1vyv Citations

Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels.

Nature 429 675-80 (2004)
Related entries: 1vyt, 1vyu

Cited: 220 times
EuropePMC logo PMID: 15170217

Abstract

High-voltage-activated Ca2+ channels are essential for diverse biological processes. They are composed of four or five subunits, including alpha1, alpha2-delta, beta and gamma (ref. 1). Their expression and function are critically dependent on the beta-subunit, which transports alpha1 to the surface membrane and regulates diverse channel properties. It is believed that the beta-subunit interacts with alpha1 primarily through the beta-interaction domain (BID), which binds directly to the alpha-interaction domain (AID) of alpha1; however, the molecular mechanism of the alpha1-beta interaction is largely unclear. Here we report the crystal structures of the conserved core region of beta3, alone and in complex with AID, and of beta4 alone. The structures show that the beta-subunit core contains two interacting domains: a Src homology 3 (SH3) domain and a guanylate kinase (GK) domain. The AID binds to a hydrophobic groove in the GK domain through extensive interactions, conferring extremely high affinity between alpha1 and beta-subunits. The BID is essential both for the structural integrity of and for bridging the SH3 and GK domains, but it does not participate directly in binding alpha1. The presence of multiple protein-interacting modules in the beta-subunit opens a new dimension to its function as a multi-functional protein.

Articles - 1vyv mentioned but not cited (2)



Reviews citing this publication (73)

