1veb Citations

Structure-based optimization of novel azepane derivatives as PKB inhibitors.

J Med Chem 47 1375-90 (2004)
Related entries: 1sve, 1svg, 1svh

Cited: 46 times
EuropePMC logo PMID: 14998327

Abstract

Novel azepane derivatives were prepared and evaluated for protein kinase B (PKB-alpha) and protein kinase A (PKA) inhibition. The original (-)-balanol-derived lead structure (4R)-4-(2-fluoro-6-hydroxy-3-methoxy-benzoyl)-benzoic acid (3R)-3-[(pyridine-4-carbonyl)amino]-azepan-4-yl ester (1) (IC(50) (PKB-alpha) = 5 nM) which contains an ester moiety was found to be plasma unstable and therefore unsuitable as a drug. Based upon molecular modeling studies using the crystal structure of the complex between PKA and 1, the five compounds N-[(3R,4R)-4-[4-(2-fluoro-6-hydroxy-3-methoxy-benzoyl)-benzoylamino]-azepan-3-yl]-isonicotinamide (4), (3R,4R)-N-[4-[4-(2-fluoro-6-hydroxy-3-methoxy-benzoyl)-benzyloxy]-azepan-3-yl]-isonicotinamide (5), N-[(3R,4S)-4-[4-(2-fluoro-6-hydroxy-3-methoxy-benzoyl)-phenylamino]-methyl]-azepan-3-yl)-isonicotinamide (6), N-[(3R,4R)-4-[4-(2-fluoro-6-hydroxy-3-methoxy-benzoyl)-benzylamino]-azepan-3-yl]-isonicotinamide (7), and N-[(3R,4S)-4-(4-[trans-2-[4-(2-fluoro-6-hydroxy-3-methoxy-benzoyl)-phenyl]-vinyl]-azepan-3-yl)-isonicotinamide (8) with linkers isosteric to the ester were designed, synthesized, and tested for in vitro inhibitory activity against PKA and PKB-alpha and for plasma stability in mouse plasma.(1) Compound 4 was found to be plasma stable and highly active (IC(50) (PKB-alpha) = 4 nM). Cocrystals with PKA were obtained for 4, 5, and 8 and analyzed for binding interactions and conformational changes in the ligands and protein in order to rationalize the different activities of the molecules.

Articles - 1veb mentioned but not cited (1)



Reviews citing this publication (9)

  1. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Garcia-Echeverria C, Sellers WR. Oncogene 27 5511-5526 (2008)
  2. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos DΑ, Libra M, Tsatsakis AM. Int J Oncol 48 869-885 (2016)
  3. AKT crystal structure and AKT-specific inhibitors. Kumar CC, Madison V. Oncogene 24 7493-7501 (2005)
  4. Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery. Hall DR, Kozakov D, Whitty A, Vajda S. Trends Pharmacol Sci 36 724-736 (2015)
  5. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape. Mattmann ME, Stoops SL, Lindsley CW. Expert Opin Ther Pat 21 1309-1338 (2011)
  6. Inhibition of Akt pathways in the treatment of prostate cancer. Nelson EC, Evans CP, Mack PC, Devere-White RW, Lara PN. Prostate Cancer Prostatic Dis 10 331-339 (2007)
  7. Recent development of anticancer therapeutics targeting Akt. Morrow JK, Du-Cuny L, Chen L, Meuillet EJ, Mash EA, Powis G, Zhang S. Recent Pat Anticancer Drug Discov 6 146-159 (2011)
  8. Targeting the PI3K-Akt pathway in kidney cancer. Park JY, Lin PY, Weiss RH. Expert Rev Anticancer Ther 7 863-870 (2007)
  9. Isocyanide-Based Multicomponent Reactions in Water: Advanced Green Tools for the Synthesis of Heterocyclic Compounds. Nasiriani T, Javanbakht S, Nazeri MT, Farhid H, Khodkari V, Shaabani A. Top Curr Chem (Cham) 380 50 (2022)

Articles citing this publication (36)

