2013)
  15. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Cells 7 E22 (2018)
  16. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Pharmacol Rev 72 380-413 (2020)
  17. How ubiquitination regulates the TGF-β signalling pathway: new insights and new players: new isoforms of ubiquitin-activating enzymes in the E1-E3 families join the game. Soond SM, Chantry A. Bioessays 33 749-758 (2011)
  18. Protein interactions in the sumoylation cascade: lessons from X-ray structures. Tang Z, Hecker CM, Scheschonka A, Betz H. FEBS J 275 3003-3015 (2008)
  19. Targeting the neddylation pathway in cells as a potential therapeutic approach for diseases. Ying J, Zhang M, Qiu X, Lu Y. Cancer Chemother Pharmacol 81 797-808 (2018)
  20. Targeting neddylation E2s: a novel therapeutic strategy in cancer. Zheng YC, Guo YJ, Wang B, Wang C, Mamun MAA, Gao Y, Liu HM. J Hematol Oncol 14 57 (2021)
  21. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Celebi G, Kesim H, Ozer E, Kutlu O. Int J Mol Sci 21 E6335 (2020)
  22. Implications of protein post-translational modifications in IBD. Ehrentraut SF, Colgan SP. Inflamm Bowel Dis 18 1378-1388 (2012)
  23. Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis. Meena LS. J Biosci 44 24 (2019)
  24. Targeting hypoxia in inflammatory bowel disease. Colgan SP. J Investig Med 64 364-368 (2016)
  25. NEDD8-conjugating enzyme E2s: critical targets for cancer therapy. Zhou L, Lin X, Zhu J, Zhang L, Chen S, Yang H, Jia L, Chen B. Cell Death Discov 9 23 (2023)
  26. Targeting NEDDylation as a Novel Approach to Improve the Treatment of Head and Neck Cancer. Jones TM, Carew JS, Bauman JE, Nawrocki ST. Cancers (Basel) 13 3250 (2021)
  27. E1 on the move. VanDemark AP, Hill CP. Mol Cell 17 474-475 (2005)
  28. Targeting cullin neddylation for cancer and fibrotic diseases. He ZX, Yang WG, Zengyangzong D, Gao G, Zhang Q, Liu HM, Zhao W, Ma LY. Theranostics 13 5017-5056 (2023)

Articles citing this publication (61)

  1. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. Lois LM, Lima CD. EMBO J 24 439-451 (2005)
  2. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA. Mol Cell 33 483-495 (2009)
  3. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K. Cell 127 789-801 (2006)
  4. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA. Science 334 674-678 (2011)
  5. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Dye BT, Schulman BA. Annu Rev Biophys Biomol Struct 36 131-150 (2007)
  6. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Lee I, Schindelin H. Cell 134 268-278 (2008)
  7. The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy. Soucy TA, Dick LR, Smith PG, Milhollen MA, Brownell JE. Genes Cancer 1 708-716 (2010)
  8. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. EMBO J 28 621-631 (2009)
  9. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA. Nature 445 394-398 (2007)
  10. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA. Mol Cell 17 341-350 (2005)
  11. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Pichler A, Knipscheer P, Oberhofer E, van Dijk WJ, Körner R, Olsen JV, Jentsch S, Melchior F, Sixma TK. Nat Struct Mol Biol 12 264-269 (2005)
  12. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ, Nourse A, Alpi AF, Schulman BA. Structure 21 1030-1041 (2013)
  13. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Ma T, Chen Y, Zhang F, Yang CY, Wang S, Yu X. Mol Cell 49 897-907 (2013)
  14. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Summers MK, Pan B, Mukhyala K, Jackson PK. Mol Cell 31 544-556 (2008)
  15. A dual E3 mechanism for Rub1 ligation to Cdc53. Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, Kurz T, Schulman BA. Mol Cell 39 784-796 (2010)
  16. SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. Kim AY, Bommeljé CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, Ramanathan Y, Singh B. J Biol Chem 283 33211-33220 (2008)
  17. Characterization of unusual families of ATG8-like proteins and ATG12 in the protozoan parasite Leishmania major. Williams RA, Woods KL, Juliano L, Mottram JC, Coombs GH. Autophagy 5 159-172 (2009)
  18. Neddylation E2 UBE2F Promotes the Survival of Lung Cancer Cells by Activating CRL5 to Degrade NOXA via the K11 Linkage. Zhou W, Xu J, Li H, Xu M, Chen ZJ, Wei W, Pan Z, Sun Y. Clin Cancer Res 23 1104-1116 (2017)
