1vpr Citations

Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole.

Proc Natl Acad Sci U S A 102 1378-83 (2005)
Cited: 23 times
EuropePMC logo PMID: 15665092

Abstract

The luciferase of Lingulodinium polyedrum, a marine bioluminescent dinoflagellate, consists of three similar but not identical domains in a single polypeptide. Each encodes an active luciferase that catalyzes the oxidation of a chlorophyll-derived open tetrapyrrole (dinoflagellate luciferin) to produce blue light. These domains share no sequence similarity with any other in the GenBank database and no structural or motif similarity with any other luciferase. We report here the 1.8-A crystal structure of the third domain, D3, at pH 8, and a mechanism for its activity regulation by pH. D3 consists of two major structural elements: a beta-barrel pocket putatively for substrate binding and catalysis and a regulatory three-helix bundle. N-terminal histidine residues previously shown to regulate activity by pH are at the interface of the helices in the bundle. Molecular dynamics calculations indicate that, in response to changes in pH, these histidines could trigger a large molecular motion of the bundle, thereby exposing the active site to the substrate.

Reviews - 1vpr mentioned but not cited (1)

Articles - 1vpr mentioned but not cited (3)

  1. Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Schultz LW, Liu L, Cegielski M, Hastings JW. Proc. Natl. Acad. Sci. U.S.A. 102 1378-1383 (2005)
  2. Structure and mechanism of the phycobiliprotein lyase CpcT. Zhou W, Ding WL, Zeng XL, Dong LL, Zhao B, Zhou M, Scheer H, Zhao KH, Yang X. J. Biol. Chem. 289 26677-26689 (2014)
  3. Editorial Bioluminescent and Fluorescent Proteins: Molecular Mechanisms and Modern Applications. Vysotski ES. Int J Mol Sci 24 281 (2022)


Reviews citing this publication (9)

  1. Bioluminescence in the sea. Haddock SH, Moline MA, Case JF. Ann Rev Mar Sci 2 443-493 (2010)
  2. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Kaskova ZM, Tsarkova AS, Yampolsky IV. Chem Soc Rev 45 6048-6077 (2016)
  3. The Gonyaulax clock at 50: translational control of circadian expression. Hastings JW. Cold Spring Harb Symp Quant Biol 72 141-144 (2007)
  4. Protein-protein complexation in bioluminescence. Titushin MS, Feng Y, Lee J, Vysotski ES, Liu ZJ. Protein Cell 2 957-972 (2011)
  5. Understanding Bioluminescence in Dinoflagellates-How Far Have We Come? Valiadi M, Iglesias-Rodriguez D. Microorganisms 1 3-25 (2013)
  6. Phytoplankton defence mechanisms: traits and trade-offs. Pančić M, Kiørboe T. Biol Rev Camb Philos Soc 93 1269-1303 (2018)
  7. New insight into cofactor-free oxygenation from combined experimental and computational approaches. Bui S, Steiner RA. Curr. Opin. Struct. Biol. 41 109-118 (2016)
  8. Bioluminescent Dinoflagellates as a Bioassay for Toxicity Assessment. Perin LS, Moraes GV, Galeazzo GA, Oliveira AG. Int J Mol Sci 23 13012 (2022)
  9. New Perspectives Related to the Bioluminescent System in Dinoflagellates: Pyrocystis lunula, a Case Study. Fajardo C, De Donato M, Rodulfo H, Martinez-Rodriguez G, Costas B, Mancera JM, Fernandez-Acero FJ. Int J Mol Sci 21 (2020)

Articles citing this publication (10)

  1. Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state. Liu ZJ, Stepanyuk GA, Vysotski ES, Lee J, Markova SV, Malikova NP, Wang BC. Proc. Natl. Acad. Sci. U.S.A. 103 2570-2575 (2006)
  2. On the origin of fluorescence in bacteriophytochrome infrared fluorescent proteins. Samma AA, Johnson CK, Song S, Alvarez S, Zimmer M. J Phys Chem B 114 15362-15369 (2010)
  3. Mechanosensitivity of a rapid bioluminescence reporter system assessed by atomic force microscopy. Tesson B, Latz MI. Biophys. J. 108 1341-1351 (2015)
  4. Pharmacological investigation of the bioluminescence signaling pathway of the dinoflagellate Lingulodinium polyedrum: evidence for the role of stretch-activated ion channels. Jin K, Klima JC, Deane G, Dale Stokes M, Latz MI. J. Phycol. 49 733-745 (2013)
  5. C-terminal region of the active domain enhances enzymatic activity in dinoflagellate luciferase. Suzuki-Ogoh C, Wu C, Ohmiya Y. Photochem. Photobiol. Sci. 7 208-211 (2008)
  6. Profile of J. Woodland Hastings. Davis TH. Proc. Natl. Acad. Sci. U.S.A. 104 693-695 (2007)
  7. Theoretical Study of Dinoflagellate Bioluminescence. Wang MY, Liu YJ. Photochem. Photobiol. 93 511-518 (2017)
  8. Structure of a double-domain phosphagen kinase reveals an asymmetric arrangement of the tandem domains. Wang Z, Qiao Z, Ye S, Zhang R. Acta Crystallogr. D Biol. Crystallogr. 71 779-789 (2015)
  9. Lipocalin Blc is a potential heme-binding protein. Bozhanova NG, Calcutt MW, Beavers WN, Brown BP, Skaar EP, Meiler J. FEBS Lett 595 206-219 (2021)
  10. In memoriam: A life scientific--John Woodland 'Woody' Hastings (1927-2014). Kricka LJ, Stanley PE. Luminescence 29 959-962 (2014)


Related citations provided by authors (1)

  1. Characterization and crystallization of active domains of a novel luciferase from a marine dinoflagellate.. Liu L, Im H, Cegielski M, LeMagueres P, Schultz LW, Krause KL, Hastings JW Acta Crystallogr D Biol Crystallogr 59 761-4 (2003)