1vdi Citations

Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin.

J Mol Biol 352 178-201 (2005)
Cited: 83 times
EuropePMC logo PMID: 16061251

Abstract

Troponin and tropomyosin on actin filaments constitute a Ca2+-sensitive switch that regulates the contraction of vertebrate striated muscle through a series of conformational changes within the actin-based thin filament. Troponin consists of three subunits: an inhibitory subunit (TnI), a Ca2+-binding subunit (TnC), and a tropomyosin-binding subunit (TnT). Ca2+-binding to TnC is believed to weaken interactions between troponin and actin, and triggers a large conformational change of the troponin complex. However, the atomic details of the actin-binding sites of troponin have not been determined. Ternary troponin complexes have been reconstituted from recombinant chicken skeletal TnI, TnC, and TnT2 (the C-terminal region of TnT), among which only TnI was uniformly labelled with 15N and/or 13C. By applying NMR spectroscopy, the solution structures of a "mobile" actin-binding domain (approximately 6.1 kDa) in the troponin ternary complex (approximately 52 kDa) were determined. The mobile domain appears to tumble independently of the core domain of troponin. Ca2+-induced changes in the chemical shift and line shape suggested that its tumbling was more restricted at high Ca2+ concentrations. The atomic details of interactions between actin and the mobile domain of troponin were defined by docking the mobile domain into the cryo-electron microscopy (cryo-EM) density map of thin filament at low [Ca2+]. This allowed the determination of the 3D position of residue 133 of TnI, which has been an important landmark to incorporate the available information. This enabled unique docking of the entire globular head region of troponin into the thin filament cryo-EM map at a low Ca2+ concentration. The resultant atomic model suggests that troponin interacted electrostatically with actin and caused the shift of tropomyosin to achieve muscle relaxation. An important feature is that the coiled-coil region of troponin pushed tropomyosin at a low Ca2+ concentration. Moreover, the relationship between myosin and the mobile domain on actin filaments suggests that the latter works as a fail-safe latch.

Reviews - 1vdi mentioned but not cited (1)

  1. Structural basis for calcium-regulated relaxation of striated muscles at interaction sites of troponin with actin and tropomyosin. Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T. Adv Exp Med Biol 592 71-86 (2007)

Articles - 1vdi mentioned but not cited (2)

  1. Distal arthrogryposis with variable clinical expression caused by TNNI2 mutation. Čulić V, Miyake N, Janković S, Petrović D, Šimunović M, Đapić T, Shiina M, Ogata K, Matsumoto N. Hum Genome Var 3 16035 (2016)
  2. The muscle-relaxing C-terminal peptide from troponin I populates a nascent helix, facilitating binding to tropomyosin with a potent therapeutic effect. Hornos F, Feng HZ, Rizzuti B, Palomino-Schätzlein M, Wieczorek D, Neira JL, Jin JP. J Biol Chem 296 100228 (2021)


Reviews citing this publication (17)