  1. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD, Huff JR, Huber HE, Duggan ME. Bioorg Med Chem Lett 15 761-764 (2005)
  2. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Hare S, Smith SJ, Métifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, Cherepanov P. Mol Pharmacol 80 565-572 (2011)
  3. Discovery of 2,3,5-trisubstituted pyridine derivatives as potent Akt1 and Akt2 dual inhibitors. Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD, Huff JR, Huber HE, Duggan ME, Lindsley CW. Bioorg Med Chem Lett 15 905-909 (2005)
  4. Development and application of high throughput plasma stability assay for drug discovery. Di L, Kerns EH, Hong Y, Chen H. Int J Pharm 297 110-119 (2005)
  5. Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling. Thimmaiah KN, Easton JB, Germain GS, Morton CL, Kamath S, Buolamwini JK, Houghton PJ. J Biol Chem 280 31924-31935 (2005)
  6. A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. Davies TG, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CC, McHardy T, Collins I, Garrett MD, Workman P, Woodhead SJ, Jhoti H, Barford D. J Mol Biol 367 882-894 (2007)
  7. Rational Polypharmacology: Systematically Identifying and Engaging Multiple Drug Targets To Promote Axon Growth. Al-Ali H, Lee DH, Danzi MC, Nassif H, Gautam P, Wennerberg K, Zuercher B, Drewry DH, Lee JK, Lemmon VP, Bixby JL. ACS Chem Biol 10 1939-1951 (2015)
  8. Structure of human G protein-coupled receptor kinase 2 in complex with the kinase inhibitor balanol. Tesmer JJ, Tesmer VM, Lodowski DT, Steinhagen H, Huber J. J Med Chem 53 1867-1870 (2010)
  9. Development of potent, allosteric dual Akt1 and Akt2 inhibitors with improved physical properties and cell activity. Zhao Z, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD, Huber HE, Duggan ME, Lindsley CW. Bioorg Med Chem Lett 18 49-53 (2008)
  10. Expedient synthesis of fused azepine derivatives using a sequential rhodium(II)-catalyzed cyclopropanation/1-aza-Cope rearrangement of dienyltriazoles. Schultz EE, Lindsay VN, Sarpong R. Angew Chem Int Ed Engl 53 9904-9908 (2014)
  11. Utility of the carboxylesterase inhibitor bis-para-nitrophenylphosphate (BNPP) in the plasma unbound fraction determination for a hydrolytically unstable amide derivative and agonist of the TGR5 receptor. Eng H, Niosi M, McDonald TS, Wolford A, Chen Y, Simila ST, Bauman JN, Warmus J, Kalgutkar AS. Xenobiotica 40 369-380 (2010)
  12. Discovery of 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as selective, orally active inhibitors of protein kinase B (Akt). McHardy T, Caldwell JJ, Cheung KM, Hunter LJ, Taylor K, Rowlands M, Ruddle R, Henley A, de Haven Brandon A, Valenti M, Davies TG, Fazal L, Seavers L, Raynaud FI, Eccles SA, Aherne GW, Garrett MD, Collins I. J Med Chem 53 2239-2249 (2010)
  13. Synthesis and SAR of indazole-pyridine based protein kinase B/Akt inhibitors. Woods KW, Fischer JP, Claiborne A, Li T, Thomas SA, Zhu GD, Diebold RB, Liu X, Shi Y, Klinghofer V, Han EK, Guan R, Magnone SR, Johnson EF, Bouska JJ, Olson AM, de Jong R, Oltersdorf T, Luo Y, Rosenberg SH, Giranda VL, Li Q. Bioorg Med Chem 14 6832-6846 (2006)
  14. Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain. Du-Cuny L, Song Z, Moses S, Powis G, Mash EA, Meuillet EJ, Zhang S. Bioorg Med Chem 17 6983-6992 (2009)
  15. Development of dual inhibitors against Alzheimer's disease using fragment-based QSAR and molecular docking. Goyal M, Dhanjal JK, Goyal S, Tyagi C, Hamid R, Grover A. Biomed Res Int 2014 979606 (2014)
  16. Rapid assembly of diverse and potent allosteric Akt inhibitors. Wu Z, Robinson RG, Fu S, Barnett SF, Defeo-Jones D, Jones RE, Kral AM, Huber HE, Kohl NE, Hartman GD, Bilodeau MT. Bioorg Med Chem Lett 18 2211-2214 (2008)
  17. Structural analysis of protein kinase A mutants with Rho-kinase inhibitor specificity. Bonn S, Herrero S, Breitenlechner CB, Erlbruch A, Lehmann W, Engh RA, Gassel M, Bossemeyer D. J Biol Chem 281 24818-24830 (2006)
  18. Synthesis and structure-activity relationship of 3,4'-bispyridinylethylenes: discovery of a potent 3-isoquinolinylpyridine inhibitor of protein kinase B (PKB/Akt) for the treatment of cancer. Li Q, Woods KW, Thomas S, Zhu GD, Packard G, Fisher J, Li T, Gong J, Dinges J, Song X, Abrams J, Luo Y, Johnson EF, Shi Y, Liu X, Klinghofer V, Des Jong R, Oltersdorf T, Stoll VS, Jakob CG, Rosenberg SH, Giranda VL. Bioorg Med Chem Lett 16 2000-2007 (2006)
