1u49 Citations

Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase.

Nature 431 217-21 (2004)
Related entries: 1u45, 1u47, 1u48, 1u4b

Cited: 192 times
EuropePMC logo PMID: 15322558

Abstract

Aerobic respiration generates reactive oxygen species that can damage guanine residues and lead to the production of 8-oxoguanine (8oxoG), the major mutagenic oxidative lesion in the genome. Oxidative damage is implicated in ageing and cancer, and its prevalence presents a constant challenge to DNA polymerases that ensure accurate transmission of genomic information. When these polymerases encounter 8oxoG, they frequently catalyse misincorporation of adenine in preference to accurate incorporation of cytosine. This results in the propagation of G to T transversions, which are commonly observed somatic mutations associated with human cancers. Here, we present sequential snapshots of a high-fidelity DNA polymerase during both accurate and mutagenic replication of 8oxoG. Comparison of these crystal structures reveals that 8oxoG induces an inversion of the mismatch recognition mechanisms that normally proofread DNA, such that the 8oxoG.adenine mismatch mimics a cognate base pair whereas the 8oxoG.cytosine base pair behaves as a mismatch. These studies reveal a fundamental mechanism of error-prone replication and show how 8oxoG, and DNA lesions in general, can form mismatches that evade polymerase error-detection mechanisms, potentially leading to the stable incorporation of lethal mutations.

Reviews - 1u49 mentioned but not cited (1)

  1. Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Broyde S, Wang L, Rechkoblit O, Geacintov NE, Patel DJ. Trends Biochem Sci 33 209-219 (2008)

Articles - 1u49 mentioned but not cited (1)



Reviews citing this publication (41)

