1uak Citations

Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition.

EMBO J 22 2593-603 (2003)
Related entries: 1uaj, 1ual, 1uam

Cited: 101 times
EuropePMC logo PMID: 12773376

Abstract

tRNA(m(1)G37)methyltransferase (TrmD) catalyzes the transfer of a methyl group from S-adenosyl-L- methionine (AdoMet) to G(37) within a subset of bacterial tRNA species, which have a G residue at the 36th position. The modified guanosine is adjacent to and 3' of the anticodon and is essential for the maintenance of the correct reading frame during translation. Here we report four crystal structures of TrmD from Haemophilus influenzae, as binary complexes with either AdoMet or S-adenosyl-L-homocysteine (AdoHcy), as a ternary complex with AdoHcy and phosphate, and as an apo form. This first structure of TrmD indicates that it functions as a dimer. It also suggests the binding mode of G(36)G(37) in the active site of TrmD and the catalytic mechanism. The N-terminal domain has a trefoil knot, in which AdoMet or AdoHcy is bound in a novel, bent conformation. The C-terminal domain shows structural similarity to trp repressor. We propose a plausible model for the TrmD(2)-tRNA(2) complex, which provides insights into recognition of the general tRNA structure by TrmD.

Articles - 1uak mentioned but not cited (13)

  1. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. Tkaczuk KL, Dunin-Horkawicz S, Purta E, Bujnicki JM. BMC Bioinformatics 8 73 (2007)
  2. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. Ahn HJ, Kim HW, Yoon HJ, Lee BI, Suh SW, Yang JK. EMBO J 22 2593-2603 (2003)
  3. Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD. Ito T, Masuda I, Yoshida K, Goto-Ito S, Sekine S, Suh SW, Hou YM, Yokoyama S. Proc Natl Acad Sci U S A 112 E4197-205 (2015)
  4. Control of catalytic cycle by a pair of analogous tRNA modification enzymes. Christian T, Lahoud G, Liu C, Hou YM. J Mol Biol 400 204-217 (2010)
  5. Methyl transfer by substrate signaling from a knotted protein fold. Christian T, Sakaguchi R, Perlinska AP, Lahoud G, Ito T, Taylor EA, Yokoyama S, Sulkowska JI, Hou YM. Nat Struct Mol Biol 23 941-948 (2016)
  6. Differentiating analogous tRNA methyltransferases by fragments of the methyl donor. Lahoud G, Goto-Ito S, Yoshida K, Ito T, Yokoyama S, Hou YM. RNA 17 1236-1246 (2011)
  7. A divalent metal ion-dependent N(1)-methyl transfer to G37-tRNA. Sakaguchi R, Lahoud G, Christian T, Gamper H, Hou YM. Chem Biol 21 1351-1360 (2014)
  8. tRNA Methylation Is a Global Determinant of Bacterial Multi-drug Resistance. Masuda I, Matsubara R, Christian T, Rojas ER, Yadavalli SS, Zhang L, Goulian M, Foster LJ, Huang KC, Hou YM. Cell Syst 8 302-314.e8 (2019)
  9. Crystal structure and catalytic mechanism of the essential m1G37 tRNA methyltransferase TrmD from Pseudomonas aeruginosa. Jaroensuk J, Wong YH, Zhong W, Liew CW, Maenpuen S, Sahili AE, Atichartpongkul S, Chionh YH, Nah Q, Thongdee N, McBee ME, Prestwich EG, DeMott MS, Chaiyen P, Mongkolsuk S, Dedon PC, Lescar J, Fuangthong M. RNA 25 1481-1496 (2019)
  10. Evolutionary Adaptation of the Essential tRNA Methyltransferase TrmD to the Signaling Molecule 3',5'-cAMP in Bacteria. Zhang Y, Agrebi R, Bellows LE, Collet JF, Kaever V, Gründling A. J Biol Chem 292 313-327 (2017)
  11. Mg2+-Dependent Methyl Transfer by a Knotted Protein: A Molecular Dynamics Simulation and Quantum Mechanics Study. Perlinska AP, Kalek M, Christian T, Hou YM, Sulkowska JI. ACS Catal 10 8058-8068 (2020)
  12. Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. Perlinska AP, Stasiulewicz A, Nawrocka EK, Kazimierczuk K, Setny P, Sulkowska JI. PLoS Comput Biol 16 e1007904 (2020)
  13. How Diverse Are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors? Friedrich NO, Simsir M, Kirchmair J. Front Chem 6 68 (2018)


