1ukh Citations

Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125.

Abstract

The c-jun N-terminal kinase (JNK) signaling pathway is regulated by JNK-interacting protein-1 (JIP1), which is a scaffolding protein assembling the components of the JNK cascade. Overexpression of JIP1 deactivates the JNK pathway selectively by cytoplasmic retention of JNK and thereby inhibits gene expression mediated by JNK, which occurs in the nucleus. Here, we report the crystal structure of human JNK1 complexed with pepJIP1, the peptide fragment of JIP1, revealing its selectivity for JNK1 over other MAPKs and the allosteric inhibition mechanism. The van der Waals contacts by the three residues (Pro157, Leu160, and Leu162) of pepJIP1 and the hydrogen bonding between Glu329 of JNK1 and Arg156 of pepJIP1 are critical for the selective binding. Binding of the peptide also induces a hinge motion between the N- and C-terminal domains of JNK1 and distorts the ATP-binding cleft, reducing the affinity of the kinase for ATP. In addition, we also determined the ternary complex structure of pepJIP1-bound JNK1 complexed with SP600125, an ATP-competitive inhibitor of JNK, providing the basis for the JNK specificity of the compound.

Reviews - 1ukh mentioned but not cited (4)

  1. Molecular basis of MAP kinase regulation. Peti W, Page R. Protein Sci 22 1698-1710 (2013)
  2. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  3. Inhibitors of c-Jun N-terminal kinases: JuNK no more? Bogoyevitch MA, Arthur PG. Biochim Biophys Acta 1784 76-93 (2008)
  4. Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P. Curr Pharm Des 18 1173-1185 (2012)

Articles - 1ukh mentioned but not cited (20)

  1. Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. Heo YS, Kim SK, Seo CI, Kim YK, Sung BJ, Lee HS, Lee JI, Park SY, Kim JH, Hwang KY, Hyun YL, Jeon YH, Ro S, Cho JM, Lee TG, Yang CH. EMBO J 23 2185-2195 (2004)
  2. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Garai Á, Zeke A, Gógl G, Törő I, Fördős F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A. Sci Signal 5 ra74 (2012)
  3. Verification of alternative splicing variants based on domain integrity, truncation length and intrinsic protein disorder. Hegyi H, Kalmar L, Horvath T, Tompa P. Nucleic Acids Res 39 1208-1219 (2011)
  4. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. PLoS Comput Biol 10 e1003470 (2014)
  5. A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Liu X, Zhang CS, Lu C, Lin SC, Wu JW, Wang ZX. Nat Commun 7 10879 (2016)
  6. Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1. Yan C, Kaoud T, Lee S, Dalby KN, Ren P. J Phys Chem B 115 1491-1502 (2011)
  7. Structural and functional analysis of the natural JNK1 inhibitor quercetagetin. Baek S, Kang NJ, Popowicz GM, Arciniega M, Jung SK, Byun S, Song NR, Heo YS, Kim BY, Lee HJ, Holak TA, Augustin M, Bode AM, Huber R, Dong Z, Lee KW. J Mol Biol 425 411-423 (2013)
  8. From in Silico Discovery to intra-Cellular Activity: Targeting JNK-Protein Interactions with Small Molecules. Kaoud TS, Yan C, Mitra S, Tseng CC, Jose J, Taliaferro JM, Tuohetahuntila M, Devkota A, Sammons R, Park J, Park H, Shi Y, Hong J, Ren P, Dalby KN. ACS Med Chem Lett 3 721-725 (2012)
  9. Synthesis and optimization of thiadiazole derivatives as a novel class of substrate competitive c-Jun N-terminal kinase inhibitors. De SK, Chen V, Stebbins JL, Chen LH, Cellitti JF, Machleidt T, Barile E, Riel-Mehan M, Dahl R, Yang L, Emdadi A, Murphy R, Pellecchia M. Bioorg Med Chem 18 590-596 (2010)
  10. Manipulating JNK signaling with (--)-zuonin A. Kaoud TS, Park H, Mitra S, Yan C, Tseng CC, Shi Y, Jose J, Taliaferro JM, Lee K, Ren P, Hong J, Dalby KN. ACS Chem Biol 7 1873-1883 (2012)
  11. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity. Wang B, Qin X, Wu J, Deng H, Li Y, Yang H, Chen Z, Liu G, Ren D. Sci Rep 6 25646 (2016)
  12. MORPH-PRO: a novel algorithm and web server for protein morphing. Castellana NE, Lushnikov A, Rotkiewicz P, Sefcovic N, Pevzner PA, Godzik A, Vyatkina K. Algorithms Mol Biol 8 19 (2013)
  13. Systematically Deciphering the Pharmacological Mechanism of Fructus Aurantii via Network Pharmacology. Jin Q, Lu J, Gao R, Xu J, Pan X, Wang L. Evid Based Complement Alternat Med 2021 6236135 (2021)
  14. Enthalpy-Entropy Compensation in the Promiscuous Interaction of an Intrinsically Disordered Protein with Homologous Protein Partners. Kragelj J, Orand T, Delaforge E, Tengo L, Blackledge M, Palencia A, Jensen MR. Biomolecules 11 1204 (2021)