  1. Base-excision repair of oxidative DNA damage. David SS, O'Shea VL, Kundu S. Nature 447 941-950 (2007)
  2. Base excision repair and cancer. Wallace SS, Murphy DL, Sweasy JB. Cancer Lett 327 73-89 (2012)
  3. Inflammation-induced DNA damage, mutations and cancer. Kay J, Thadhani E, Samson L, Engelward B. DNA Repair (Amst) 83 102673 (2019)
  4. Recent advances in the structural mechanisms of DNA glycosylases. Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Biochim Biophys Acta 1834 247-271 (2013)
  5. DNA repair and genome maintenance in Bacillus subtilis. Lenhart JS, Schroeder JW, Walsh BW, Simmons LA. Microbiol Mol Biol Rev 76 530-564 (2012)
  6. DNA base repair--recognition and initiation of catalysis. Dalhus B, Laerdahl JK, Backe PH, Bjørås M. FEMS Microbiol Rev 33 1044-1078 (2009)
  7. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. Hum Mutat 32 1075-1099 (2011)
  8. Transcriptional mutagenesis: causes and involvement in tumour development. Brégeon D, Doetsch PW. Nat Rev Cancer 11 218-227 (2011)
  9. DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. Beard WA, Batra VK, Wilson SH. Mutat Res 703 18-23 (2010)
  10. How do cells cope with RNA damage and its consequences? Yan LL, Zaher HS. J Biol Chem 294 15158-15171 (2019)
  11. Variations on a theme: eukaryotic Y-family DNA polymerases. Washington MT, Carlson KD, Freudenthal BD, Pryor JM. Biochim Biophys Acta 1804 1113-1123 (2010)
  12. Quality control of chemically damaged RNA. Simms CL, Zaher HS. Cell Mol Life Sci 73 3639-3653 (2016)
  13. Redox environment, free radical, and oxidative DNA damage. Storr SJ, Woolston CM, Zhang Y, Martin SG. Antioxid Redox Signal 18 2399-2408 (2013)
  14. The Toolbox for Modified Aptamers. Lapa SA, Chudinov AV, Timofeev EN. Mol Biotechnol 58 79-92 (2016)
  15. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Fasnacht M, Polacek N. Front Mol Biosci 8 671037 (2021)
  16. DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Zahn KE, Wallace SS, Doublié S. Curr Opin Struct Biol 21 358-369 (2011)
  17. Pathways controlling dNTP pools to maintain genome stability. Rudd SG, Valerie NCK, Helleday T. DNA Repair (Amst) 44 193-204 (2016)
  18. Removal of oxidatively generated DNA damage by overlapping repair pathways. Shafirovich V, Geacintov NE. Free Radic Biol Med 107 53-61 (2017)
  19. 8-oxoguanine DNA glycosylases: one lesion, three subfamilies. Faucher F, Doublié S, Jia Z. Int J Mol Sci 13 6711-6729 (2012)
  20. Chemistry and structural biology of DNA damage and biological consequences. Stone MP, Huang H, Brown KL, Shanmugam G. Chem Biodivers 8 1571-1615 (2011)
  21. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer. Berdis AJ. Front Mol Biosci 4 78 (2017)
  22. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Vlcek D, Sevcovicová A, Sviezená B, Gálová E, Miadoková E. Curr Genet 53 1-22 (2008)
  23. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Genes (Basel) 8 E190 (2017)
  24. Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. Gorini F, Scala G, Cooke MS, Majello B, Amente S. DNA Repair (Amst) 97 103027 (2021)
  25. Crystal structure analysis of DNA lesion repair and tolerance mechanisms. Schneider S, Schorr S, Carell T. Curr Opin Struct Biol 19 87-95 (2009)
  26. A Comprehensive View of Translesion Synthesis in Escherichia coli. Fujii S, Fuchs RP. Microbiol Mol Biol Rev 84 e00002-20 (2020)
  27. Chemical synthesis of oligonucleotides containing damaged bases for biological studies. Iwai S. Nucleosides Nucleotides Nucleic Acids 25 561-582 (2006)
  28. Systemic signalling and local effectors in developmental stability, body symmetry, and size. Juarez-Carreño S, Morante J, Dominguez M. Cell Stress 2 340-361 (2018)
  29. Ubiquitylation of DNA polymerase λ. Markkanen E, van Loon B, Ferrari E, Hübscher U. FEBS Lett 585 2826-2830 (2011)
  30. Mutators and hypermutability in bacteria: the Escherichia coli paradigm. Jayaraman R. J Genet 88 379-391 (2009)
  31. Targeting human MutT homolog 1 (MTH1) for cancer eradication: current progress and perspectives. Yin Y, Chen F. Acta Pharm Sin B 10 2259-2271 (2020)
  32. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Hahm JY, Park J, Jang ES, Chi SW. Exp Mol Med 54 1626-1642 (2022)
  33. DNA Repair in Staphylococcus aureus. Ha KP, Edwards AM. Microbiol Mol Biol Rev 85 e0009121 (2021)
  34. History of DNA polymerase β X-ray crystallography. Whitaker AM, Freudenthal BD. DNA Repair (Amst) 93 102928 (2020)
  35. Significance of Singlet Oxygen Molecule in Pathologies. Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Int J Mol Sci 24 2739 (2023)
  36. The origin of human mutation in light of genomic data. Seplyarskiy VB, Sunyaev S. Nat Rev Genet 22 672-686 (2021)
  37. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Franco MK, Koutmou KS. Biophys Chem 285 106780 (2022)
  38. Lost in the Crowd: How Does Human 8-Oxoguanine DNA Glycosylase 1 (OGG1) Find 8-Oxoguanine in the Genome? D'Augustin O, Huet S, Campalans A, Radicella JP. Int J Mol Sci 21 E8360 (2020)
  39. Structural Insights into the Specificity of 8-Oxo-7,8-dihydro-2'-deoxyguanosine Bypass by Family X DNA Polymerases. Kaminski AM, Kunkel TA, Pedersen LC, Bebenek K. Genes (Basel) 13 15 (2021)
  40. Bst polymerase - a humble relative of Taq polymerase. Oscorbin I, Filipenko M. Comput Struct Biotechnol J 21 4519-4535 (2023)
  41. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Andrés CMC, Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Int J Mol Sci 24 15240 (2023)

Articles citing this publication (149)



Related citations provided by authors (3)