Reviews citing this publication (18)

  1. 7-Methylguanosine Modifications in Transfer RNA (tRNA). Tomikawa C. Int J Mol Sci 19 E4080 (2018)
  2. Methylated nucleosides in tRNA and tRNA methyltransferases. Hori H. Front Genet 5 144 (2014)
  3. Structures and folding pathways of topologically knotted proteins. Virnau P, Mallam A, Jackson S. J Phys Condens Matter 23 033101 (2011)
  4. m1A Post-Transcriptional Modification in tRNAs. Oerum S, Dégut C, Barraud P, Tisné C. Biomolecules 7 E20 (2017)
  5. Diversity in mechanism and function of tRNA methyltransferases. Swinehart WE, Jackman JE. RNA Biol 12 398-411 (2015)
  6. How does a knotted protein fold? Mallam AL. FEBS J 276 365-375 (2009)
  7. Stereochemical mechanisms of tRNA methyltransferases. Hou YM, Perona JJ. FEBS Lett 584 278-286 (2010)
  8. Trm5 and TrmD: Two Enzymes from Distinct Origins Catalyze the Identical tRNA Modification, m¹G37. Goto-Ito S, Ito T, Yokoyama S. Biomolecules 7 E32 (2017)
  9. TrmD: A Methyl Transferase for tRNA Methylation With m1G37. Hou YM, Matsubara R, Takase R, Masuda I, Sulkowska JI. Enzymes 41 89-115 (2017)
  10. tRNAs as antibiotic targets. Chopra S, Reader J. Int J Mol Sci 16 321-349 (2014)
  11. Transfer RNA methyltransferases with a SpoU-TrmD  (SPOUT) fold and their modified nucleosides in  tRNA. Hori H. Biomolecules 7 E23 (2017)
  12. The Evolution of Substrate Specificity by tRNA Modification Enzymes. McKenney KM, Rubio MAT, Alfonzo JD. Enzymes 41 51-88 (2017)
  13. Extracurricular Functions of tRNA Modifications in Microorganisms. Edwards AM, Addo MA, Dos Santos PC. Genes (Basel) 11 E907 (2020)
  14. tRNA methylation: An unexpected link to bacterial resistance and persistence to antibiotics and beyond. Hou YM, Masuda I, Foster LJ. Wiley Interdiscip Rev RNA 11 e1609 (2020)
  15. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Int J Mol Sci 23 10669 (2022)
  16. Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases. Strassler SE, Bowles IE, Dey D, Jackman JE, Conn GL. J Biol Chem 298 102393 (2022)
  17. An Outline of the Latest Crystallographic Studies on Inhibitor-Enzyme Complexes for the Design and Development of New Therapeutics against Tuberculosis. Mori M, Villa S, Ciceri S, Colombo D, Ferraboschi P, Meneghetti F. Molecules 26 7082 (2021)
  18. N7-methylguanosine modification: from regulatory roles to therapeutic implications in cancer. Cai M, Yang C, Wang Z. Am J Cancer Res 13 1640-1655 (2023)

Articles citing this publication (70)