  19. Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells--evidence for cullin dimerization. Chew EH, Poobalasingam T, Hawkey CJ, Hagen T. Cell Signal 19 1071-1080 (2007)
  20. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Huang DT, Zhuang M, Ayrault O, Schulman BA. Nat Struct Mol Biol 15 280-287 (2008)
  21. Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Scott DC, Hammill JT, Min J, Rhee DY, Connelly M, Sviderskiy VO, Bhasin D, Chen Y, Ong SS, Chai SC, Goktug AN, Huang G, Monda JK, Low J, Kim HS, Paulo JA, Cannon JR, Shelat AA, Chen T, Kelsall IR, Alpi AF, Pagala V, Wang X, Peng J, Singh B, Harper JW, Schulman BA, Guy RK. Nat Chem Biol 13 850-857 (2017)
  22. E1-E2 interactions in ubiquitin and Nedd8 ligation pathways. Tokgöz Z, Siepmann TJ, Streich F, Kumar B, Klein JM, Haas AL. J Biol Chem 287 311-321 (2012)
  23. The basis for selective E1-E2 interactions in the ISG15 conjugation system. Durfee LA, Kelley ML, Huibregtse JM. J Biol Chem 283 23895-23902 (2008)
  24. A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Zhou H, Lu J, Liu L, Bernard D, Yang CY, Fernandez-Salas E, Chinnaswamy K, Layton S, Stuckey J, Yu Q, Zhou W, Pan Z, Sun Y, Wang S. Nat Commun 8 1150 (2017)
  25. Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Singh RK, Zerath S, Kleifeld O, Scheffner M, Glickman MH, Fushman D. Mol Cell Proteomics 11 1595-1611 (2012)
  26. Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. Ehrentraut SF, Kominsky DJ, Glover LE, Campbell EL, Kelly CJ, Bowers BE, Bayless AJ, Colgan SP. J Immunol 190 392-400 (2013)
  27. UBE2M Is a Stress-Inducible Dual E2 for Neddylation and Ubiquitylation that Promotes Targeted Degradation of UBE2F. Zhou W, Xu J, Tan M, Li H, Li H, Wei W, Sun Y. Mol Cell 70 1008-1024.e6 (2018)
  28. Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8's E1. Souphron J, Waddell MB, Paydar A, Tokgöz-Gromley Z, Roussel MF, Schulman BA. Biochemistry 47 8961-8969 (2008)
  29. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Hann ZS, Ji C, Olsen SK, Lu X, Lux MC, Tan DS, Lima CD. Proc Natl Acad Sci U S A 116 15475-15484 (2019)
  30. Neddylation requires glycyl-tRNA synthetase to protect activated E2. Mo Z, Zhang Q, Liu Z, Lauer J, Shi Y, Sun L, Griffin PR, Yang XL. Nat Struct Mol Biol 23 730-737 (2016)
  31. Mutation of E1-CONJUGATING ENZYME-RELATED1 decreases RELATED TO UBIQUITIN conjugation and alters auxin response and development. Woodward AW, Ratzel SE, Woodward EE, Shamoo Y, Bartel B. Plant Physiol 144 976-987 (2007)
  32. XANES measurements of the rate of radiation damage to selenomethionine side chains. Holton JM. J Synchrotron Radiat 14 51-72 (2007)
  33. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling. Du J, Zhang J, Su Y, Liu M, Ospina JK, Yang S, Zhu AJ. PLoS One 6 e24168 (2011)
  34. SCCRO3 (DCUN1D3) antagonizes the neddylation and oncogenic activity of SCCRO (DCUN1D1). Huang G, Stock C, Bommeljé CC, Weeda VB, Shah K, Bains S, Buss E, Shaha M, Rechler W, Ramanathan SY, Singh B. J Biol Chem 289 34728-34742 (2014)
  35. Mechanism of E1-E2 interaction for the inhibition of Ubl adenylation. Wang J, Cai S, Chen Y. J Biol Chem 285 33457-33462 (2010)
  36. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Bramasole L, Sinha A, Gurevich S, Radzinski M, Klein Y, Panat N, Gefen E, Rinaldi T, Jimenez-Morales D, Johnson J, Krogan NJ, Reis N, Reichmann D, Glickman MH, Pick E. Redox Biol 20 533-543 (2019)
  37. Perturbation of neddylation-dependent NF-κB responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation. Ehrentraut SF, Curtis VF, Wang RX, Saeedi BJ, Ehrentraut H, Onyiah JC, Kelly CJ, Campbell EL, Glover LE, Kominsky DJ, Colgan SP. Mol Biol Cell mbc.E16-05-0273 (2016)
  38. Identification of testis-specific ubiquitin-conjugating enzyme in the ascidian Ciona intestinalis. Yokota N, Harada Y, Sawada H. Mol Reprod Dev 77 640-647 (2010)
  39. Induction of NEDD8-conjugating enzyme E2 UBE2F by platinum protects lung cancer cells from apoptosis and confers to platinum-insensitivity. Zhou L, Zhu J, Chen W, Jiang Y, Hu T, Wang Y, Ye X, Zhan M, Ji C, Xu Z, Wang X, Gu Y, Jia L. Cell Death Dis 11 975 (2020)
