1u8j Citations

Crystallographic definition of the epitope promiscuity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5: vaccine design implications.

J Virol 83 11862-75 (2009)
Related entries: 1u8h, 1u8i, 1u8l, 1u8m, 1u8n, 1u8o, 1u8p, 1u8q, 1u91, 1u92, 1u93, 1u95, 2f5a, 2f5b, 2pw1, 2pw2, 3idg, 3idi, 3idj, 3idm, 3idn

Cited: 43 times
EuropePMC logo PMID: 19740978

Abstract

The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab'. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate's negative charge, the hydrophobic alkyl-pi stacking arrangement between the beta-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.

Articles - 1u8j mentioned but not cited (4)



Reviews citing this publication (8)

  1. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Burton DR, Poignard P, Stanfield RL, Wilson IA. Science 337 183-186 (2012)
  2. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Julien JP, Lee PS, Wilson IA. Immunol. Rev. 250 180-198 (2012)
  3. Role of humoral immunity in host defense against HIV. Baum LL. Curr HIV/AIDS Rep 7 11-18 (2010)
  4. Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Hearty S, Conroy PJ, Ayyar BV, Byrne B, O'Kennedy R. Expert Rev Vaccines 9 645-664 (2010)
  5. Role of human immunodeficiency virus type 1 envelope structure in the induction of broadly neutralizing antibodies. Benjelloun F, Lawrence P, Verrier B, Genin C, Paul S. J. Virol. 86 13152-13163 (2012)
  6. Max Bergmann lecture protein epitope mimetics in the age of structural vaccinology. Robinson JA. J. Pept. Sci. 19 127-140 (2013)
  7. Fab'-induced folding of antigenic N-terminal peptides from intrinsically disordered HIV-1 Tat revealed by X-ray crystallography. Serrière J, Dugua JM, Bossus M, Verrier B, Haser R, Gouet P, Guillon C. J. Mol. Biol. 405 33-42 (2011)
  8. Antibody promiscuity: Understanding the paradigm shift in antigen recognition. Kaur H, Salunke DM. IUBMB Life 67 498-505 (2015)

Articles citing this publication (31)