  19. Optimization of 2,3,5-trisubstituted pyridine derivatives as potent allosteric Akt1 and Akt2 inhibitors. Hartnett JC, Barnett SF, Bilodeau MT, Defeo-Jones D, Hartman GD, Huber HE, Jones RE, Kral AM, Robinson RG, Wu Z. Bioorg Med Chem Lett 18 2194-2197 (2008)
  20. Discovery of trans-3,4'-bispyridinylethylenes as potent and novel inhibitors of protein kinase B (PKB/Akt) for the treatment of cancer: Synthesis and biological evaluation. Li Q, Li T, Zhu GD, Gong J, Claibone A, Dalton C, Luo Y, Johnson EF, Shi Y, Liu X, Klinghofer V, Bauch JL, Marsh KC, Bouska JJ, Arries S, De Jong R, Oltersdorf T, Stoll VS, Jakob CG, Rosenberg SH, Giranda VL. Bioorg Med Chem Lett 16 1679-1685 (2006)
  21. Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B. Collins I, Caldwell J, Fonseca T, Donald A, Bavetsias V, Hunter LJ, Garrett MD, Rowlands MG, Aherne GW, Davies TG, Berdini V, Woodhead SJ, Davis D, Seavers LC, Wyatt PG, Workman P, McDonald E. Bioorg Med Chem 14 1255-1273 (2006)
  22. Development of pyridopyrimidines as potent Akt1/2 inhibitors. Wu Z, Hartnett JC, Neilson LA, Robinson RG, Fu S, Barnett SF, Defeo-Jones D, Jones RE, Kral AM, Huber HE, Hartman GD, Bilodeau MT. Bioorg Med Chem Lett 18 1274-1279 (2008)
  23. Conformational selection of protein kinase A revealed by flexible-ligand flexible-protein docking. Huang Z, Wong CF. J Comput Chem 30 631-644 (2009)
  24. Lewis acid catalyzed diastereoselective [3+4]-annulation of donor-acceptor cyclopropanes with anthranils: synthesis of tetrahydro-1-benzazepine derivatives. Wang ZH, Zhang HH, Wang DM, Xu PF, Luo YC. Chem Commun (Camb) 53 8521-8524 (2017)
  25. Modifications of the GSK3beta substrate sequence to produce substrate-mimetic inhibitors of Akt as potential anti-cancer therapeutics. Kayser KJ, Glenn MP, Sebti SM, Cheng JQ, Hamilton AD. Bioorg Med Chem Lett 17 2068-2073 (2007)
  26. Non-peptidic substrate-mimetic inhibitors of Akt as potential anti-cancer agents. Kayser-Bricker KJ, Glenn MP, Lee SH, Sebti SM, Cheng JQ, Hamilton AD. Bioorg Med Chem 17 1764-1771 (2009)
  27. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening. Yilmaz OG, Olmez EO, Ulgen KO. Comput Biol Chem 48 1-13 (2014)
  28. Combining ligand- and structure-based in silico methods for the identification of natural product-based inhibitors of Akt1. Mahajan P, Wadhwa B, Barik MR, Malik F, Nargotra A. Mol Divers 24 45-60 (2020)
  29. Conformational regulation of substituted azepanes through selective monofluorination. Patel AR, Ball G, Hunter L, Liu F. Org Biomol Chem 11 3781-3785 (2013)
  30. Identification of a new series of benzothiazinone derivatives with excellent antitubercular activity and improved pharmacokinetic profiles. Xiong L, Gao C, Shi YJ, Tao X, Rong J, Liu KL, Peng CT, Wang NY, Lei Q, Zhang YW, Yu LT, Wei YQ. RSC Adv 8 11163-11176 (2018)
  31. Improved translation of stability for conjugated antibodies using an in vitro whole blood assay. Fourie-O'Donohue A, Chu PY, Dela Cruz Chuh J, Tchelepi R, Tsai SP, Tran JC, Sawyer WS, Su D, Ng C, Xu K, Yu SF, Pillow TH, Sadowsky J, Dragovich PS, Liu Y, Kozak KR. MAbs 12 1715705 (2020)
  32. Straightforward synthesis of novel Akt inhibitors based on a glucose scaffold. Cipolla L, Redaelli C, Granucci F, Zampella G, Zaza A, Chisci R, Nicotra F. Carbohydr Res 345 1291-1298 (2010)
  33. A Structure-Activity Relationship Study of Bis-Benzamides as Inhibitors of Androgen Receptor-Coactivator Interaction. Lee TK, Ravindranathan P, Sonavane R, Raj GV, Ahn JM. Molecules 24 E2783 (2019)
  34. A unified approach to the important protein kinase inhibitor balanol and a proposed analogue. Saha T, Maitra R, Chattopadhyay SK. Beilstein J Org Chem 9 2910-2915 (2013)
  35. Geometric Deep Learning for Structure-Based Ligand Design. Powers AS, Yu HH, Suriana P, Koodli RV, Lu T, Paggi JM, Dror RO. ACS Cent Sci 9 2257-2267 (2023)
  36. Synthesis of Substituted Oxo-Azepines by Regio- and Diastereoselective Hydroxylation. Spedding H, Karuso P, Liu F. Molecules 22 E1871 (2017)