  1. Natural history of S-adenosylmethionine-binding proteins. Kozbial PZ, Mushegian AR. BMC Struct Biol 5 19 (2005)
  2. Insights into catalysis by a knotted TrmD tRNA methyltransferase. Elkins PA, Watts JM, Zalacain M, van Thiel A, Vitazka PR, Redlak M, Andraos-Selim C, Rastinejad F, Holmes WM. J Mol Biol 333 931-949 (2003)
  3. Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme. Nureki O, Watanabe K, Fukai S, Ishii R, Endo Y, Hori H, Yokoyama S. Structure 12 593-602 (2004)
  4. Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation. Goto-Ito S, Ito T, Kuratani M, Bessho Y, Yokoyama S. Nat Struct Mol Biol 16 1109-1115 (2009)
  5. Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases. Christian T, Hou YM. J Mol Biol 373 623-632 (2007)
  6. Folding studies on a knotted protein. Mallam AL, Jackson SE. J Mol Biol 346 1409-1421 (2005)
  7. Probing nature's knots: the folding pathway of a knotted homodimeric protein. Mallam AL, Jackson SE. J Mol Biol 359 1420-1436 (2006)
  8. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Wurm JP, Meyer B, Bahr U, Held M, Frolow O, Kötter P, Engels JW, Heckel A, Karas M, Entian KD, Wöhnert J. Nucleic Acids Res 38 2387-2398 (2010)
  9. Distinct origins of tRNA(m1G37) methyltransferase. Christian T, Evilia C, Williams S, Hou YM. J Mol Biol 339 707-719 (2004)
  10. A comparison of the folding of two knotted proteins: YbeA and YibK. Mallam AL, Jackson SE. J Mol Biol 366 650-665 (2007)
  11. A new tool for biotechnology: AdoMet-dependent methyltransferases. Klimasauskas S, Weinhold E. Trends Biotechnol 25 99-104 (2007)
  12. Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family. Watanabe K, Nureki O, Fukai S, Ishii R, Okamoto H, Yokoyama S, Endo Y, Hori H. J Biol Chem 280 10368-10377 (2005)
  13. Characterization of two homologous 2'-O-methyltransferases showing different specificities for their tRNA substrates. Somme J, Van Laer B, Roovers M, Steyaert J, Versées W, Droogmans L. RNA 20 1257-1271 (2014)
  14. Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. Goto-Ito S, Ito T, Ishii R, Muto Y, Bessho Y, Yokoyama S. Proteins 72 1274-1289 (2008)
  15. The yeast ribosome synthesis factor Emg1 is a novel member of the superfamily of alpha/beta knot fold methyltransferases. Leulliot N, Bohnsack MT, Graille M, Tollervey D, Van Tilbeurgh H. Nucleic Acids Res 36 629-639 (2008)
  16. Exploring knotting mechanisms in protein folding. Mallam AL, Morris ER, Jackson SE. Proc Natl Acad Sci U S A 105 18740-18745 (2008)
  17. YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Douthwaite S. RNA 14 2234-2244 (2008)
  18. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome Cassette mec (SCCmec) insertion site. Boundy S, Safo MK, Wang L, Musayev FN, O'Farrell HC, Rife JP, Archer GL. J Biol Chem 288 132-140 (2013)
  19. Knotted fusion proteins reveal unexpected possibilities in protein folding. Mallam AL, Onuoha SC, Grossmann JG, Jackson SE. Mol Cell 30 642-648 (2008)
  20. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP. Renalier MH, Joseph N, Gaspin C, Thebault P, Mougin A. RNA 11 1051-1063 (2005)
  21. Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Shao Z, Yan W, Peng J, Zuo X, Zou Y, Li F, Gong D, Ma R, Wu J, Shi Y, Zhang Z, Teng M, Li X, Gong Q. Nucleic Acids Res 42 509-525 (2014)
  22. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. Iyer LM, Abhiman S, de Souza RF, Aravind L. Nucleic Acids Res 38 5261-5279 (2010)
  23. The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL. Liu RJ, Zhou M, Fang ZP, Wang M, Zhou XL, Wang ED. Nucleic Acids Res 41 7828-7842 (2013)
  24. The dimerization of an alpha/beta-knotted protein is essential for structure and function. Mallam AL, Jackson SE. Structure 15 111-122 (2007)
  25. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Taylor AB, Meyer B, Leal BZ, Kötter P, Schirf V, Demeler B, Hart PJ, Entian KD, Wöhnert J. Nucleic Acids Res 36 1542-1554 (2008)
  26. The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus. Takeda H, Toyooka T, Ikeuchi Y, Yokobori S, Okadome K, Takano F, Oshima T, Suzuki T, Endo Y, Hori H. Genes Cells 11 1353-1365 (2006)