  15. The crystal structure of JNK from Drosophila melanogaster reveals an evolutionarily conserved topology with that of mammalian JNK proteins. Chimnaronk S, Sitthiroongruang J, Srisucharitpanit K, Srisaisup M, Ketterman AJ, Boonserm P. BMC Struct Biol 15 17 (2015)
  16. Exploring Molecular Mechanisms of Aloe barbadmsis Miller on Diphenoxylate-Induced Constipation in Mice. Tang R, Zhang J, Nan H, Lv R, Chen X, Liu Y, Wang X, Wang L. Evid Based Complement Alternat Med 2022 6225758 (2022)
  17. Elucidating binding modes of zuonin A enantiomers to JNK1 via in silico methods. Dykstra DW, Dalby KN, Ren P. J Mol Graph Model 45 38-44 (2013)
  18. Defining the Potential Targets for Biological Activity of Isoegomaketone Based on Network Pharmacology and Molecular Docking Methods. Zhang J, Wang R, Qin Y, Feng C. Life (Basel) 12 2115 (2022)
  19. Identifying New Ligands for JNK3 by Fluorescence Thermal Shift Assays and Native Mass Spectrometry. Cheng C, Liu M, Gao X, Wu D, Pu M, Ma J, Quinn RJ, Xiao Z, Liu Z. ACS Omega 7 13925-13931 (2022)
  20. Using network pharmacology and molecular docking verification to explore the mechanism of ursolic acid in the treatment of osteoporosis. Yang B, Zhu Q, Wang X, Mao J, Zhou S. Medicine (Baltimore) 101 e32222 (2022)


Reviews citing this publication (30)

  1. Differential regulation and properties of MAPKs. Raman M, Chen W, Cobb MH. Oncogene 26 3100-3112 (2007)
  2. ERK1/2 MAP kinases: structure, function, and regulation. Roskoski R. Pharmacol Res 66 105-143 (2012)
  3. Mechanisms of specificity in protein phosphorylation. Ubersax JA, Ferrell JE. Nat Rev Mol Cell Biol 8 530-541 (2007)
  4. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol Cell 15 661-675 (2004)
  5. The JNK signal transduction pathway. Weston CR, Davis RJ. Curr Opin Cell Biol 19 142-149 (2007)
  6. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Bogoyevitch MA, Kobe B. Microbiol Mol Biol Rev 70 1061-1095 (2006)
  7. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. Annu Rev Biochem 75 655-680 (2006)
  8. MAP kinases and the control of nuclear events. Turjanski AG, Vaqué JP, Gutkind JS. Oncogene 26 3240-3253 (2007)
  9. Targeting innate immunity protein kinase signalling in inflammation. Gaestel M, Kotlyarov A, Kracht M. Nat Rev Drug Discov 8 480-499 (2009)
  10. Cell Signaling and Stress Responses. Hotamisligil GS, Davis RJ. Cold Spring Harb Perspect Biol 8 a006072 (2016)
  11. JNK signalling in cancer: in need of new, smarter therapeutic targets. Bubici C, Papa S. Br J Pharmacol 171 24-37 (2014)
  12. Docking interactions in protein kinase and phosphatase networks. Reményi A, Good MC, Lim WA. Curr Opin Struct Biol 16 676-685 (2006)
  13. The road less traveled: modulating signal transduction enzymes by inhibiting their protein-protein interactions. Arkin MR, Whitty A. Curr Opin Chem Biol 13 284-290 (2009)
  14. JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer's and various neurodegenerative abnormalities. Mehan S, Meena H, Sharma D, Sankhla R. J Mol Neurosci 43 376-390 (2011)
  15. Targeting JNK3 for the treatment of neurodegenerative disorders. Resnick L, Fennell M. Drug Discov Today 9 932-939 (2004)
  16. Specific activities of individual c-Jun N-terminal kinases in the brain. Haeusgen W, Boehm R, Zhao Y, Herdegen T, Waetzig V. Neuroscience 161 951-959 (2009)
  17. Unique MAP Kinase binding sites. Akella R, Moon TM, Goldsmith EJ. Biochim Biophys Acta 1784 48-55 (2008)
  18. Fructose-mediated stress signaling in the liver: implications for hepatic insulin resistance. Wei Y, Wang D, Topczewski F, Pagliassotti MJ. J Nutr Biochem 18 1-9 (2007)
  19. Networks for the allosteric control of protein kinases. Shi Z, Resing KA, Ahn NG. Curr Opin Struct Biol 16 686-692 (2006)
  20. Therapeutic targets for rheumatoid arthritis: Progress and promises. Alghasham A, Rasheed Z. Autoimmunity 47 77-94 (2014)
  21. Microtubule and microtubule associated protein anomalies in psychiatric disease. Marchisella F, Coffey ET, Hollos P. Cytoskeleton (Hoboken) 73 596-611 (2016)
  22. c-Jun N-terminal kinase inhibitors: a patent review (2010 - 2014). Gehringer M, Muth F, Koch P, Laufer SA. Expert Opin Ther Pat 25 849-872 (2015)
  23. c-Jun N-terminal kinases in memory and synaptic plasticity. Sherrin T, Blank T, Todorovic C. Rev Neurosci 22 403-410 (2011)