  1. Voltage-gated calcium channels. Catterall WA. Cold Spring Harb Perspect Biol 3 a003947 (2011)
  2. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. Pharmacol Rev 67 821-870 (2015)
  3. Voltage-gated ion channels and gating modifier toxins. Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Toxicon 49 124-141 (2007)
  4. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Simms BA, Zamponi GW. Neuron 82 24-45 (2014)
  5. Overview of molecular relationships in the voltage-gated ion channel superfamily. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Pharmacol Rev 57 387-395 (2005)
  6. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Dolphin AC. Nat Rev Neurosci 13 542-555 (2012)
  7. The ß subunit of voltage-gated Ca2+ channels. Buraei Z, Yang J. Physiol Rev 90 1461-1506 (2010)
  8. Calcium and arrhythmogenesis. Ter Keurs HE, Boyden PA. Physiol Rev 87 457-506 (2007)
  9. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Yu FH, Catterall WA. Sci STKE 2004 re15 (2004)
  10. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Feng W, Zhang M. Nat Rev Neurosci 10 87-99 (2009)
  11. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Dai S, Hall DD, Hell JW. Physiol Rev 89 411-452 (2009)
  12. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Hofmann F, Flockerzi V, Kahl S, Wegener JW. Physiol Rev 94 303-326 (2014)
  13. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. Dolphin AC. J Physiol 594 5369-5390 (2016)
  14. The L-type calcium channel in the heart: the beat goes on. Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. J Clin Invest 115 3306-3317 (2005)
  15. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Yang SN, Berggren PO. Endocr Rev 27 621-676 (2006)
  16. Direct G protein modulation of Cav2 calcium channels. Tedford HW, Zamponi GW. Pharmacol Rev 58 837-862 (2006)
  17. Mechanisms of specificity in neuronal activity-regulated gene transcription. Lyons MR, West AE. Prog Neurobiol 94 259-295 (2011)
  18. Voltage-gated calcium channels and idiopathic generalized epilepsies. Khosravani H, Zamponi GW. Physiol Rev 86 941-966 (2006)
  19. The chemical basis for electrical signaling. Catterall WA, Wisedchaisri G, Zheng N. Nat Chem Biol 13 455-463 (2017)
  20. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Zamponi GW, Currie KP. Biochim Biophys Acta 1828 1629-1643 (2013)
  21. Are Ca2+ channels targets of praziquantel action? Greenberg RM. Int J Parasitol 35 1-9 (2005)
  22. The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA. Cell Signal 20 292-300 (2008)
  23. Calcium channels and short-term synaptic plasticity. Catterall WA, Leal K, Nanou E. J Biol Chem 288 10742-10749 (2013)
  24. Beta-cell CaV channel regulation in physiology and pathophysiology. Yang SN, Berggren PO. Am J Physiol Endocrinol Metab 288 E16-28 (2005)
  25. L-type calcium channel targeting and local signalling in cardiac myocytes. Shaw RM, Colecraft HM. Cardiovasc Res 98 177-186 (2013)
  26. Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications. Sonkusare S, Palade PT, Marsh JD, Telemaque S, Pesic A, Rusch NJ. Vascul Pharmacol 44 131-142 (2006)
  27. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. Buraei Z, Yang J. Biochim Biophys Acta 1828 1530-1540 (2013)
  28. Ca2+ channel beta-subunits: structural insights AID our understanding. Richards MW, Butcher AJ, Dolphin AC. Trends Pharmacol Sci 25 626-632 (2004)
  29. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Minor DL, Findeisen F. Channels (Austin) 4 459-474 (2010)
  30. A short history of voltage-gated calcium channels. Dolphin AC. Br J Pharmacol 147 Suppl 1 S56-62 (2006)
  31. Gene regulation by voltage-dependent calcium channels. Barbado M, Fablet K, Ronjat M, De Waard M. Biochim Biophys Acta 1793 1096-1104 (2009)
  32. The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Mercer AJ, Thoreson WB. Vis Neurosci 28 453-471 (2011)
  33. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. Campiglio M, Flucher BE. J Cell Physiol 230 2019-2031 (2015)
  34. Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Delbono O. Curr Aging Sci 4 248-259 (2011)
  35. Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action. Jeziorski MC, Greenberg RM. Int J Parasitol 36 625-632 (2006)
  36. Ionic mechanisms in pancreatic β cell signaling. Yang SN, Shi Y, Yang G, Li Y, Yu J, Berggren PO. Cell Mol Life Sci 71 4149-4177 (2014)
  37. Modulation of insect Ca(v) channels by peptidic spider toxins. King GF. Toxicon 49 513-530 (2007)
  38. Regulation of voltage-dependent calcium channels by RGK proteins. Yang T, Colecraft HM. Biochim Biophys Acta 1828 1644-1654 (2013)
  39. G protein modulation of CaV2 voltage-gated calcium channels. Currie KP. Channels (Austin) 4 497-509 (2010)
  40. Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Geisler S, Schöpf CL, Obermair GJ. Gen Physiol Biophys 34 105-118 (2015)
  41. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Int J Mol Sci 20 E3537 (2019)
  42. Adrenergic Regulation of Calcium Channels in the Heart. Papa A, Kushner J, Marx SO. Annu Rev Physiol 84 285-306 (2022)
  43. The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Minor DL. Neuron 54 511-533 (2007)
  44. Remodeled cardiac calcium channels. Pitt GS, Dun W, Boyden PA. J Mol Cell Cardiol 41 373-388 (2006)
  45. Ion channel engineering: perspectives and strategies. Subramanyam P, Colecraft HM. J Mol Biol 427 190-204 (2015)
  46. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Samsó M. Protein Sci 26 52-68 (2017)
  47. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation-contraction coupling. Bannister RA. J Muscle Res Cell Motil 28 275-283 (2007)
  48. Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Shishmarev D. Biophys Rev 12 143-153 (2020)
  49. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels. Neely A, Hidalgo P. Front Physiol 5 209 (2014)
  50. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling. Bannister RA. J Exp Biol 219 175-182 (2016)
  51. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature. Greenberg RM. Parasitology 131 Suppl S97-108 (2005)
  52. The voltage-gated calcium-channel beta subunit: more than just an accessory. Karunasekara Y, Dulhunty AF, Casarotto MG. Eur Biophys J 39 75-81 (2009)
  53. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Senatore A, Guan W, Spafford JD. Pflugers Arch 466 645-660 (2014)
  54. Structure and function of STAC proteins: Calcium channel modulators and critical components of muscle excitation-contraction coupling. Rufenach B, Van Petegem F. J Biol Chem 297 100874 (2021)
  55. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis? Hernández-Ochoa EO, Schneider MF. Skelet Muscle 8 22 (2018)
  56. Trafficking of neuronal calcium channels. Weiss N, Zamponi GW. Neuronal Signal 1 NS20160003 (2017)
  57. A key role for phosphorylated inositol compounds in pancreatic beta-cell stimulus-secretion coupling. Berggren PO, Barker CJ. Adv Enzyme Regul 48 276-294 (2008)
  58. Engineering proteins for custom inhibition of Ca(V) channels. Xu X, Colecraft HM. Physiology (Bethesda) 24 210-218 (2009)
  59. Mechanisms and Regulation of Cardiac CaV1.2 Trafficking. Westhoff M, Dixon RE. Int J Mol Sci 22 5927 (2021)
  60. Designer genetically encoded voltage-dependent calcium channel inhibitors inspired by RGK GTPases. Colecraft HM. J Physiol 598 1683-1693 (2020)
  61. Structural insights into excitation-contraction coupling by electron cryomicroscopy. Serysheva II. Biochemistry (Mosc) 69 1226-1232 (2004)
  62. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. French RJ, Zamponi GW. IEEE Trans Nanobioscience 4 58-69 (2005)
  63. The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Ferron L, Koshti S, Zamponi GW. Neuronal Signal 5 NS20200095 (2021)
  64. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora's Box. Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Int J Mol Sci 23 6158 (2022)
  65. Alone at last! New functions for Ca2+ channel beta subunits? Rousset M, Cens T, Charnet P. Sci STKE 2005 pe11 (2005)
  66. Oxidative Regulation of Vascular Cav1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Hu XQ, Zhang L. Antioxidants (Basel) 11 2432 (2022)
  67. RGK regulation of voltage-gated calcium channels. Buraei Z, Lumen E, Kaur S, Yang J. Sci China Life Sci 58 28-38 (2015)
  68. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca2+ channels. Cunningham KL, Littleton JT. Front Mol Neurosci 15 1116729 (2022)
  69. New Insights in CaVβ Subunits: Role in the Regulation of Gene Expression and Cellular Homeostasis. Vergnol A, Traoré M, Pietri-Rouxel F, Falcone S. Front Cell Dev Biol 10 880441 (2022)
  70. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. iScience 23 101749 (2020)
  71. β subunits of voltage-gated calcium channels in cardiovascular diseases. Loh KWZ, Liu C, Soong TW, Hu Z. Front Cardiovasc Med 10 1119729 (2023)
  72. Modification of cardiovascular ion channels by gene therapy. Telemaque S, Marsh JD. Expert Rev Cardiovasc Ther 7 939-953 (2009)
  73. [Structure of the calcium channel beta subunit: the place of the beta-interaction domain]. Rousset M, Charnet P, Cens T. Med Sci (Paris) 21 279-283 (2005)

Articles citing this publication (145)

  1. Structure of the voltage-gated calcium channel Cav1.1 complex. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Science 350 aad2395 (2015)
  2. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW. Nat Neurosci 14 173-180 (2011)
  3. Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation. Waithe D, Ferron L, Page KM, Chaggar K, Dolphin AC. J Biol Chem 286 9598-9611 (2011)
  4. Critical role for the beta regulatory subunits of Cav channels in T lymphocyte function. Badou A, Jha MK, Matza D, Mehal WZ, Freichel M, Flockerzi V, Flavell RA. Proc Natl Acad Sci U S A 103 15529-15534 (2006)
  5. Removal of Ca2+ channel beta3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Berggren PO, Yang SN, Murakami M, Efanov AM, Uhles S, Köhler M, Moede T, Fernström A, Appelskog IB, Aspinwall CA, Zaitsev SV, Larsson O, de Vargas LM, Fecher-Trost C, Weissgerber P, Ludwig A, Leibiger B, Juntti-Berggren L, Barker CJ, Gromada J, Freichel M, Leibiger IB, Flockerzi V. Cell 119 273-284 (2004)
  6. A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel beta subunits: subversion of flatworm regenerative polarity. Nogi T, Zhang D, Chan JD, Marchant JS. PLoS Negl Trop Dis 3 e464 (2009)
  7. Expression of Rem2, an RGK family small GTPase, reduces N-type calcium current without affecting channel surface density. Chen H, Puhl HL, Niu SL, Mitchell DC, Ikeda SR. J Neurosci 25 9762-9772 (2005)
  8. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules. Zhu J, Shang Y, Xia C, Wang W, Wen W, Zhang M. EMBO J 30 4986-4997 (2011)
  9. G protein-gated inhibitory module of N-type (ca(v)2.2) ca2+ channels. Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT. Neuron 46 891-904 (2005)
  10. Interaction via a key tryptophan in the I-II linker of N-type calcium channels is required for beta1 but not for palmitoylated beta2, implicating an additional binding site in the regulation of channel voltage-dependent properties. Leroy J, Richards MW, Butcher AJ, Nieto-Rostro M, Pratt WS, Davies A, Dolphin AC. J Neurosci 25 6984-6996 (2005)
  11. The best disease-linked Cl- channel hBest1 regulates Ca V 1 (L-type) Ca2+ channels via src-homology-binding domains. Yu K, Xiao Q, Cui G, Lee A, Hartzell HC. J Neurosci 28 5660-5670 (2008)
  12. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Gao S, Yao X, Yan N. Nature 596 143-147 (2021)
  13. Alanine-scanning mutagenesis defines a conserved energetic hotspot in the CaValpha1 AID-CaVbeta interaction site that is critical for channel modulation. Van Petegem F, Duderstadt KE, Clark KA, Wang M, Minor DL. Structure 16 280-294 (2008)
  14. Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation. Findeisen F, Minor DL. J Gen Physiol 133 327-343 (2009)
  15. Reciprocal interactions regulate targeting of calcium channel beta subunits and membrane expression of alpha1 subunits in cultured hippocampal neurons. Obermair GJ, Schlick B, Di Biase V, Subramanyam P, Gebhart M, Baumgartner S, Flucher BE. J Biol Chem 285 5776-5791 (2010)
  16. Role of CaVbeta subunits, and lack of functional reserve, in protein kinase A modulation of cardiac CaV1.2 channels. Miriyala J, Nguyen T, Yue DT, Colecraft HM. Circ Res 102 e54-64 (2008)
  17. Mechanism of auxiliary β-subunit-mediated membrane targeting of L-type (Ca(V)1.2) channels. Fang K, Colecraft HM. J Physiol 589 4437-4455 (2011)
  18. Essential Ca(V)beta modulatory properties are AID-independent. Maltez JM, Nunziato DA, Kim J, Pitt GS. Nat Struct Mol Biol 12 372-377 (2005)
  19. A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. Takahashi SX, Miriyala J, Tay LH, Yue DT, Colecraft HM. J Gen Physiol 126 365-377 (2005)
  20. Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Cingolani E, Ramirez Correa GA, Kizana E, Murata M, