1u9a Citations

Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system.

J Biol Chem 272 21381-7 (1997)
Cited: 79 times
EuropePMC logo PMID: 9261152

Abstract

Murine/human ubiquitin-conjugating enzyme Ubc9 is a functional homolog of Saccharomyces cerevisiae Ubc9 that is essential for the viability of yeast cells with a specific role in the G2-M transition of the cell cycle. The structure of recombinant mammalian Ubc9 has been determined from two crystal forms at 2.0 A resolution. Like Arabidopsis thaliana Ubc1 and S. cerevisiae Ubc4, murine/human Ubc9 was crystallized as a monomer, suggesting that previously reported hetero- and homo-interactions among Ubcs may be relatively weak or indirect. Compared with the known crystal structures of Ubc1 and Ubc4, which regulate different cellular processes, Ubc9 has a 5-residue insertion that forms a very exposed tight beta-hairpin and a 2-residue insertion that forms a bulge in a loop close to the active site. Mammalian Ubc9 also possesses a distinct electrostatic potential distribution that may provide possible clues to its remarkable ability to interact with other proteins. The 2-residue insertion and other sequence and structural heterogeneity observed at the catalytic site suggest that different Ubcs may utilize catalytic mechanisms of varying efficiency and substrate specificity.

Articles - 1u9a mentioned but not cited (11)

  1. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK. EMBO J 26 2797-2807 (2007)
  2. ARP/wARP and molecular replacement: the next generation. Cohen SX, Ben Jelloul M, Long F, Vagin A, Knipscheer P, Lebbink J, Sixma TK, Lamzin VS, Murshudov GN, Perrakis A. Acta Crystallogr D Biol Crystallogr 64 49-60 (2008)
  3. Solution structure of the RWD domain of the mouse GCN2 protein. Nameki N, Yoneyama M, Koshiba S, Tochio N, Inoue M, Seki E, Matsuda T, Tomo Y, Harada T, Saito K, Kobayashi N, Yabuki T, Aoki M, Nunokawa E, Matsuda N, Sakagami N, Terada T, Shirouzu M, Yoshida M, Hirota H, Osanai T, Tanaka A, Arakawa T, Carninci P, Kawai J, Hayashizaki Y, Kinoshita K, Güntert P, Kigawa T, Yokoyama S. Protein Sci 13 2089-2100 (2004)
  4. Structure of Importin13-Ubc9 complex: nuclear import and release of a key regulator of sumoylation. Grünwald M, Bono F. EMBO J 30 427-438 (2011)
  5. CASP5 target classification. Kinch LN, Qi Y, Hubbard TJ, Grishin NV. Proteins 53 Suppl 6 340-351 (2003)
  6. Distinct functional domains of Ubc9 dictate cell survival and resistance to genotoxic stress. van Waardenburg RC, Duda DM, Lancaster CS, Schulman BA, Bjornsti MA. Mol Cell Biol 26 4958-4969 (2006)
  7. NMR and X-RAY structures of human E2-like ubiquitin-fold modifier conjugating enzyme 1 (UFC1) reveal structural and functional conservation in the metazoan UFM1-UBA5-UFC1 ubiquination pathway. Liu G, Forouhar F, Eletsky A, Atreya HS, Aramini JM, Xiao R, Huang YJ, Abashidze M, Seetharaman J, Liu J, Rost B, Acton T, Montelione GT, Hunt JF, Szyperski T. J Struct Funct Genomics 10 127-136 (2009)
  8. Identification of biochemically distinct properties of the small ubiquitin-related modifier (SUMO) conjugation pathway in Plasmodium falciparum. Reiter K, Mukhopadhyay D, Zhang H, Boucher LE, Kumar N, Bosch J, Matunis MJ. J Biol Chem 288 27724-27736 (2013)
  9. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation. Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M. J Biol Chem 288 36312-36327 (2013)
  10. Structural basis for UFM1 transfer from UBA5 to UFC1. Kumar M, Padala P, Fahoum J, Hassouna F, Tsaban T, Zoltsman G, Banerjee S, Cohen-Kfir E, Dessau M, Rosenzweig R, Isupov MN, Schueler-Furman O, Wiener R. Nat Commun 12 5708 (2021)
  11. The B-box1 domain of PML mediates SUMO E2-E3 complex formation through an atypical interaction with UBC9. Bregnard T, Ahmed A, Semenova IV, Weller SK, Bezsonova I. Biophys Chem 287 106827 (2022)


