1txt Citations

Staphylococcus aureus 3-hydroxy-3-methylglutaryl-CoA synthase: crystal structure and mechanism.

J Biol Chem 279 44883-8 (2004)
Cited: 30 times
EuropePMC logo PMID: 15292254

Abstract

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, a member of the family of acyl-condensing enzymes, catalyzes the first committed step in the mevalonate pathway and is a potential target for novel antibiotics and cholesterol-lowering agents. The Staphylococcus aureus mvaS gene product (43.2 kDa) was overexpressed in Escherichia coli, purified to homogeneity, and shown biochemically to be an HMG-CoA synthase. The crystal structure of the full-length enzyme was determined at 2.0-A resolution, representing the first structure of an HMG-CoA synthase from any organism. HMG-CoA synthase forms a homodimer. The monomer, however, contains an important core structure of two similar alpha/beta motifs, a fold that is completely conserved among acyl-condensing enzymes. This common fold provides a scaffold for a catalytic triad made up of Cys, His, and Asn required by these enzymes. In addition, a crystal structure of HMG-CoA synthase with acetoacetyl-CoA was determined at 2.5-A resolution. Together, these structures provide the structural basis for an understanding of the mechanism of HMG-CoA synthase.

Articles - 1txt mentioned but not cited (5)

  1. 3-hydroxy-3-methylglutaryl-CoA synthase intermediate complex observed in "real-time". Theisen MJ, Misra I, Saadat D, Campobasso N, Miziorko HM, Harrison DH. Proc. Natl. Acad. Sci. U.S.A. 101 16442-16447 (2004)
  2. Structural basis for the design of potent and species-specific inhibitors of 3-hydroxy-3-methylglutaryl CoA synthases. Pojer F, Ferrer JL, Richard SB, Nagegowda DA, Chye ML, Bach TJ, Noel JP. Proc. Natl. Acad. Sci. U.S.A. 103 11491-11496 (2006)
  3. Crystal structures of Xanthomonas campestris OleA reveal features that promote head-to-head condensation of two long-chain fatty acids. Goblirsch BR, Frias JA, Wackett LP, Wilmot CM. Biochemistry 51 4138-4146 (2012)
  4. Biochemical and structural basis for inhibition of Enterococcus faecalis hydroxymethylglutaryl-CoA synthase, mvaS, by hymeglusin. Skaff DA, Ramyar KX, McWhorter WJ, Barta ML, Geisbrecht BV, Miziorko HM. Biochemistry 51 4713-4722 (2012)
  5. Fungal naphtho-γ-pyrones: Potent antibiotics for drug-resistant microbial pathogens. He Y, Tian J, Chen X, Sun W, Zhu H, Li Q, Lei L, Yao G, Xue Y, Wang J, Li H, Zhang Y. Sci Rep 6 24291 (2016)


Reviews citing this publication (4)

  1. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Miziorko HM. Arch. Biochem. Biophys. 505 131-143 (2011)
  2. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Haapalainen AM, Meriläinen G, Wierenga RK. Trends Biochem. Sci. 31 64-71 (2006)
  3. Crystallizing new approaches for antimicrobial drug discovery. Schmid MB. Biochem. Pharmacol. 71 1048-1056 (2006)
  4. Positioning Bacillus subtilis as terpenoid cell factory. Pramastya H, Song Y, Elfahmi EY, Sukrasno S, Quax WJ. J Appl Microbiol 130 1839-1856 (2021)

Articles citing this publication (21)