  40. UBE2M-mediated p27(Kip1) degradation in gemcitabine cytotoxicity. Huang AM, Kao YT, Toh S, Lin PY, Chou CH, Hu HT, Lu CY, Liou JY, Chao SY, Hour TC, Pu YS. Biochem Pharmacol 82 35-42 (2011)
  41. Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems. Reiter KH, Ramachandran A, Xia X, Boucher LE, Bosch J, Matunis MJ. J Biol Chem 291 3860-3870 (2016)
  42. Site-Specific Labeling of Proteins with Near-IR Heptamethine Cyanine Dyes. Lin CM, Usama SM, Burgess K. Molecules 23 E2900 (2018)
  43. Structural basis for UFM1 transfer from UBA5 to UFC1. Kumar M, Padala P, Fahoum J, Hassouna F, Tsaban T, Zoltsman G, Banerjee S, Cohen-Kfir E, Dessau M, Rosenzweig R, Isupov MN, Schueler-Furman O, Wiener R. Nat Commun 12 5708 (2021)
  44. Role of the Zn(2+) motif of E1 in SUMO adenylation. Wang J, Chen Y. J Biol Chem 285 23732-23738 (2010)
  45. Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. Zhou H, Lu J, Chinnaswamy K, Stuckey JA, Liu L, McEachern D, Yang CY, Bernard D, Shen H, Rui L, Sun Y, Wang S. Nat Commun 12 2621 (2021)
  46. Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1. Singh RK, Kazansky Y, Wathieu D, Fushman D. Anal Chem 89 7852-7860 (2017)
  47. Phage display to identify Nedd8-mimicking peptides as inhibitors of the Nedd8 transfer cascade. Zhao B, Zhang K, Villhauer EB, Bhuripanyo K, Kiyokawa H, Schindelin H, Yin J. Chembiochem 14 1323-1330 (2013)
  48. Research Support, Non-U.S. Gov't Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. Castagnoli L, Mandaliti W, Nepravishta R, Valentini E, Mattioni A, Procopio R, Iannuccelli M, Polo S, Paci M, Cesareni G, Santonico E. FEBS J 286 653-677 (2019)
  49. Suppressive role of neddylation in dendritic cells during Mycobacterium tuberculosis infection. Chadha A, Mehto S, Selvakumar A, Vashishta M, Kamble SS, Popli S, Raman R, Singh Y, Natarajan K. Tuberculosis (Edinb) 95 599-607 (2015)
  50. Dissecting Distinct Roles of NEDDylation E1 Ligase Heterodimer APPBP1 and UBA3 Reveals Potential Evolution Process for Activation of Ubiquitin-related Pathways. Malik-Chaudhry HK, Gaieb Z, Saavedra A, Reyes M, Kung R, Le F, Morikis D, Liao J. Sci Rep 8 10108 (2018)
  51. Direct catalysis of lysine 48-linked polyubiquitin chains by the ubiquitin-activating enzyme. Huzil JT, Pannu R, Ptak C, Garen G, Ellison MJ. J Biol Chem 282 37454-37460 (2007)
  52. CUBAN, a Case Study of Selective Binding: Structural Details of the Discrimination between Ubiquitin and NEDD8. Santonico E, Nepravishta R, Mandaliti W, Castagnoli L, Cesareni G, Paci M. Int J Mol Sci 20 E1185 (2019)
  53. Homology Modelling of Human E1 Ubiquitin Activating Enzyme. Brahemi G, Burger AM, Westwell AD, Brancale A. Lett Drug Des Discov 7 57-62 (2010)
  54. Letter NEDD8 ultimate buster-1 regulates the abundance of TRF1 at telomeres by promoting its proteasomal degradation. Jeong YY, Her J, Chung IK. FEBS Lett 590 1776-1790 (2016)
  55. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling. Kolokoltsova OA, Domina AM, Kolokoltsov AA, Davey RA, Weaver SC, Watowich SJ. Virology 377 133-142 (2008)
  56. News Grabbing E2 by the tail. VanDemark AP, Hill CP. Nat Struct Mol Biol 11 908-909 (2004)
  57. Inhibition of NEDD8 NEDDylation induced apoptosis in acute myeloid leukemia cells via p53 signaling pathway. Chen Y, Sun L. Biosci Rep 42 BSR20220994 (2022)
  58. Profiling the cross reactivity of ubiquitin with the Nedd8 activating enzyme by phage display. Zhao B, Zhang K, Bhuripanyo K, Choi CH, Villhauer EB, Li H, Zheng N, Kiyokawa H, Schindelin H, Yin J. PLoS One 8 e70312 (2013)
  59. Redesigning the NEDD8 pathway with a bacterial genetic screen for ubiquitin-like molecule transfer. Guntas G, Kuhlman B. J Mol Biol 418 161-166 (2012)
  60. The Proteasome Lid Triggers COP9 Signalosome Activity during the Transition of Saccharomyces cerevisiae Cells into Quiescence. Bramasole L, Sinha A, Harshuk D, Cirigliano A, Gurevich S, Yu Z, Carmeli RL, Glickman MH, Rinaldi T, Pick E. Biomolecules 9 E449 (2019)
  61. Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes. Yan W, Zhong Y, Hu X, Xu T, Zhang Y, Kales S, Qu Y, Talley DC, Baljinnyam B, LeClair CA, Simeonov A, Polster BM, Huang R, Ye Y, Rai G, Henderson MJ, Tao D, Fang S. Nat Commun 14 4798 (2023)