Reviews citing this publication (17)

  1. The ubiquitin system. Hershko A, Ciechanover A. Annu Rev Biochem 67 425-479 (1998)
  2. Mechanisms underlying ubiquitination. Pickart CM. Annu Rev Biochem 70 503-533 (2001)
  3. Protein modification by SUMO. Johnson ES. Annu Rev Biochem 73 355-382 (2004)
  4. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Schulman BA, Harper JW. Nat Rev Mol Cell Biol 10 319-331 (2009)
  5. SUMO--nonclassical ubiquitin. Melchior F. Annu Rev Cell Dev Biol 16 591-626 (2000)
  6. Ubiquitin-like proteins: new wines in new bottles. Yeh ET, Gong L, Kamitani T. Gene 248 1-14 (2000)
  7. SUMO protein modification. Dohmen RJ. Biochim Biophys Acta 1695 113-131 (2004)
  8. Intracellular targeting of proteins by sumoylation. Wilson VG, Rangasamy D. Exp Cell Res 271 57-65 (2001)
  9. Targeting Ubc9 for cancer therapy. Mo YY, Moschos SJ. Expert Opin Ther Targets 9 1203-1216 (2005)
  10. Ubiquitin-like protein activation. Huang DT, Walden H, Duda D, Schulman BA. Oncogene 23 1958-1971 (2004)
  11. Viral interaction with the host cell sumoylation system. Wilson VG, Rangasamy D. Virus Res 81 17-27 (2001)
  12. Viral manipulation of the cellular sumoylation machinery. Lowrey AJ, Cramblet W, Bentz GL. Cell Commun Signal 15 27 (2017)
  13. Sumoylation in Physiology, Pathology and Therapy. Sahin U, de Thé H, Lallemand-Breitenbach V. Cells 11 814 (2022)
  14. Protein interactions in the sumoylation cascade: lessons from X-ray structures. Tang Z, Hecker CM, Scheschonka A, Betz H. FEBS J 275 3003-3015 (2008)
  15. SUMO Ubc9 enzyme as a viral target. Varadaraj A, Mattoscio D, Chiocca S. IUBMB Life 66 27-33 (2014)
  16. Meiosis and small ubiquitin-related modifier (SUMO)-conjugating enzyme, Ubc9. Sakaguchi K, Koshiyama A, Iwabata K. FEBS J 274 3519-3531 (2007)
  17. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. Physiol Mol Biol Plants 27 2421-2431 (2021)

Articles citing this publication (51)