  1. The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Solaro RJ, Rosevear P, Kobayashi T. Biochem Biophys Res Commun 369 82-87 (2008)
  2. The physiological role of cardiac cytoskeleton and its alterations in heart failure. Sequeira V, Nijenkamp LL, Regan JA, van der Velden J. Biochim Biophys Acta 1838 700-722 (2014)
  3. Cardiac thin filament regulation. Kobayashi T, Jin L, de Tombe PP. Pflugers Arch 457 37-46 (2008)
  4. Troponin structure and function: a view of recent progress. Marston S, Zamora JE. J Muscle Res Cell Motil 41 71-89 (2020)
  5. Historical perspective on heart function: the Frank-Starling Law. Sequeira V, van der Velden J. Biophys Rev 7 421-447 (2015)
  6. Cardiac troponin mutations and restrictive cardiomyopathy. Parvatiyar MS, Pinto JR, Dweck D, Potter JD. J Biomed Biotechnol 2010 350706 (2010)
  7. Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. Day SM, Westfall MV, Metzger JM. J Mol Med (Berl) 85 911-921 (2007)
  8. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Li MX, Robertson IM, Sykes BD. Biochem Biophys Res Commun 369 88-99 (2008)
  9. Structural determinants of muscle thin filament cooperativity. Moore JR, Campbell SG, Lehman W. Arch Biochem Biophys 594 8-17 (2016)
  10. The myosin-activated thin filament regulatory state, M⁻-open: a link to hypertrophic cardiomyopathy (HCM). Lehrer SS, Geeves MA. J Muscle Res Cell Motil 35 153-160 (2014)
  11. Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis. Wakabayashi T. Proc Jpn Acad Ser B Phys Biol Sci 91 321-350 (2015)
  12. Order-Disorder Transitions in the Cardiac Troponin Complex. Metskas LA, Rhoades E. J Mol Biol 428 2965-2977 (2016)
  13. Constructing a structural model of troponin using site-directed spin labeling: EPR and PRE-NMR. Kachooei E, Cordina NM, Brown LJ. Biophys Rev 11 621-639 (2019)
  14. The missing links within troponin. Marques MA, Parvatiyar MS, Yang W, de Oliveira GAP, Pinto JR. Arch Biochem Biophys 663 95-100 (2019)
  15. Invited review: probing the structures of muscle regulatory proteins using small-angle solution scattering. Lu Y, Jeffries CM, Trewhella J. Biopolymers 95 505-516 (2011)
  16. Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Kumar S, Kumar V, Kim JJ. Biomolecules 10 E442 (2020)
  17. Nucleus Mechanosensing in Cardiomyocytes. Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Int J Mol Sci 24 13341 (2023)

Articles citing this publication (63)