  1. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Lee JH, Ozorowski G, Ward AB. Science 351 1043-1048 (2016)
  2. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. Ofek G, McKee K, Yang Y, Yang ZY, Skinner J, Guenaga FJ, Wyatt R, Zwick MB, Nabel GJ, Mascola JR, Kwong PD. J. Virol. 84 2955-2962 (2010)
  3. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Kim M, Sun ZY, Rand KD, Shi X, Song L, Cheng Y, Fahmy AF, Majumdar S, Ofek G, Yang Y, Kwong PD, Wang JH, Engen JR, Wagner G, Reinherz EL. Nat. Struct. Mol. Biol. 18 1235-1243 (2011)
  4. Ablation of the complementarity-determining region H3 apex of the anti-HIV-1 broadly neutralizing antibody 2F5 abrogates neutralizing capacity without affecting core epitope binding. Julien JP, Huarte N, Maeso R, Taneva SG, Cunningham A, Nieva JL, Pai EF. J. Virol. 84 4136-4147 (2010)
  5. Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues. West AP, Scharf L, Horwitz J, Klein F, Nussenzweig MC, Bjorkman PJ. Proc. Natl. Acad. Sci. U.S.A. 110 10598-10603 (2013)
  6. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. Azoitei ML, Ban YE, Julien JP, Bryson S, Schroeter A, Kalyuzhniy O, Porter JR, Adachi Y, Baker D, Pai EF, Schief WR. J. Mol. Biol. 415 175-192 (2012)
  7. Neutralizing epitopes in the membrane-proximal external region of HIV-1 gp41 are influenced by the transmembrane domain and the plasma membrane. Montero M, Gulzar N, Klaric KA, Donald JE, Lepik C, Wu S, Tsai S, Julien JP, Hessell AJ, Wang S, Lu S, Burton DR, Pai EF, Degrado WF, Scott JK. J. Virol. 86 2930-2941 (2012)
  8. Autoreactivity and exceptional CDR plasticity (but not unusual polyspecificity) hinder elicitation of the anti-HIV antibody 4E10. Finton KA, Larimore K, Larman HB, Friend D, Correnti C, Rupert PB, Elledge SJ, Greenberg PD, Strong RK. PLoS Pathog. 9 e1003639 (2013)
  9. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Magar R, Yadav P, Barati Farimani A. Sci Rep 11 5261 (2021)
  10. Structure-based design of a protein immunogen that displays an HIV-1 gp41 neutralizing epitope. Stanfield RL, Julien JP, Pejchal R, Gach JS, Zwick MB, Wilson IA. J. Mol. Biol. 414 460-476 (2011)
  11. Structure and immunogenicity of a peptide vaccine, including the complete HIV-1 gp41 2F5 epitope: implications for antibody recognition mechanism and immunogen design. Serrano S, Araujo A, Apellániz B, Bryson S, Carravilla P, de la Arada I, Huarte N, Rujas E, Pai EF, Arrondo JL, Domene C, Jiménez MA, Nieva JL. J. Biol. Chem. 289 6565-6580 (2014)
  12. Binding of anti-membrane-proximal gp41 monoclonal antibodies to CD4-liganded and -unliganded human immunodeficiency virus type 1 and simian immunodeficiency virus virions. Rathinakumar R, Dutta M, Zhu P, Johnson WE, Roux KH. J. Virol. 86 1820-1831 (2012)
  13. BlockLogo: visualization of peptide and sequence motif conservation. Olsen LR, Kudahl UJ, Simon C, Sun J, Schönbach C, Reinherz EL, Zhang GL, Brusic V. J. Immunol. Methods 400-401 37-44 (2013)
  14. Identification of a new epitope for HIV-neutralizing antibodies in the gp41 membrane proximal external region by an Env-tailored phage display library. Zhou M, Meyer T, Koch S, Koch J, von Briesen H, Benito JM, Soriano V, Haberl A, Bickel M, Dübel S, Hust M, Dietrich U. Eur. J. Immunol. 43 499-509 (2013)
  15. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity. Huarte N, Araujo A, Arranz R, Lorizate M, Quendler H, Kunert R, Valpuesta JM, Nieva JL. PLoS ONE 7 e52740 (2012)
  16. Thermodynamic analysis of the binding of 2F5 (Fab and immunoglobulin G forms) to its gp41 epitope reveals a strong influence of the immunoglobulin Fc region on affinity. Crespillo S, Casares S, Mateo PL, Conejero-Lara F. J. Biol. Chem. 289 594-599 (2014)
  17. Constrained peptide models from phage display libraries highlighting the cognate epitope-specific potential of the anti-HIV-1 mAb 2F5. Palacios-Rodríguez Y, Gazarian T, Huerta L, Gazarian K. Immunol. Lett. 136 80-89 (2011)
  18. Evaluation of the potency of the anti-idiotypic antibody Ab2/3H6 mimicking gp41 as an HIV-1 vaccine in a rabbit prime/boost study. Mader A, Kunert R. PLoS ONE 7 e39063 (2012)
  19. Synthetic peptide-targeted selection of phage display mimotopes highlights immunogenic features of α-helical vs non-helical epitopes of Taenia solium paramyosin: implications for parasite- and host-protective roles of the protein. Gazarian KG, Solis CF, Gazarian TG, Rowley M, Laclette JP. Peptides 34 232-241 (2012)
  20. Combining spatial and chemical information for clustering pharmacophores. Zhou L, Griffith R, Gaeta B. BMC Bioinformatics 15 Suppl 16 S5 (2014)
  21. Equivalent T cell epitope promiscuity in ecologically diverse human pathogens. Wiens KE, Swaminathan H, Copin R, Lun DS, Ernst JD. PLoS ONE 8 e73124 (2013)
  22. Construction and characterisation of replicating foamy viral vectors expressing HIV-1 epitopes recognised by broadly neutralising antibodies. Mühle M, Hoffmann K, Löchelt M, Denner J. Antiviral Res. 100 314-320 (2013)
  23. Limited conformational flexibility in the paratope may be responsible for degenerate specificity of HIV epitope recognition. Bhowmick A, Salunke DM. Int. Immunol. 25 77-90 (2013)
  24. Multiple antigen peptide mimetics containing gp41 membrane-proximal external region elicit broad neutralizing antibodies against human immunodeficiency virus type 1 in guinea pigs. Zhang L, Miao L, Gong X, Zhang H, Yang L, Shi Y, Kong W, Jiang C, Shan Y. J. Pept. Sci. 19 491-498 (2013)
  25. Antibody selection and amino acid reversions. da Silva J. Evolution 66 3079-3087 (2012)
  26. Prediction of the binding interface between monoclonal antibody m102.4 and Nipah attachment glycoprotein using structure-guided alanine scanning and computational docking. Tit-Oon P, Tharakaraman K, Artpradit C, Godavarthi A, Sungkeeree P, Sasisekharan V, Kerdwong J, Miller NL, Mahajan B, Khongmanee A, Ruchirawat M, Sasisekharan R, Fuangthong M. Sci Rep 10 18256 (2020)
  27. Broadly neutralizing antibodies consistently trap HIV-1 in fresh cervicovaginal mucus from select individuals. Schaefer A, Yang B, Schroeder HA, Harit D, Humphry MS, Ravel J, Lai SK. Acta Biomater 169 387-397 (2023)
  28. Structural Analysis of Anti-Hapten Antibodies to Identify Long-Range Structural Movements Induced by Hapten Binding. Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Front Mol Biosci 8 633526 (2021)
  29. The antigen-binding fragment of human gamma immunoglobulin prevents amyloid β-peptide folding into β-sheet to form oligomers. Valls-Comamala V, Guivernau B, Bonet J, Puig M, Perálvarez-Marín A, Palomer E, Fernàndez-Busquets X, Altafaj X, Tajes M, Puig-Pijoan A, Vicente R, Oliva B, Muñoz FJ. Oncotarget 8 41154-41165 (2017)
  30. Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state. Wang Y, Kaur P, Sun ZJ, Elbahnasawy MA, Hayati Z, Qiao ZS, Bui NN, Chile C, Nasr ML, Wagner G, Wang JH, Song L, Reinherz EL, Kim M. Proc. Natl. Acad. Sci. U.S.A. 116 22556-22566 (2019)
  31. Unique genotypic features of HIV-1 C gp41 membrane proximal external region variants during pregnancy relate to mother-to-child transmission via breastfeeding. Yin L, Chang KF, Nakamura KJ, Kuhn L, Aldrovandi GM, Goodenow MM. J Clin Pediatr Neonatol 1 9-20 (2021)