  27. Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5. Christian T, Lahoud G, Liu C, Hoffmann K, Perona JJ, Hou YM. RNA 16 2484-2492 (2010)
  28. Structure and function of the antibiotic resistance-mediating methyltransferase AviRb from Streptomyces viridochromogenes. Mosbacher TG, Bechthold A, Schulz GE. J Mol Biol 345 535-545 (2005)
  29. Comparative genomic assessment of novel broad-spectrum targets for antibacterial drugs. White TA, Kell DB. Comp Funct Genomics 5 304-327 (2004)
  30. Conservation of structure and mechanism by Trm5 enzymes. Christian T, Gamper H, Hou YM. RNA 19 1192-1199 (2013)
  31. Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline. Christian T, Evilia C, Hou YM. Biochemistry 45 7463-7473 (2006)
  32. Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase. Zegers I, Gigot D, van Vliet F, Tricot C, Aymerich S, Bujnicki JM, Kosinski J, Droogmans L. Nucleic Acids Res 34 1925-1934 (2006)
  33. Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Fislage M, Roovers M, Tuszynska I, Bujnicki JM, Droogmans L, Versées W. Nucleic Acids Res 40 5149-5161 (2012)
  34. Flexible recognition of the tRNA G18 methylation target site by TrmH methyltransferase through first binding and induced fit processes. Ochi A, Makabe K, Kuwajima K, Hori H. J Biol Chem 285 9018-9029 (2010)
  35. Characterization of Streptococcus pneumoniae TrmD, a tRNA methyltransferase essential for growth. O'Dwyer K, Watts JM, Biswas S, Ambrad J, Barber M, Brulé H, Petit C, Holmes DJ, Zalacain M, Holmes WM. J Bacteriol 186 2346-2354 (2004)
  36. Recognition of guanosine by dissimilar tRNA methyltransferases. Sakaguchi R, Giessing A, Dai Q, Lahoud G, Liutkeviciute Z, Klimasauskas S, Piccirilli J, Kirpekar F, Hou YM. RNA 18 1687-1701 (2012)
  37. Conserved amino acids in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Ozanick SG, Bujnicki JM, Sem DS, Anderson JT. Nucleic Acids Res 35 6808-6819 (2007)
  38. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, Watanabe K, Nureki O, Kuwajima K, Hori H. J Biol Chem 288 25562-25574 (2013)
  39. pKNOT: the protein KNOT web server. Lai YL, Yen SC, Yu SH, Hwang JK. Nucleic Acids Res 35 W420-4 (2007)
  40. Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii. Ihsanawati, Nishimoto M, Higashijima K, Shirouzu M, Grosjean H, Bessho Y, Yokoyama S. J Mol Biol 383 871-884 (2008)
  41. Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2'-O-methyltransferase. Zhou M, Long T, Fang ZP, Zhou XL, Liu RJ, Wang ED. RNA Biol 12 900-911 (2015)
  42. Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue. Van Laer B, Roovers M, Wauters L, Kasprzak JM, Dyzma M, Deyaert E, Kumar Singh R, Feller A, Bujnicki JM, Droogmans L, Versées W. Nucleic Acids Res 44 940-953 (2016)
  43. The energy landscape, folding pathways and the kinetics of a knotted protein. Prentiss MC, Wales DJ, Wolynes PG. PLoS Comput Biol 6 e1000835 (2010)
  44. Structure of the thiostrepton resistance methyltransferase.S-adenosyl-L-methionine complex and its interaction with ribosomal RNA. Dunstan MS, Hang PC, Zelinskaya NV, Honek JF, Conn GL. J Biol Chem 284 17013-17020 (2009)
  45. Development of Inhibitors against Mycobacterium abscessus tRNA (m1G37) Methyltransferase (TrmD) Using Fragment-Based Approaches. Whitehouse AJ, Thomas SE, Brown KP, Fanourakis A, Chan DS, Libardo MDJ, Mendes V, Boshoff HIM, Floto RA, Abell C, Blundell TL, Coyne AG. J Med Chem 62 7210-7232 (2019)
  46. tRNA recognition by a bacterial tRNA Xm32 modification enzyme from the SPOUT methyltransferase superfamily. Liu RJ, Long T, Zhou M, Zhou XL, Wang ED. Nucleic Acids Res 43 7489-7503 (2015)
  47. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA. Kuratani M, Bessho Y, Nishimoto M, Grosjean H, Yokoyama S. J Mol Biol 375 1064-1075 (2008)
  48. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. von Grotthuss M, Plewczynski D, Ginalski K, Rychlewski L, Shakhnovich EI. BMC Bioinformatics 7 53 (2006)
  49. The temperature sensitivity of a mutation in the essential tRNA modification enzyme tRNA methyltransferase D (TrmD). Masuda I, Sakaguchi R, Liu C, Gamper H, Hou YM. J Biol Chem 288 28987-28996 (2013)