  24. JNK1, a potential therapeutic target for hepatocellular carcinoma. Chen F, Beezhold K, Castranova V. Biochim Biophys Acta 1796 242-251 (2009)
  25. Analysis of mitogen-activated protein kinase activation and interactions with regulators and substrates. Bardwell L, Shah K. Methods 40 213-223 (2006)
  26. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases. Yueh C, Rettenmaier J, Xia B, Hall DR, Alekseenko A, Porter KA, Barkovich K, Keseru G, Whitty A, Wells JA, Vajda S, Kozakov D. J Med Chem 62 6512-6524 (2019)
  27. Novel tumor-suppressor function of KLF4 in pediatric T-cell acute lymphoblastic leukemia. Shen Y, Chen TJ, Lacorazza HD. Exp Hematol 53 16-25 (2017)
  28. MAP kinase modules: the excursion model and the steps that count. Piala AT, Humphreys JM, Goldsmith EJ. Biophys J 107 2006-2015 (2014)
  29. Three-dimensional docking in the MAPK p38α. Goldsmith EJ. Sci Signal 4 pe47 (2011)
  30. Scaffold proteins as dynamic integrators of biological processes. DiRusso CJ, Dashtiahangar M, Gilmore TD. J Biol Chem 298 102628 (2022)

Articles citing this publication (130)

  1. Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity. Babon JJ, Kershaw NJ, Murphy JM, Varghese LN, Laktyushin A, Young SN, Lucet IS, Norton RS, Nicola NA. Immunity 36 239-250 (2012)
  2. Mechanisms of MAPK signalling specificity. Bardwell L. Biochem Soc Trans 34 837-841 (2006)
  3. RACK1 mediates activation of JNK by protein kinase C [corrected]. López-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z. Mol Cell 19 309-320 (2005)
  4. Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Zhou T, Sun L, Humphreys J, Goldsmith EJ. Structure 14 1011-1019 (2006)
  5. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Stebbins JL, De SK, Machleidt T, Becattini B, Vazquez J, Kuntzen C, Chen LH, Cellitti JF, Riel-Mehan M, Emdadi A, Solinas G, Karin M, Pellecchia M. Proc Natl Acad Sci U S A 105 16809-16813 (2008)
  6. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network. Reményi A, Good MC, Bhattacharyya RP, Lim WA. Mol Cell 20 951-962 (2005)
  7. Constitutive ALK5-independent c-Jun N-terminal kinase activation contributes to endothelin-1 overexpression in pulmonary fibrosis: evidence of an autocrine endothelin loop operating through the endothelin A and B receptors. Shi-Wen X, Rodríguez-Pascual F, Lamas S, Holmes A, Howat S, Pearson JD, Dashwood MR, du Bois RM, Denton CP, Black CM, Abraham DJ, Leask A. Mol Cell Biol 26 5518-5527 (2006)
  8. Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs. Sheridan DL, Kong Y, Parker SA, Dalby KN, Turk BE. J Biol Chem 283 19511-19520 (2008)
  9. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Liu S, Sun JP, Zhou B, Zhang ZY. Proc Natl Acad Sci U S A 103 5326-5331 (2006)
  10. Selectivity of docking sites in MAPK kinases. Bardwell AJ, Frankson E, Bardwell L. J Biol Chem 284 13165-13173 (2009)
  11. ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. Yamauchi J, Miyamoto Y, Chan JR, Tanoue A. J Cell Biol 181 351-365 (2008)
  12. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Zhu Y, Li H, Long C, Hu L, Xu H, Liu L, Chen S, Wang DC, Shao F. Mol Cell 28 899-913 (2007)
  13. Molecular basis of MAPK-activated protein kinase 2:p38 assembly. White A, Pargellis CA, Studts JM, Werneburg BG, Farmer BT. Proc Natl Acad Sci U S A 104 6353-6358 (2007)
  14. Ablation of the spindle assembly checkpoint by a compound targeting Mps1. Schmidt M, Budirahardja Y, Klompmaker R, Medema RH. EMBO Rep 6 866-872 (2005)
  15. IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-β receptor on hepatic stellate cells in a JNK-dependent manner. Fabre T, Kared H, Friedman SL, Shoukry NH. J Immunol 193 3925-3933 (2014)
  16. Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Dávila D, Torres-Aleman I. Mol Biol Cell 19 2014-2025 (2008)
  17. Structural and functional characterization of the human protein kinase ASK1. Bunkoczi G, Salah E, Filippakopoulos P, Fedorov O, Müller S, Sobott F, Parker SA, Zhang H, Min W, Turk BE, Knapp S. Structure 15 1215-1226 (2007)
  18. Interacting JNK-docking sites in MKK7 promote binding and activation of JNK mitogen-activated protein kinases. Ho DT, Bardwell AJ, Grewal S, Iverson C, Bardwell L. J Biol Chem 281 13169-13179 (2006)
  19. Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. Younis I, Dittmar K, Wang W, Foley SW, Berg MG, Hu KY, Wei Z, Wan L, Dreyfuss G. Elife 2 e00780 (2013)
  20. Structural basis of p38α regulation by hematopoietic tyrosine phosphatase. Francis DM, Różycki B, Koveal D, Hummer G, Page R, Peti W. Nat Chem Biol 7 916-924 (2011)