  1. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Sequeira V, Wijnker PJ, Nijenkamp LL, Kuster DW, Najafi A, Witjas-Paalberends ER, Regan JA, Boontje N, Ten Cate FJ, Germans T, Carrier L, Sadayappan S, van Slegtenhorst MA, Zaremba R, Foster DB, Murphy AM, Poggesi C, Dos Remedios C, Stienen GJ, Ho CY, Michels M, van der Velden J. Circ Res 112 1491-1505 (2013)
  2. Structural basis for the regulation of muscle contraction by troponin and tropomyosin. Galińska-Rakoczy A, Engel P, Xu C, Jung H, Craig R, Tobacman LS, Lehman W. J Mol Biol 379 929-935 (2008)
  3. An atomic model of the thin filament in the relaxed and Ca2+-activated states. Pirani A, Vinogradova MV, Curmi PM, King WA, Fletterick RJ, Craig R, Tobacman LS, Xu C, Hatch V, Lehman W. J Mol Biol 357 707-717 (2006)
  4. Increased Ca2+ affinity of cardiac thin filaments reconstituted with cardiomyopathy-related mutant cardiac troponin I. Kobayashi T, Solaro RJ. J Biol Chem 281 13471-13477 (2006)
  5. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD. J Biol Chem 284 19090-19100 (2009)
  6. Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T. Murakami K, Stewart M, Nozawa K, Tomii K, Kudou N, Igarashi N, Shirakihara Y, Wakatsuki S, Yasunaga T, Wakabayashi T. Proc Natl Acad Sci U S A 105 7200-7205 (2008)
  7. Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Yumoto F, Lu QW, Morimoto S, Tanaka H, Kono N, Nagata K, Ojima T, Takahashi-Yanaga F, Miwa Y, Sasaguri T, Nishita K, Tanokura M, Ohtsuki I. Biochem Biophys Res Commun 338 1519-1526 (2005)
  8. Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Stehle R, Solzin J, Iorga B, Poggesi C. Pflugers Arch 458 337-357 (2009)
  9. An interplay between protein disorder and structure confers the Ca2+ regulation of striated muscle. Hoffman RM, Blumenschein TM, Sykes BD. J Mol Biol 361 625-633 (2006)
  10. Dynamics of the C-terminal region of TnI in the troponin complex in solution. Blumenschein TM, Stone DB, Fletterick RJ, Mendelson RA, Sykes BD. Biophys J 90 2436-2444 (2006)
  11. Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state. Yang S, Barbu-Tudoran L, Orzechowski M, Craig R, Trinick J, White H, Lehman W. Biophys J 106 855-864 (2014)
  12. Allele and species dependent contractile defects by restrictive and hypertrophic cardiomyopathy-linked troponin I mutants. Davis J, Wen H, Edwards T, Metzger JM. J Mol Cell Cardiol 44 891-904 (2008)
  13. Conformation and Dynamics of the Troponin I C-Terminal Domain: Combining Single-Molecule and Computational Approaches for a Disordered Protein Region. Metskas LA, Rhoades E. J Am Chem Soc 137 11962-11969 (2015)
  14. Single amino acid substitutions define isoform-specific effects of troponin I on myofilament Ca2+ and pH sensitivity. Westfall MV, Metzger JM. J Mol Cell Cardiol 43 107-118 (2007)
  15. The C-terminus of troponin T is essential for maintaining the inactive state of regulated actin. Franklin AJ, Baxley T, Kobayashi T, Chalovich JM. Biophys J 102 2536-2544 (2012)
  16. Structural changes in troponin in response to Ca2+ and myosin binding to thin filaments during activation of skeletal muscle. Sun YB, Brandmeier B, Irving M. Proc Natl Acad Sci U S A 103 17771-17776 (2006)
  17. Ca2+-dependent photocrosslinking of tropomyosin residue 146 to residues 157-163 in the C-terminal domain of troponin I in reconstituted skeletal muscle thin filaments. Mudalige WA, Tao TC, Lehrer SS. J Mol Biol 389 575-583 (2009)
  18. Förster resonance energy transfer structural kinetic studies of cardiac thin filament deactivation. Xing J, Jayasundar JJ, Ouyang Y, Dong WJ. J Biol Chem 284 16432-16441 (2009)
  19. Structural dynamics of C-domain of cardiac troponin I protein in reconstituted thin filament. Zhou Z, Li KL, Rieck D, Ouyang Y, Chandra M, Dong WJ. J Biol Chem 287 7661-7674 (2012)
  20. ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Sequeira V, Najafi A, Wijnker PJ, Dos Remedios CG, Michels M, Kuster DW, van der Velden J. Proc Natl Acad Sci U S A 112 E7003-12 (2015)