  50. Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA (Guanine37-N1)-Methyltransferase (TrmD) by Restructuring the Active Site with a Tyrosine-Flipping Mechanism. Zhong W, Pasunooti KK, Balamkundu S, Wong YH, Nah Q, Gadi V, Gnanakalai S, Chionh YH, McBee ME, Gopal P, Lim SH, Olivier N, Buurman ET, Dick T, Liu CF, Lescar J, Dedon PC. J Med Chem 62 7788-7805 (2019)
  51. Codon-Specific Translation by m1G37 Methylation of tRNA. Hou YM, Masuda I, Gamper H. Front Genet 9 713 (2018)
  52. Crystal structure of Mj1640/DUF358 protein reveals a putative SPOUT-class RNA methyltransferase. Chen HY, Yuan YA. J Mol Cell Biol 2 366-374 (2010)
  53. Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification. Thomas SE, Whitehouse AJ, Brown K, Burbaud S, Belardinelli JM, Sangen J, Lahiri R, Libardo MDJ, Gupta P, Malhotra S, Boshoff HIM, Jackson M, Abell C, Coyne AG, Blundell TL, Floto RA, Mendes V. Nucleic Acids Res 48 8099-8112 (2020)
  54. Loss of N1-methylation of G37 in tRNA induces ribosome stalling and reprograms gene expression. Masuda I, Hwang JY, Christian T, Maharjan S, Mohammad F, Gamper H, Buskirk AR, Hou YM. Elife 10 e70619 (2021)
  55. Insights into the catalytic mechanism of 16S rRNA methyltransferase RsmE (m³U1498) from crystal and solution structures. Zhang H, Wan H, Gao ZQ, Wei Y, Wang WJ, Liu GF, Shtykova EV, Xu JH, Dong YH. J Mol Biol 423 576-589 (2012)
  56. Stabilization of tRNA (mG37) methyltransferase [TrmD] from Aquifex aeolicus by an intersubunit disulfide bond formation. Toyooka T, Awai T, Kanai T, Imanaka T, Hori H. Genes Cells 13 807-816 (2008)
  57. Multilevel functional and structural defects induced by two pathogenic mitochondrial tRNA mutations. Wang M, Zhou XL, Liu RJ, Fang ZP, Zhou M, Eriani G, Wang ED. Biochem J 453 455-465 (2013)
  58. Mechanically tightening, untying and retying a protein trefoil knot by single-molecule force spectroscopy. Wang H, Li H. Chem Sci 11 12512-12521 (2020)
  59. Structural model of the M7G46 Methyltransferase TrmB in complex with tRNA. Blersch KF, Burchert JP, August SC, Welp L, Neumann P, Köster S, Urlaub H, Ficner R. RNA Biol 18 2466-2479 (2021)
  60. The structure of Rv2372c identifies an RsmE-like methyltransferase from Mycobacterium tuberculosis. Kumar A, Kumar S, Taneja B. Acta Crystallogr D Biol Crystallogr 70 821-832 (2014)
  61. Structural and biochemical insights into the 2'-O-methylation of pyrimidines 34 in tRNA. Pang P, Deng X, Wang Z, Xie W. FEBS J 284 2251-2263 (2017)
  62. Substrate recognition and modification by the nosiheptide resistance methyltransferase. Yin S, Jiang H, Chen D, Murchie AI. PLoS One 10 e0122972 (2015)
  63. tRNA methylation resolves codon usage bias at the limit of cell viability. Masuda I, Yamaki Y, Detroja R, Tagore S, Moore H, Maharjan S, Nakano Y, Christian T, Matsubara R, Lowe TM, Frenkel-Morgenstern M, Hou YM. Cell Rep 41 111539 (2022)
  64. Crystal structure of Thermotoga maritima SPOUT superfamily RNA methyltransferase Tm1570 in complex with S-adenosyl-L-methionine. Kim DJ, Kim HS, Lee SJ, Suh SW. Proteins 74 245-249 (2009)
  65. Exploring GpG bases next to anticodon in tRNA subsets. Srinivasan T, Kumaran K, Selvakumar R, Velmurugan D, Sudarsanam D. Bioinformation 9 466-470 (2013)
  66. Identification of a 2'-O-Methyluridine Nucleoside Hydrolase Using the Metagenomic Libraries. Aučynaitė A, Rutkienė R, Tauraitė D, Meškys R, Urbonavičius J. Molecules 23 E2904 (2018)
  67. Kinetic Analysis of tRNA Methyltransferases. Hou YM, Masuda I. Methods Enzymol 560 91-116 (2015)
  68. Structural Analysis of Glycine Sarcosine N-methyltransferase from Methanohalophilus portucalensis Reveals Mechanistic Insights into the Regulation of Methyltransferase Activity. Lee YR, Lin TS, Lai SJ, Liu MS, Lai MC, Chan NL. Sci Rep 6 38071 (2016)
  69. Single-Turnover Kinetics of Methyl Transfer to tRNA by Methyltransferases. Hou YM. Methods Mol Biol 1421 79-96 (2016)
  70. Deciphering the Role of Residues Involved in Disorder-To-Order Transition Regions in Archaeal tRNA Methyltransferase 5. Srivastava A, Yesudhas D, Ahmad S, Ahmad S, Gromiha MM. Genes (Basel) 12 399 (2021)