  21. Structures of p38alpha active mutants reveal conformational changes in L16 loop that induce autophosphorylation and activation. Diskin R, Lebendiker M, Engelberg D, Livnah O. J Mol Biol 365 66-76 (2007)
  22. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. Dixit A, Verkhivker GM. PLoS Comput Biol 7 e1002179 (2011)
  23. Blocking c-Jun N-terminal kinase (JNK) translocation to the mitochondria prevents 6-hydroxydopamine-induced toxicity in vitro and in vivo. Chambers JW, Howard S, LoGrasso PV. J Biol Chem 288 1079-1087 (2013)
  24. Nerve growth factor activation of the TrkA receptor induces cell death, by macropinocytosis, in medulloblastoma Daoy cells. Li C, Macdonald JI, Hryciw T, Meakin SO. J Neurochem 112 882-899 (2010)
  25. Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria. Galli S, Antico Arciuch VG, Poderoso C, Converso DP, Zhou Q, Bal de Kier Joffé E, Cadenas E, Boczkowski J, Carreras MC, Poderoso JJ. PLoS One 3 e2379 (2008)
  26. The critical features and the mechanism of inhibition of a kinase interaction motif-based peptide inhibitor of JNK. Barr RK, Boehm I, Attwood PV, Watt PM, Bogoyevitch MA. J Biol Chem 279 36327-36338 (2004)
  27. Ethanol rapidly causes activation of JNK associated with ER stress under inhibition of ADH. Nishitani Y, Matsumoto H. FEBS Lett 580 9-14 (2006)
  28. Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase. Murakami Y, Tatebayashi K, Saito H. Mol Cell Biol 28 2481-2494 (2008)
  29. Mechanism of Mpk1 mitogen-activated protein kinase binding to the Swi4 transcription factor and its regulation by a novel caffeine-induced phosphorylation. Truman AW, Kim KY, Levin DE. Mol Cell Biol 29 6449-6461 (2009)
  30. Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry. Zhou B, Zhang J, Liu S, Reddy S, Wang F, Zhang ZY. J Biol Chem 281 38834-38844 (2006)
  31. A distinct interaction mode revealed by the crystal structure of the kinase p38α with the MAPK binding domain of the phosphatase MKP5. Zhang YY, Wu JW, Wang ZX. Sci Signal 4 ra88 (2011)
  32. Selective killing of p53-deficient cancer cells by SP600125. Jemaà M, Vitale I, Kepp O, Berardinelli F, Galluzzi L, Senovilla L, Mariño G, Malik SA, Rello-Varona S, Lissa D, Antoccia A, Tailler M, Schlemmer F, Harper F, Pierron G, Castedo M, Kroemer G. EMBO Mol Med 4 500-514 (2012)
  33. Identification of small-molecule inhibitors of the JIP-JNK interaction. Chen T, Kablaoui N, Little J, Timofeevski S, Tschantz WR, Chen P, Feng J, Charlton M, Stanton R, Bauer P. Biochem J 420 283-294 (2009)
  34. Structure and dynamics of the MKK7-JNK signaling complex. Kragelj J, Palencia A, Nanao MH, Maurin D, Bouvignies G, Blackledge M, Jensen MR. Proc Natl Acad Sci U S A 112 3409-3414 (2015)
  35. Design and synthesis of 6-anilinoindazoles as selective inhibitors of c-Jun N-terminal kinase-3. Swahn BM, Huerta F, Kallin E, Malmström J, Weigelt T, Viklund J, Womack P, Xue Y, Ohberg L. Bioorg Med Chem Lett 15 5095-5099 (2005)
  36. Varicella-zoster virus infection of human fibroblast cells activates the c-Jun N-terminal kinase pathway. Zapata HJ, Nakatsugawa M, Moffat JF. J Virol 81 977-990 (2007)
  37. A unique set of SH3-SH3 interactions controls IB1 homodimerization. Kristensen O, Guenat S, Dar I, Allaman-Pillet N, Abderrahmani A, Ferdaoussi M, Roduit R, Maurer F, Beckmann JS, Kastrup JS, Gajhede M, Bonny C. EMBO J 25 785-797 (2006)
  38. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Mol Syst Biol 11 837 (2015)
  39. The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. Guo C, Whitmarsh AJ. J Biol Chem 283 15903-15911 (2008)
  40. The crystal structure of JNK2 reveals conformational flexibility in the MAP kinase insert and indicates its involvement in the regulation of catalytic activity. Shaw D, Wang SM, Villaseñor AG, Tsing S, Walter D, Browner MF, Barnett J, Kuglstatter A. J Mol Biol 383 885-893 (2008)
  41. Delayed Treatment With 4-Methylpyrazole Protects Against Acetaminophen Hepatotoxicity in Mice by Inhibition of c-Jun n-Terminal Kinase. Akakpo JY, Ramachandran A, Duan L, Schaich MA, Jaeschke MW, Freudenthal BD, Ding WX, Rumack BH, Jaeschke H. Toxicol Sci 170 57-68 (2019)
  42. Therapeutic promise of JNK ATP-noncompetitive inhibitors. Bogoyevitch MA. Trends Mol Med 11 232-239 (2005)
