1vyv Citations

Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels.

Nature 429 675-80 (2004)
Related entries: 1vyt, 1vyu

Cited: 220 times
EuropePMC logo PMID: 15170217

Abstract

High-voltage-activated Ca2+ channels are essential for diverse biological processes. They are composed of four or five subunits, including alpha1, alpha2-delta, beta and gamma (ref. 1). Their expression and function are critically dependent on the beta-subunit, which transports alpha1 to the surface membrane and regulates diverse channel properties. It is believed that the beta-subunit interacts with alpha1 primarily through the beta-interaction domain (BID), which binds directly to the alpha-interaction domain (AID) of alpha1; however, the molecular mechanism of the alpha1-beta interaction is largely unclear. Here we report the crystal structures of the conserved core region of beta3, alone and in complex with AID, and of beta4 alone. The structures show that the beta-subunit core contains two interacting domains: a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain. The AID binds to a hydrophobic groove in the GK domain through extensive interactions, conferring extremely high affinity between alpha1 and beta-subunits. The BID is essential both for the structural integrity of and for bridging the SH3 and GK domains, but it does not participate directly in binding alpha1. The presence of multiple protein-interacting modules in the beta-subunit opens a new dimension to its function as a multi-functional protein.

Articles - 1vyv mentioned but not cited (2)



Reviews citing this publication (73)