  1. On the role of the crystal environment in determining protein side-chain conformations. Jacobson MP, Friesner RA, Xiang Z, Honig B. J Mol Biol 320 597-608 (2002)
  2. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Cell 108 345-356 (2002)
  3. Structure and functional interactions of the Tsg101 UEV domain. Pornillos O, Alam SL, Rich RL, Myszka DG, Davis DR, Sundquist WI. EMBO J 21 2397-2406 (2002)
  4. Ubc9 sumoylation regulates SUMO target discrimination. Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A. Mol Cell 31 371-382 (2008)
  5. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Xu W, Gong L, Haddad MM, Bischof O, Campisi J, Yeh ET, Medrano EE. Exp Cell Res 255 135-143 (2000)
  6. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA. Mol Cell 17 341-350 (2005)
  7. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Wolberger C, Pickart CM. EMBO J 22 5241-5250 (2003)
  8. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Hamilton KS, Ellison MJ, Barber KR, Williams RS, Huzil JT, McKenna S, Ptak C, Glover M, Shaw GS. Structure 9 897-904 (2001)
  9. PDZK1: I. a major scaffolder in brush borders of proximal tubular cells. Gisler SM, Pribanic S, Bacic D, Forrer P, Gantenbein A, Sabourin LA, Tsuji A, Zhao ZS, Manser E, Biber J, Murer H. Kidney Int 64 1733-1745 (2003)
  10. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT. Nat Struct Mol Biol 12 67-74 (2005)
  11. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J, Noda NN, Inagaki F, Nakatogawa H, Ohsumi Y. Nat Struct Mol Biol 20 433-439 (2013)
  12. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F. Nat Struct Mol Biol 11 984-991 (2004)
  13. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? Michelle C, Vourc'h P, Mignon L, Andres CR. J Mol Evol 68 616-628 (2009)
  14. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. Capili AD, Lima CD. J Mol Biol 369 608-618 (2007)
  15. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Dominguez C, Bonvin AM, Winkler GS, van Schaik FM, Timmers HT, Boelens R. Structure 12 633-644 (2004)
  16. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Burroughs AM, Jaffee M, Iyer LM, Aravind L. J Struct Biol 162 205-218 (2008)
  17. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Jones D, Crowe E, Stevens TA, Candido EP. Genome Biol 3 RESEARCH0002 (2002)
  18. A mutant deubiquitinating enzyme (Ubp-M) associates with mitotic chromosomes and blocks cell division. Cai SY, Babbitt RW, Marchesi VT. Proc Natl Acad Sci U S A 96 2828-2833 (1999)
  19. Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. Miura T, Klaus W, Gsell B, Miyamoto C, Senn H. J Mol Biol 290 213-228 (1999)
  20. Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9. Subramaniam S, Mealer RG, Sixt KM, Barrow RK, Usiello A, Snyder SH. J Biol Chem 285 20428-20432 (2010)
  21. Ubc9 interacts with a nuclear localization signal and mediates nuclear localization of the paired-like homeobox protein Vsx-1 independent of SUMO-1 modification. Kurtzman AL, Schechter N. Proc Natl Acad Sci U S A 98 5602-5607 (2001)
  22. Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9. Chakrabarti SR, Sood R, Ganguly S, Bohlander S, Shen Z, Nucifora G. Proc Natl Acad Sci U S A 96 7467-7472 (1999)
  23. The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI. Wiehe K, Pierce B, Tong WW, Hwang H, Mintseris J, Weng Z. Proteins 69 719-725 (2007)
  24. Determinants of functionality in the ubiquitin conjugating enzyme family. Winn PJ, Religa TL, Battey JN, Banerjee A, Wade RC. Structure 12 1563-1574 (2004)
  25. Incorporating biochemical information and backbone flexibility in RosettaDock for CAPRI rounds 6-12. Chaudhury S, Sircar A, Sivasubramanian A, Berrondo M, Gray JJ. Proteins 69 793-800 (2007)
  26. Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. PLoS One 5 e15805 (2010)
  27. Crystal structure of Ufc1, the Ufm1-conjugating enzyme. Mizushima T, Tatsumi K, Ozaki Y, Kawakami T, Suzuki A, Ogasahara K, Komatsu M, Kominami E, Tanaka K, Yamane T. Biochem Biophys Res Commun 362 1079-1084 (2007)
  28. Solution structure of the ubiquitin-conjugating enzyme UbcH5B. Houben K, Dominguez C, van Schaik FM, Timmers HT, Bonvin AM, Boelens R. J Mol Biol 344 513-526 (2004)
  29. RosettaDock in CAPRI rounds 6-12. Wang C, Schueler-Furman O, Andre I, London N, Fleishman SJ, Bradley P, Qian B, Baker D. Proteins 69 758-763 (2007)