  43. Design, synthesis, and structure-activity relationship of substrate competitive, selective, and in vivo active triazole and thiadiazole inhibitors of the c-Jun N-terminal kinase. De SK, Stebbins JL, Chen LH, Riel-Mehan M, Machleidt T, Dahl R, Yuan H, Emdadi A, Barile E, Chen V, Murphy R, Pellecchia M. J Med Chem 52 1943-1952 (2009)
  44. GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2. Thévenin AF, Zony CL, Bahnson BJ, Colman RF. Protein Sci 20 834-848 (2011)
  45. Structure-activity relationships and X-ray structures describing the selectivity of aminopyrazole inhibitors for c-Jun N-terminal kinase 3 (JNK3) over p38. Kamenecka T, Habel J, Duckett D, Chen W, Ling YY, Frackowiak B, Jiang R, Shin Y, Song X, LoGrasso P. J Biol Chem 284 12853-12861 (2009)
  46. Design and synthesis of 2'-anilino-4,4'-bipyridines as selective inhibitors of c-Jun N-terminal kinase-3. Swahn BM, Xue Y, Arzel E, Kallin E, Magnus A, Plobeck N, Viklund J. Bioorg Med Chem Lett 16 1397-1401 (2006)
  47. Docking interactions of the JNK scaffold protein WDR62. Cohen-Katsenelson K, Wasserman T, Khateb S, Whitmarsh AJ, Aronheim A. Biochem J 439 381-390 (2011)
  48. Structural mechanisms of allostery and autoinhibition in JNK family kinases. Laughlin JD, Nwachukwu JC, Figuera-Losada M, Cherry L, Nettles KW, LoGrasso PV. Structure 20 2174-2184 (2012)
  49. TAK1 regulates NF-ΚB and AP-1 activation in airway epithelial cells following RSV infection. Dey N, Liu T, Garofalo RP, Casola A. Virology 418 93-101 (2011)
  50. Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor. Schepetkin IA, Kirpotina LN, Hammaker D, Kochetkova I, Khlebnikov AI, Lyakhov SA, Firestein GS, Quinn MT. J Pharmacol Exp Ther 353 505-516 (2015)
  51. Meiotic induction by heat stress in mouse oocytes: involvement of AMP-activated protein kinase and MAPK family members. LaRosa C, Downs SM. Biol Reprod 76 476-486 (2007)
  52. Solution NMR insights into docking interactions involving inactive ERK2. Piserchio A, Warthaka M, Devkota AK, Kaoud TS, Lee S, Abramczyk O, Ren P, Dalby KN, Ghose R. Biochemistry 50 3660-3672 (2011)
  53. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structure 25 16-26 (2017)
  54. The third conformation of p38α MAP kinase observed in phosphorylated p38α and in solution. Akella R, Min X, Wu Q, Gardner KH, Goldsmith EJ. Structure 18 1571-1578 (2010)
  55. A multitude of kinases--which are the best targets in treating rheumatoid arthritis? Lindstrom TM, Robinson WH. Rheum Dis Clin North Am 36 367-383 (2010)
  56. Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. Molina DM, Grewal S, Bardwell L. J Biol Chem 280 42051-42060 (2005)
  57. Development of JNK2-selective peptide inhibitors that inhibit breast cancer cell migration. Kaoud TS, Mitra S, Lee S, Taliaferro J, Cantrell M, Linse KD, Van Den Berg CL, Dalby KN. ACS Chem Biol 6 658-666 (2011)
  58. Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding. Abramczyk O, Rainey MA, Barnes R, Martin L, Dalby KN. Biochemistry 46 9174-9186 (2007)
  59. Recruitment interactions can override catalytic interactions in determining the functional identity of a protein kinase. Won AP, Garbarino JE, Lim WA. Proc Natl Acad Sci U S A 108 9809-9814 (2011)
  60. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Stogios PJ, Spanogiannopoulos P, Evdokimova E, Egorova O, Shakya T, Todorovic N, Capretta A, Wright GD, Savchenko A. Biochem J 454 191-200 (2013)
  61. Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes. Sampieri CL, Nuttall RK, Young DA, Goldspink D, Clark IM, Edwards DR. Matrix Biol 27 128-138 (2008)
  62. An RNA interference-based screen of transcription factor genes identifies pathways necessary for sensory regeneration in the avian inner ear. Alvarado DM, Hawkins RD, Bashiardes S, Veile RA, Ku YC, Powder KE, Spriggs MK, Speck JD, Warchol ME, Lovett M. J Neurosci 31 4535-4543 (2011)
  63. Determinants that control the specific interactions between TAB1 and p38alpha. Zhou H, Zheng M, Chen J, Xie C, Kolatkar AR, Zarubin T, Ye Z, Akella R, Lin S, Goldsmith EJ, Han J. Mol Cell Biol 26 3824-3834 (2006)
  64. Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Shrestha A, Hamilton G, O'Neill E, Knapp S, Elkins JM. Protein Expr Purif 81 136-143 (2012)
  65. Characterization of ERK docking domain inhibitors that induce apoptosis by targeting Rsk-1 and caspase-9. Boston SR, Deshmukh R, Strome S, Priyakumar UD, MacKerell AD, Shapiro P. BMC Cancer 11 7 (2011)
  66. Non-ATP competitive protein kinase inhibitors as anti-tumor therapeutics. Kirkland LO, McInnes C. Biochem Pharmacol 77 1561-1571 (2009)