  1. Voltage-gated calcium channels. Catterall WA. Cold Spring Harb Perspect Biol 3 a003947 (2011)
  2. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. Pharmacol Rev 67 821-870 (2015)
  3. Voltage-gated ion channels and gating modifier toxins. Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Toxicon 49 124-141 (2007)
  4. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Simms BA, Zamponi GW. Neuron 82 24-45 (2014)
  5. Overview of molecular relationships in the voltage-gated ion channel superfamily. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Pharmacol Rev 57 387-395 (2005)
  6. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Dolphin AC. Nat Rev Neurosci 13 542-555 (2012)
  7. The ß subunit of voltage-gated Ca2+ channels. Buraei Z, Yang J. Physiol Rev 90 1461-1506 (2010)
  8. Calcium and arrhythmogenesis. Ter Keurs HE, Boyden PA. Physiol Rev 87 457-506 (2007)
  9. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Yu FH, Catterall WA. Sci STKE 2004 re15 (2004)
  10. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Feng W, Zhang M. Nat Rev Neurosci 10 87-99 (2009)
  11. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Dai S, Hall DD, Hell JW. Physiol Rev 89 411-452 (2009)
  12. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Hofmann F, Flockerzi V, Kahl S, Wegener JW. Physiol Rev 94 303-326 (2014)
  13. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. Dolphin AC. J Physiol 594 5369-5390 (2016)
  14. The L-type calcium channel in the heart: the beat goes on. Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. J Clin Invest 115 3306-3317 (2005)
  15. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Yang SN, Berggren PO. Endocr Rev 27 621-676 (2006)
  16. Direct G protein modulation of Cav2 calcium channels. Tedford HW, Zamponi GW. Pharmacol Rev 58 837-862 (2006)
  17. Mechanisms of specificity in neuronal activity-regulated gene transcription. Lyons MR, West AE. Prog Neurobiol 94 259-295 (2011)
  18. Voltage-gated calcium channels and idiopathic generalized epilepsies. Khosravani H, Zamponi GW. Physiol Rev 86 941-966 (2006)
  19. The chemical basis for electrical signaling. Catterall WA, Wisedchaisri G, Zheng N. Nat Chem Biol 13 455-463 (2017)
  20. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Zamponi GW, Currie KP. Biochim Biophys Acta 1828 1629-1643 (2013)
  21. Are Ca2+ channels targets of praziquantel action? Greenberg RM. Int J Parasitol 35 1-9 (2005)
  22. The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA. Cell Signal 20 292-300 (2008)
  23. Calcium channels and short-term synaptic plasticity. Catterall WA, Leal K, Nanou E. J Biol Chem 288 10742-10749 (2013)
  24. Beta-cell CaV channel regulation in physiology and pathophysiology. Yang SN, Berggren PO. Am J Physiol Endocrinol Metab 288 E16-28 (2005)
  25. L-type calcium channel targeting and local signalling in cardiac myocytes. Shaw RM, Colecraft HM. Cardiovasc Res 98 177-186 (2013)
  26. Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications. Sonkusare S, Palade PT, Marsh JD, Telemaque S, Pesic A, Rusch NJ. Vascul Pharmacol 44 131-142 (2006)
  27. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. Buraei Z, Yang J. Biochim Biophys Acta 1828 1530-1540 (2013)
  28. Ca2+ channel beta-subunits: structural insights AID our understanding. Richards MW, Butcher AJ, Dolphin AC. Trends Pharmacol Sci 25 626-632 (2004)
  29. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Minor DL, Findeisen F. Channels (Austin) 4 459-474 (2010)
  30. A short history of voltage-gated calcium channels. Dolphin AC. Br J Pharmacol 147 Suppl 1 S56-62 (2006)
  31. Gene regulation by voltage-dependent calcium channels. Barbado M, Fablet K, Ronjat M, De Waard M. Biochim Biophys Acta 1793 1096-1104 (2009)
  32. The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Mercer AJ, Thoreson WB. Vis Neurosci 28 453-471 (2011)
  33. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. Campiglio M, Flucher BE. J Cell Physiol 230 2019-2031 (2015)
  34. Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Delbono O. Curr Aging Sci 4 248-259 (2011)
  35. Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action. Jeziorski MC, Greenberg RM. Int J Parasitol 36 625-632 (2006)
  36. Ionic mechanisms in pancreatic β cell signaling. Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Cell Mol Life Sci 71 4149-4177 (2014)
  37. Modulation of insect Ca(v) channels by peptidic spider toxins. King GF. Toxicon 49 513-530 (2007)
  38. Regulation of voltage-dependent calcium channels by RGK proteins. Yang T, Colecraft HM. Biochim Biophys Acta 1828 1644-1654 (2013)
  39. G protein modulation of CaV2 voltage-gated calcium channels. Currie KP. Channels (Austin) 4 497-509 (2010)
  40. Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Geisler S, Schöpf CL, Obermair GJ. Gen Physiol Biophys 34 105-118 (2015)
  41. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Int J Mol Sci 20 E3537 (2019)
  42. Adrenergic Regulation of Calcium Channels in the Heart. Papa A, Kushner J, Marx SO. Annu Rev Physiol 84 285-306 (2022)
  43. The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Minor DL. Neuron 54 511-533 (2007)
  44. Remodeled cardiac calcium channels. Pitt GS, Dun W, Boyden PA. J Mol Cell Cardiol 41 373-388 (2006)
  45. Ion channel engineering: perspectives and strategies. Subramanyam P, Colecraft HM. J Mol Biol 427 190-204 (2015)
  46. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Samsó M. Protein Sci 26 52-68 (2017)
  47. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation-contraction coupling. Bannister RA. J Muscle Res Cell Motil 28 275-283 (2007)
  48. Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Shishmarev D. Biophys Rev 12 143-153 (2020)
  49. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Neely A, Hidalgo P. Front Physiol 5 209 (2014)
  50. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling. Bannister RA. J Exp Biol 219 175-182 (2016)
  51. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature. Greenberg RM. Parasitology 131 Suppl S97-108 (2005)
  52. The voltage-gated calcium-channel beta subunit: more than just an accessory. Karunasekara Y, Dulhunty AF, Casarotto MG. Eur Biophys J 39 75-81 (2009)
  53. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Senatore A, Guan W, Spafford JD. Pflugers Arch 466 645-660 (2014)
  54. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. Rufenach B, Van Petegem F. J Biol Chem 297 100874 (2021)
  55. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis? Hernández-Ochoa EO, Schneider MF. Skelet Muscle 8 22 (2018)
  56. Trafficking of neuronal calcium channels. Weiss N, Zamponi GW. Neuronal Signal 1 NS20160003 (2017)
  57. A key role for phosphorylated inositol compounds in pancreatic beta-cell stimulus-secretion coupling. Berggren PO, Barker CJ. Adv Enzyme Regul 48 276-294 (2008)
  58. Engineering proteins for custom inhibition of Ca(V) channels. Xu X, Colecraft HM. Physiology (Bethesda) 24 210-218 (2009)
  59. Mechanisms and Regulation of Cardiac CaV1.2 Trafficking. Westhoff M, Dixon RE. Int J Mol Sci 22 5927 (2021)
  60. Designer genetically encoded voltage-dependent calcium channel inhibitors inspired by RGK GTPases. Colecraft HM. J Physiol 598 1683-1693 (2020)
  61. Structural insights into excitation-contraction coupling by electron cryomicroscopy. Serysheva II. Biochemistry (Mosc) 69 1226-1232 (2004)
  62. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. French RJ, Zamponi GW. IEEE Trans Nanobioscience 4 58-69 (2005)
  63. The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Ferron L, Koshti S, Zamponi GW. Neuronal Signal 5 NS20200095 (2021)
  64. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora's Box. Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Int J Mol Sci 23 6158 (2022)
  65. Alone at last! New functions for Ca2+ channel beta subunits? Rousset M, Cens T, Charnet P. Sci STKE 2005 pe11 (2005)
  66. Oxidative Regulation of Vascular Cav1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Hu XQ, Zhang L. Antioxidants (Basel) 11 2432 (2022)
  67. RGK regulation of voltage-gated calcium channels. Buraei Z, Lumen E, Kaur S, Yang J. Sci China Life Sci 58 28-38 (2015)
  68. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca2+ channels. Cunningham KL, Littleton JT. Front Mol Neurosci 15 1116729 (2022)
  69. New Insights in CaVβ Subunits: Role in the Regulation of Gene Expression and Cellular Homeostasis. Vergnol A, Traoré M, Pietri-Rouxel F, Falcone S. Front Cell Dev Biol 10 880441 (2022)
  70. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. iScience 23 101749 (2020)
  71. β subunits of voltage-gated calcium channels in cardiovascular diseases. Loh KWZ, Liu C, Soong TW, Hu Z. Front Cardiovasc Med 10 1119729 (2023)
  72. Modification of cardiovascular ion channels by gene therapy. Telemaque S, Marsh JD. Expert Rev Cardiovasc Ther 7 939-953 (2009)
  73. [Structure of the calcium channel beta subunit: the place of the beta-interaction domain]. Rousset M, Charnet P, Cens T. Med Sci (Paris) 21 279-283 (2005)

Articles citing this publication (145)