  21. Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils. Iorga B, Blaudeck N, Solzin J, Neulen A, Stehle I, Lopez Davila AJ, Pfitzer G, Stehle R. Cardiovasc Res 77 676-686 (2008)
  22. Role of the acidic N' region of cardiac troponin I in regulating myocardial function. Sadayappan S, Finley N, Howarth JW, Osinska H, Klevitsky R, Lorenz JN, Rosevear PR, Robbins J. FASEB J 22 1246-1257 (2008)
  23. Some cardiomyopathy-causing troponin I mutations stabilize a functional intermediate actin state. Mathur MC, Kobayashi T, Chalovich JM. Biophys J 96 2237-2244 (2009)
  24. Structural studies of interactions between cardiac troponin I and actin in regulated thin filament using Förster resonance energy transfer. Xing J, Chinnaraj M, Zhang Z, Cheung HC, Dong WJ. Biochemistry 47 13383-13393 (2008)
  25. Cryo-electron tomography of motile cilia and flagella. Ishikawa T. Cilia 4 3 (2015)
  26. Conformation of the troponin core complex in the thin filaments of skeletal muscle during relaxation and active contraction. Knowles AC, Irving M, Sun YB. J Mol Biol 421 125-137 (2012)
  27. Green Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy-Associated Mutation in Human Cardiac Troponin I (K206I). Warren CM, Karam CN, Wolska BM, Kobayashi T, de Tombe PP, Arteaga GM, Bos JM, Ackerman MJ, Solaro RJ. Circ Cardiovasc Genet 8 765-773 (2015)
  28. Relaxed and active thin filament structures; a new structural basis for the regulatory mechanism. Paul DM, Squire JM, Morris EP. J Struct Biol 197 365-371 (2017)
  29. Dynamics of thin-filament activation in rabbit skeletal muscle fibers examined by time-resolved x-ray diffraction. Tamura T, Wakayama J, Inoue K, Yagi N, Iwamoto H. Biophys J 96 1045-1055 (2009)
  30. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex. Kimura-Sakiyama C, Ueno Y, Wakabayashi K, Miki M. J Mol Biol 376 80-91 (2008)
  31. Ala scanning of the inhibitory region of cardiac troponin I. Kobayashi T, Patrick SE, Kobayashi M. J Biol Chem 284 20052-20060 (2009)
  32. Calcium-regulated conformational change in the C-terminal end segment of troponin I and its binding to tropomyosin. Zhang Z, Akhter S, Mottl S, Jin JP. FEBS J 278 3348-3359 (2011)
  33. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments. Swartz DR, Yang Z, Sen A, Tikunova SB, Davis JP. J Mol Biol 361 420-435 (2006)
  34. Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle. Schoffstall B, LaBarbera VA, Brunet NM, Gavino BJ, Herring L, Heshmati S, Kraft BH, Inchausti V, Meyer NL, Moonoo D, Takeda AK, Chase PB. DNA Cell Biol 30 653-659 (2011)
  35. Significance of troponin dynamics for Ca2+-mediated regulation of contraction and inherited cardiomyopathy. Kowlessur D, Tobacman LS. J Biol Chem 287 42299-42311 (2012)
  36. Calcium-dependent movement of troponin I between troponin C and actin as revealed by spin-labeling EPR. Aihara T, Ueki S, Nakamura M, Arata T. Biochem Biophys Res Commun 340 462-468 (2006)
  37. Is there nascent structure in the intrinsically disordered region of troponin I? Julien O, Mercier P, Allen CN, Fisette O, Ramos CH, Lagüe P, Blumenschein TM, Sykes BD. Proteins 79 1240-1250 (2011)
  38. Switch action of troponin on muscle thin filament as revealed by spin labeling and pulsed EPR. Aihara T, Nakamura M, Ueki S, Hara H, Miki M, Arata T. J Biol Chem 285 10671-10677 (2010)
  39. The functional significance of the last 5 residues of the C-terminus of cardiac troponin I. Gilda JE, Xu Q, Martinez ME, Nguyen ST, Chase PB, Gomes AV. Arch Biochem Biophys 601 88-96 (2016)
  40. A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin-troponin core domain complex on a muscle thin filament. Miki M, Makimura S, Sugahara Y, Yamada R, Bunya M, Saitoh T, Tobita H. J Mol Biol 420 40-55 (2012)
  41. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations. Genchev GZ, Kobayashi T, Lu H. PLoS One 8 e58313 (2013)
  42. Isoform-specific variation in the intrinsic disorder of troponin I. Hoffman RM, Sykes BD. Proteins 73 338-350 (2008)
  43. Modulation of troponin C affinity for the thin filament by different cross-bridge states in skinned skeletal muscle fibers. Pinto JR, Veltri T, Sorenson MM. Pflugers Arch 456 1177-1187 (2008)