  67. The PEA-15 protein regulates autophagy via activation of JNK. Böck BC, Tagscherer KE, Fassl A, Krämer A, Oehme I, Zentgraf HW, Keith M, Roth W. J Biol Chem 285 21644-21654 (2010)
  68. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress. Kant S, Standen CL, Morel C, Jung DY, Kim JK, Swat W, Flavell RA, Davis RJ. Cell Rep 20 2775-2783 (2017)
  69. Resting and active states of the ERK2:HePTP complex. Francis DM, Różycki B, Tortajada A, Hummer G, Peti W, Page R. J Am Chem Soc 133 17138-17141 (2011)
  70. SR protein kinase 1 is resilient to inactivation. Ngo JC, Gullingsrud J, Giang K, Yeh MJ, Fu XD, Adams JA, McCammon JA, Ghosh G. Structure 15 123-133 (2007)
  71. The structure of the MAP2K MEK6 reveals an autoinhibitory dimer. Min X, Akella R, He H, Humphreys JM, Tsutakawa SE, Lee SJ, Tainer JA, Cobb MH, Goldsmith EJ. Structure 17 96-104 (2009)
  72. c-Jun NH2-terminal kinase mediation of angiotensin II-induced proliferation of human mesangial cells. Zhang A, Ding G, Huang S, Wu Y, Pan X, Guan X, Chen R, Yang T. Am J Physiol Renal Physiol 288 F1118-24 (2005)
  73. Chrysophanol, Physcion, Hesperidin and Curcumin Modulate the Gene Expression of Pro-Inflammatory Mediators Induced by LPS in HepG2: In Silico and Molecular Studies. Selim NM, Elgazar AA, Abdel-Hamid NM, El-Magd MRA, Yasri A, Hefnawy HME, Sobeh M. Antioxidants (Basel) 8 E371 (2019)
  74. c-Jun N-terminal kinase inhibitor II (SP600125) activates Mullerian inhibiting substance type II receptor-mediated signal transduction. Renlund N, Pieretti-Vanmarcke R, O'Neill FH, Zhang L, Donahoe PK, Teixeira J. Endocrinology 149 108-115 (2008)
  75. Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway. Lee E, Jeong KW, Shin A, Jin B, Jnawali HN, Jun BH, Lee JY, Heo YS, Kim Y. BMB Rep 46 594-599 (2013)
  76. Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide. Ngoei KR, Catimel B, Church N, Lio DS, Dogovski C, Perugini MA, Watt PM, Cheng HC, Ng DC, Bogoyevitch MA. Biochem J 434 399-413 (2011)
  77. Reverse two-hybrid screening identifies residues of JNK required for interaction with the kinase interaction motif of JNK-interacting protein-1. Barr RK, Hopkins RM, Watt PM, Bogoyevitch MA. J Biol Chem 279 43178-43189 (2004)
  78. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophils via JNK activation. Zemans RL, Arndt PG. Cell Immunol 258 90-97 (2009)
  79. Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium acnes-Induced Skin Infection. Cheon D, Kim J, Jeon D, Shin HC, Kim Y. Molecules 24 E1319 (2019)
  80. Development of paramagnetic probes for molecular recognition studies in protein kinases. Vazquez J, De SK, Chen LH, Riel-Mehan M, Emdadi A, Cellitti J, Stebbins JL, Rega MF, Pellecchia M. J Med Chem 51 3460-3465 (2008)
  81. Functional divergence caused by mutations in an energetic hotspot in ERK2. Taylor CA, Cormier KW, Keenan SE, Earnest S, Stippec S, Wichaidit C, Juang YC, Wang J, Shvartsman SY, Goldsmith EJ, Cobb MH. Proc Natl Acad Sci U S A 116 15514-15523 (2019)
  82. Homogeneous and nonradioactive high-throughput screening platform for the characterization of kinase inhibitors in cell lysates. Guenat S, Rouleau N, Bielmann C, Bedard J, Maurer F, Allaman-Pillet N, Nicod P, Bielefeld-Sévigny M, Beckmann JS, Bonny C, Bossé R, Roduit R. J Biomol Screen 11 1015-1026 (2006)
  83. Isolates from Alpinia officinarum Hance attenuate LPS-induced inflammation in HepG2: Evidence from in silico and in vitro studies. Elgazar AA, Selim NM, Abdel-Hamid NM, El-Magd MA, El Hefnawy HM. Phytother Res 32 1273-1288 (2018)
  84. JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory. Morel C, Sherrin T, Kennedy NJ, Forest KH, Avcioglu Barutcu S, Robles M, Carpenter-Hyland E, Alfulaij N, Standen CL, Nichols RA, Benveniste M, Davis RJ, Todorovic C. J Neurosci 38 3708-3728 (2018)
  85. A model of a MAPK•substrate complex in an active conformation: a computational and experimental approach. Lee S, Warthaka M, Yan C, Kaoud TS, Piserchio A, Ghose R, Ren P, Dalby KN. PLoS One 6 e18594 (2011)
  86. Design and characterization of a potent and selective dual ATP- and substrate-competitive subnanomolar bidentate c-Jun N-terminal kinase (JNK) inhibitor. Stebbins JL, De SK, Pavlickova P, Chen V, Machleidt T, Chen LH, Kuntzen C, Kitada S, Karin M, Pellecchia M. J Med Chem 54 6206-6214 (2011)