  1. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD. PLoS ONE 4 e4489 (2009)
  2. Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases. Simunovic V, Zapp J, Rachid S, Krug D, Meiser P, Müller R. Chembiochem 7 1206-1220 (2006)
  3. Structural insights into bacterial resistance to cerulenin. Trajtenberg F, Altabe S, Larrieux N, Ficarra F, de Mendoza D, Buschiazzo A, Schujman GE. FEBS J. 281 2324-2338 (2014)
  4. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate. Maloney FP, Gerwick L, Gerwick WH, Sherman DH, Smith JL. Proc. Natl. Acad. Sci. U.S.A. 113 10316-10321 (2016)
  5. An atomic-resolution mechanism of 3-hydroxy-3-methylglutaryl-CoA synthase. Bahnson BJ. Proc. Natl. Acad. Sci. U.S.A. 101 16399-16400 (2004)
  6. Molecular characterization and expression analysis of GlHMGS, a gene encoding hydroxymethylglutaryl-CoA synthase from Ganoderma lucidum (Ling-zhi) in ganoderic acid biosynthesis pathway. Ren A, Ouyang X, Shi L, Jiang AL, Mu DS, Li MJ, Han Q, Zhao MW. World J. Microbiol. Biotechnol. 29 523-531 (2013)
  7. Structural basis of head to head polyketide fusion by CorB. Zocher G, Vilstrup J, Heine D, Hallab A, Goralski E, Hertweck C, Stahl M, Schäberle TF, Stehle T. Chem Sci 6 6525-6536 (2015)
  8. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Vögeli B, Engilberge S, Girard E, Riobé F, Maury O, Erb TJ, Shima S, Wagner T. Proc. Natl. Acad. Sci. U.S.A. 115 3380-3385 (2018)
  9. Crystal Structure of the HMG-CoA Synthase MvaS from the Gram-Negative Bacterium Myxococcus xanthus. Bock T, Kasten J, Müller R, Blankenfeldt W. Chembiochem 17 1257-1262 (2016)
  10. Characterization, Function, and Transcriptional Profiling Analysis of 3-Hydroxy-3-methylglutaryl-CoA Synthase Gene (GbHMGS1) towards Stresses and Exogenous Hormone Treatments in Ginkgo biloba. Meng X, Song Q, Ye J, Wang L, Xu F. Molecules 22 (2017)
  11. Isotopically Labeled Desthiobiotin Azide (isoDTB) Tags Enable Global Profiling of the Bacterial Cysteinome. Zanon PRA, Lewald L, Hacker SM. Angew Chem Int Ed Engl 59 2829-2836 (2020)
  12. Molecular cloning and characterization of Triterpenoid Biosynthetic Pathway Gene HMGS in Centella asiatica (Linn.). Afroz S, Warsi ZI, Khatoon K, Sangwan NS, Khan F, Rahman LU. Mol Biol Rep 49 4555-4563 (2022)
  13. Structure and Catalytic Mechanism of a Bacterial Friedel-Crafts Acylase. Pavkov-Keller T, Schmidt NG, Żądło-Dobrowolska A, Kroutil W, Gruber K. Chembiochem 20 88-95 (2019)
  14. Antibacterial Effect of Some Eukaryotic Sterol Biosynthesis Inhibitors. Arjmand G, Haeri MR. Adv Biomed Res 11 90 (2022)
  15. Chemoenzymatic Dissection of Polyketide β-Branching in the Bryostatin Pathway. Slocum ST, Lowell AN, Tripathi A, Shende VV, Smith JL, Sherman DH. Meth. Enzymol. 604 207-236 (2018)
  16. Cloning, characterization, and functional analysis of acetyl-CoA C-acetyltransferase and 3-hydroxy-3-methylglutaryl-CoA synthase genes in Santalum album. Niu M, Yan H, Xiong Y, Zhang Y, Zhang X, Li Y, da Silva JAT, Ma G. Sci Rep 11 1082 (2021)
  17. Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution. Cumsille A, Serna-Cardona N, González V, Claverías F, Undabarrena A, Molina V, Salvà-Serra F, Moore ERB, Cámara B. BMC Genomics 24 622 (2023)
  18. Expression, purification, characteristics and homology modeling of the HMGS from Streptococcus pneumoniae. Ben YL, Cui GZ, Li C, Han R, Zhang J, Zhang QY, Wan J, Liu DL. Biomed. Environ. Sci. 22 229-236 (2009)
  19. Origin of the 3-methylglutaryl moiety in caprazamycin biosynthesis. Bär D, Konetschny B, Kulik A, Xu H, Paccagnella D, Beller P, Ziemert N, Dickschat JS, Gust B. Microb Cell Fact 21 232 (2022)
  20. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum. Flynn CM, Schmidt-Dannert C. Appl. Environ. Microbiol. 84 (2018)
  21. Letter The role of OleA His285 in orchestration of long-chain acyl-coenzyme A substrates. Jensen MR, Goblirsch BR, Esler MA, Christenson JK, Mohamed FA, Wackett LP, Wilmot CM. FEBS Lett. 592 987-998 (2018)