  44. Role of cardiac troponin I carboxy terminal mobile domain and linker sequence in regulating cardiac contraction. Meyer NL, Chase PB. Arch Biochem Biophys 601 80-87 (2016)
  45. Structural dynamics of troponin I during Ca2+-activation of cardiac thin filaments: a multi-site Förster resonance energy transfer study. Wang H, Chalovich JM, Marriott G. PLoS One 7 e50420 (2012)
  46. The evolutionarily conserved C-terminal peptide of troponin I is an independently configured regulatory structure to function as a myofilament Ca2+-desensitizer. Wong S, Feng HZ, Jin JP. J Mol Cell Cardiol 136 42-52 (2019)
  47. Defective dynamic properties of human cardiac troponin mutations. Lassalle MW. Biosci Biotechnol Biochem 74 82-91 (2010)
  48. Structural and kinetic effects of hypertrophic cardiomyopathy related mutations R146G/Q and R163W on the regulatory switching activity of rat cardiac troponin I. Zhou Z, Rieck D, Li KL, Ouyang Y, Dong WJ. Arch Biochem Biophys 535 56-67 (2013)
  49. Dominant negative mutant actins identified in flightless Drosophila can be classified into three classes. Noguchi TQ, Gomibuchi Y, Murakami K, Ueno H, Hirose K, Wakabayashi T, Uyeda TQ. J Biol Chem 285 4337-4347 (2010)
  50. Orientational information of troponin C within the thin filaments obtained by neutron fiber diffraction. Fujiwara S, Matsumoto F. J Mol Biol 367 16-24 (2007)
  51. Role of actin C-terminus in regulation of striated muscle thin filament. Sliwinska M, Skórzewski R, Moraczewska J. Biophys J 94 1341-1347 (2008)
  52. TnI Structural Interface with the N-Terminal Lobe of TnC as a Determinant of Cardiac Contractility. Vetter AD, Houang EM, Sell JJ, Thompson BR, Sham YY, Metzger JM. Biophys J 114 1646-1656 (2018)
  53. Close proximity of myosin loop 3 to troponin determined by triangulation of resonance energy transfer distance measurements. Patel DA, Root DD. Biochemistry 48 357-369 (2009)
  54. X-ray fiber diffraction modeling of structural changes of the thin filament upon activation of live vertebrate skeletal muscles. Matsuo T, Ueno Y, Takezawa Y, Sugimoto Y, Oda T, Wakabayashi K. Biophysics (Nagoya-shi) 6 13-26 (2010)
  55. Functional significance of C-terminal mobile domain of cardiac troponin I. Bohlooli Ghashghaee N, Tanner BCW, Dong WJ. Arch Biochem Biophys 634 38-46 (2017)
  56. Interrogating transcriptional regulatory sequences in Tol2-mediated Xenopus transgenics. Loots GG, Bergmann A, Hum NR, Oldenburg CE, Wills AE, Hu N, Ovcharenko I, Harland RM. PLoS One 8 e68548 (2013)
  57. Kinetic mechanism of Ca²⁺-controlled changes of skeletal troponin I in psoas myofibrils. Lopez-Davila AJ, Elhamine F, Ruess DF, Papadopoulos S, Iorga B, Kulozik FP, Zittrich S, Solzin J, Pfitzer G, Stehle R. Biophys J 103 1254-1264 (2012)
  58. Role of Whole-exome Sequencing in Phenotype Classification and Clinical Treatment of Pediatric Restrictive Cardiomyopathy. Ding WH, Han L, Xiao YY, Mo Y, Yang J, Wang XF, Jin M. Chin Med J (Engl) 130 2823-2828 (2017)
  59. Key events in the history of calcium regulation of striated muscle. Gergely J. Biochem Biophys Res Commun 369 49-51 (2008)
  60. Potential impacts of the cardiac troponin I mobile domain on myofilament activation and relaxation. Creso JG, Campbell SG. J Mol Cell Cardiol 155 50-57 (2021)
  61. Role of the C-terminus mobile domain of cardiac troponin I in the regulation of thin filament activation in skinned papillary muscle strips. Bohlooli Ghashghaee N, Li KL, Solaro RJ, Dong WJ. Arch Biochem Biophys 648 27-35 (2018)
  62. Low expression of the K280N TNNT2 mutation is sufficient to increase basal myofilament activation in human hypertrophy cardiomyopathy. Sequeira V, Wang L, Wijnker PJM, Kim K, Pinto JR, Dos Remedios C, Redwood C, Knollmann BC, van der Velden J. J Mol Cell Cardiol Plus 1 100007 (2022)
  63. Spectroscopic and ITC study of the conformational change upon Ca2+-binding in TnC C-lobe and TnI peptide complex from Akazara scallop striated muscle. Yumoto F, Tanaka H, Nagata K, Miyauchi Y, Miyakawa T, Ojima T, Tanokura M. Biochem Biophys Res Commun 369 109-114 (2008)