  87. Discovery of 2-(5-nitrothiazol-2-ylthio)benzo[d]thiazoles as novel c-Jun N-terminal kinase inhibitors. De SK, Chen LH, Stebbins JL, Machleidt T, Riel-Mehan M, Dahl R, Chen V, Yuan H, Barile E, Emdadi A, Murphy R, Pellecchia M. Bioorg Med Chem 17 2712-2717 (2009)
  88. Transcriptional activity of neural retina leucine zipper (Nrl) is regulated by c-Jun N-terminal kinase and Tip60 during retina development. Kim JW, Jang SM, Kim CH, An JH, Choi KH. Mol Cell Biol 32 1720-1732 (2012)
  89. Enzyme kinetics and interaction studies for human JNK1β1 and substrates activating transcription factor 2 (ATF2) and c-Jun N-terminal kinase (c-Jun). Figuera-Losada M, LoGrasso PV. J Biol Chem 287 13291-13302 (2012)
  90. Quantitative proteomics reveals dynamic interaction of c-Jun N-terminal kinase (JNK) with RNA transport granule proteins splicing factor proline- and glutamine-rich (Sfpq) and non-POU domain-containing octamer-binding protein (Nono) during neuronal differentiation. Sury MD, McShane E, Hernandez-Miranda LR, Birchmeier C, Selbach M. Mol Cell Proteomics 14 50-65 (2015)
  91. Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. Nguyen T, Ruan Z, Oruganty K, Kannan N. PLoS One 10 e0119636 (2015)
  92. Differential Effects of IGF-1R Small Molecule Tyrosine Kinase Inhibitors BMS-754807 and OSI-906 on Human Cancer Cell Lines. Fuentes-Baile M, Ventero MP, Encinar JA, García-Morales P, Poveda-Deltell M, Pérez-Valenciano E, Barberá VM, Gallego-Plazas J, Rodríguez-Lescure Á, Martín-Nieto J, Saceda M. Cancers (Basel) 12 E3717 (2020)
  93. Interface analysis of the complex between ERK2 and PTP-SL. Balasu MC, Spiridon LN, Miron S, Craescu CT, Scheidig AJ, Petrescu AJ, Szedlacsek SE. PLoS One 4 e5432 (2009)
  94. Reversine inhibits Colon Carcinoma Cell Migration by Targeting JNK1. Jemaà M, Abassi Y, Kifagi C, Fezai M, Daams R, Lang F, Massoumi R. Sci Rep 8 11821 (2018)
  95. Three-dimensional quantitative structure-activity relationship (3 D-QSAR) and docking studies on (benzothiazole-2-yl) acetonitrile derivatives as c-Jun N-terminal kinase-3 (JNK3) inhibitors. Shaikh AR, Ismael M, Del Carpio CA, Tsuboi H, Koyama M, Endou A, Kubo M, Broclawik E, Miyamoto A. Bioorg Med Chem Lett 16 5917-5925 (2006)
  96. Traumatic injury elicits JNK-mediated human astrocyte retraction in vitro. Augustine C, Cepinskas G, Fraser DD, Canadian Critical Care Translational Biology Group. Neuroscience 274 1-10 (2014)
  97. The JNK inhibitor AS602801 Synergizes with Enzalutamide to Kill Prostate Cancer Cells In Vitro and In Vivo and Inhibit Androgen Receptor Expression. Li Z, Sun C, Tao S, Osunkoya AO, Arnold RS, Petros JA, Zu X, Moreno CS. Transl Oncol 13 100751 (2020)
  98. Single-domain near-infrared protein provides a scaffold for antigen-dependent fluorescent nanobodies. Oliinyk OS, Baloban M, Clark CL, Carey E, Pletnev S, Nimmerjahn A, Verkhusha VV. Nat Methods 19 740-750 (2022)
  99. Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Bas DB, Abdelmoaty S, Sandor K, Codeluppi S, Fitzsimmons B, Steinauer J, Hua XY, Yaksh TL, Svensson CI. Eur J Pain 19 260-270 (2015)
  100. c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways link capacitation with apoptosis and seminal plasma proteins protect sperm by interfering with both routes†. Luna C, Mendoza N, Casao A, Pérez-Pé R, Cebrián-Pérez JA, Muiño-Blanco T. Biol Reprod 96 800-815 (2017)
  101. A small molecule bidentate-binding dual inhibitor probe of the LRRK2 and JNK kinases. Feng Y, Chambers JW, Iqbal S, Koenig M, Park H, Cherry L, Hernandez P, Figuera-Losada M, LoGrasso PV. ACS Chem Biol 8 1747-1754 (2013)
  102. Mechanistic characterization for c-jun-N-Terminal Kinase 1alpha1. Ember B, LoGrasso P. Arch Biochem Biophys 477 324-329 (2008)
  103. The JNK1/JNK3 interactome--contributions by the JNK3 unique N-terminus and JNK common docking site residues. Chen WK, Yeap YY, Bogoyevitch MA. Biochem Biophys Res Commun 453 576-581 (2014)
  104. Activation by phosphorylation and purification of human c-Jun N-terminal kinase (JNK) isoforms in milligram amounts. Thévenin AF, Zony CL, Bahnson BJ, Colman RF. Protein Expr Purif 75 138-146 (2011)
  105. Cell-based peptide screening to access the undruggable target space. Hennemann H, Wirths S, Carl C. Eur J Med Chem 94 489-496 (2015)
  106. Optogenetic Control of Spine-Head JNK Reveals a Role in Dendritic Spine Regression. Hollos P, John JM, Lehtonen JV, Coffey ET. eNeuro 7 ENEURO.0303-19.2019 (2020)
  107. The optimal docking strength for reversibly tethered kinases. Dyla M, González Foutel NS, Otzen DE, Kjaergaard M. Proc Natl Acad Sci U S A 119 e2203098119 (2022)
  108. Cytotoxic activity of 3,6-dihydroxyflavone in human cervical cancer cells and its therapeutic effect on c-Jun N-terminal kinase inhibition. Lee E, Jeong KW, Jnawali HN, Shin A, Heo YS, Kim Y. Molecules 19 13200-13211 (2014)
  109. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G. Elife 5 e15200 (2016)
  110. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Sci Signal 16 eabm5518 (2023)
  111. A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor. Ngoei KR, Catimel B, Milech N, Watt PM, Bogoyevitch MA. Int J Biochem Cell Biol 45 1939-1950 (2013)
  112. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. Fogha J, Diharce J, Obled A, Aci-Sèche S, Bonnet P. ACS Omega 5 2114-2122 (2020)
  113. Design, synthesis, and structure-activity relationship studies of thiophene-3-carboxamide derivatives as dual inhibitors of the c-Jun N-terminal kinase. De SK, Barile E, Chen V, Stebbins JL, Cellitti JF, Machleidt T, Carlson CB, Yang L, Dahl R, Pellecchia M. Bioorg Med Chem 19 2582-2588 (2011)
  114. Kinetic and mechanistic studies of p38α MAP kinase phosphorylation by MKK6. Wang YL, Zhang YY, Lu C, Zhang W, Deng H, Wu JW, Wang J, Wang ZX. FEBS J 286 1030-1052 (2019)
  115. Structural and functional characterization of the recombinant death domain from death-associated protein kinase. Dioletis E, Dingley AJ, Driscoll PC. PLoS One 8 e70095 (2013)
  116. Identification and characterization of bi-thiazole-2,2'-diamines as kinase inhibitory scaffolds. Ngoei KR, Ng DC, Gooley PR, Fairlie DP, Stoermer MJ, Bogoyevitch MA. Biochim Biophys Acta 1834 1077-1088 (2013)
  117. Structural chemoproteomics and drug discovery. Shin D, Heo YS, Lee KJ, Kim CM, Yoon JM, Lee JI, Hyun YL, Jeon YH, Lee TG, Cho JM, Ro S. Biopolymers 80 258-263 (2005)
  118. The expression and purification of the N-terminal activation domain of the transcription factor c-Myc: a model substrate for exploring ERK2 docking interactions. Waas WF, Dalby KN. Protein Expr Purif 53 80-86 (2007)
  119. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation. Sayeed A, Lu H, Liu Q, Deming D, Duffy A, McCue P, Dicker AP, Davis RJ, Gabrilovich D, Rodeck U, Altieri DC, Languino LR. Oncotarget 7 52618-52630 (2016)
  120. A MEKK1 - JNK mitogen activated kinase (MAPK) cascade module is active in Echinococcus multilocularis stem cells. Stoll K, Bergmann M, Spiliotis M, Brehm K. PLoS Negl Trop Dis 15 e0010027 (2021)
  121. A molecular dynamics study of the binary complexes of APP, JIP1, and the cargo binding domain of KLC. Taylor CA, Miller BR, Shah SS, Parish CA. Proteins 85 221-234 (2017)
  122. Combining small molecules for cell reprogramming through an interatomic analysis. Feltes BC, Bonatto D, Bonatto D. Mol Biosyst 9 2741-2763 (2013)
  123. Galloyl benzamide-based compounds modulating tumour necrosis factor α-stimulated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signalling pathways. Leo V, Stefanachi A, Nacci C, Leonetti F, de Candia M, Carotti A, Altomare CD, Montagnani M, Cellamare S. J Pharm Pharmacol 67 1380-1392 (2015)
  124. Phosphorylation- and nucleotide-binding-induced changes to the stability and hydrogen exchange patterns of JNK1β1 provide insight into its mechanisms of activation. Owen GR, Stoychev S, Achilonu I, Dirr HW. J Mol Biol 426 3569-3589 (2014)
  125. RSK2 Binding Models Delineate Key Features for Activity. Gussio R, Currens MJ, Scudiero DA, Smith JA, Lannigan DA, Shoemaker RH, Zaharevitz DW, Nguyen TL. J Chem Pharm Res 2 587-598 (2010)
  126. Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Lombard CK, Davis AL, Inukai T, Maly DJ. Biochemistry 57 5897-5909 (2018)
  127. Anti-colorectal cancer of Ardisia gigantifolia Stapf. and targets prediction via network pharmacology and molecular docking study. Dai W, Yang J, Liu X, Mei Q, Peng W, Hu X. BMC Complement Med Ther 23 4 (2023)
  128. Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction. Li Y, Jung NY, Yoo JC, Kim Y, Yi GS. Biomol Ther (Seoul) 26 458-463 (2018)
  129. Design, Synthesis, and Biological Evaluation of Quercetagetin Analogues as JNK1 Inhibitors. Hierold J, Baek S, Rieger R, Lim TG, Zakpur S, Arciniega M, Lee KW, Huber R, Tietze LF. Chemistry 21 16887-16894 (2015)
  130. JNK regulates ciliogenesis through the interflagellar transport complex and actin networks. Chatzifrangkeskou M, Kouis P, Skourides PA. J Cell Biol 222 e202303052 (2023)