  30. Functional interaction between human herpesvirus 6 immediate-early 2 protein and ubiquitin-conjugating enzyme 9 in the absence of sumoylation. Tomoiu A, Gravel A, Tanguay RM, Flamand L. J Virol 80 10218-10228 (2006)
  31. PEGylation and Dimerization of Expressed Proteins under Near Equimolar Conditions with Potassium 2-Pyridyl Acyltrifluoroborates. White CJ, Bode JW. ACS Cent Sci 4 197-206 (2018)
  32. SUMO-1 modification regulates the protein stability of the large regulatory protein Rep78 of adeno associated virus type 2 (AAV-2). Weger S, Hammer E, Heilbronn R. Virology 330 284-294 (2004)
  33. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. Bentz GL, Lowrey AJ, Horne DC, Nguyen V, Satterfield AR, Ross TD, Harrod AE, Uchakina ON, McKallip RJ. PLoS One 14 e0217578 (2019)
  34. Development of a high-throughput screen to detect inhibitors of TRPS1 sumoylation. Brandt M, Szewczuk LM, Zhang H, Hong X, McCormick PM, Lewis TS, Graham TI, Hung ST, Harper-Jones AD, Kerrigan JJ, Wang DY, Dul E, Hou W, Ho TF, Meek TD, Cheung MH, Johanson KO, Jones CS, Schwartz B, Kumar S, Oliff AI, Kirkpatrick RB. Assay Drug Dev Technol 11 308-325 (2013)
  35. Yeast 2 microm plasmid copy number is elevated by a mutation in the nuclear gene UBC4. Sleep D, Finnis C, Turner A, Evans L. Yeast 18 403-421 (2001)
  36. Creation of a pluripotent ubiquitin-conjugating enzyme. Ptak C, Gwozd C, Huzil JT, Gwozd TJ, Garen G, Ellison MJ. Mol Cell Biol 21 6537-6548 (2001)
  37. SUMOylation modulates transcriptional repression by TRPS1. Kaiser FJ, Lüdecke HJ, Weger S. Biol Chem 388 381-390 (2007)
  38. In silico structural and functional characterization of the RSUME splice variants. Gerez J, Fuertes M, Tedesco L, Silberstein S, Sevlever G, Paez-Pereda M, Holsboer F, Turjanski AG, Arzt E. PLoS One 8 e57795 (2013)
  39. Molecular characterization of SUMO E2 conjugation enzyme: differential expression profile in Schistosoma mansoni. Pereira RV, Cabral FJ, Gomes MS, Baba EH, Jannotti-Passos LK, Carvalho O, Rodrigues V, Afonso RJ, Castro-Borges W, Guerra-Sá R. Parasitol Res 109 1537-1546 (2011)
  40. Structural basis for the nuclear import and export functions of the biportin Pdr6/Kap122. Aksu M, Trakhanov S, Vera Rodriguez A, Görlich D. J Cell Biol 218 1839-1852 (2019)
  41. Letter Backbone resonance assignments of human UBC9. Liu Q, Shen B, Chen DJ, Chen Y. J Biomol NMR 13 89-90 (1999)
  42. Characterization of SUMO-conjugating enzyme mutants in Schizosaccharomyces pombe identifies a dominant-negative allele that severely reduces SUMO conjugation. Ho JC, Watts FZ. Biochem J 372 97-104 (2003)
  43. Structural basis for SUMO-E2 interaction revealed by a complex model using docking approach in combination with NMR data. Ding H, Yang Y, Zhang J, Wu J, Liu H, Shi Y. Proteins 61 1050-1058 (2005)
  44. Ubc9 interacts with Lu/BCAM adhesion glycoproteins and regulates their stability at the membrane of polarized MDCK cells. Collec E, El Nemer W, Gauthier E, Gane P, Lecomte MC, Dhermy D, Cartron JP, Colin Y, Le van Kim C, Rahuel C. Biochem J 402 311-319 (2007)
  45. SUMOylation by a stress-specific small ubiquitin-like modifier E2 conjugase is essential for survival of Chlamydomonas reinhardtii under stress conditions. Knobbe AR, Horken KM, Plucinak TM, Balassa E, Cerutti H, Weeks DP. Plant Physiol 167 753-765 (2015)
  46. Expression, purification, and structural analysis of (HIS)UBE2G2 (human ubiquitin-conjugating enzyme). Reyes LF, Sommer CA, Beltramini LM, Henrique-Silva F. Protein Expr Purif 45 324-328 (2006)
  47. SUMO wrestling with specificity. VanDemark AP, Hill CP. Structure 10 281-282 (2002)
  48. Observation of an E2 (Ubc9)-homodimer by crystallography. Alontaga AY, Ambaye ND, Li YJ, Vega R, Chen CH, Bzymek KP, Williams JC, Hu W, Chen Y. Data Brief 7 195-200 (2016)
  49. Letter Backbone NMR assignment of the human E2 ubiquitin conjugating enzyme UbcH5alpha (F72K,F82S) double mutant. Saxena K, Jacobs DM, Vogtherr M, Grimme S, Elshort B, Pescatore B, Betz M, Schieborr U, Langer T, Schwalbe H, Fiebig K. J Biomol NMR 32 338 (2005)
  50. Novel targets in drug design: enzymes in the protein ubiquitylation pathway. Banerjee A. Expert Opin Drug Discov 1 151-160 (2006)
  51. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. J Biol Chem 299 104870 (2023)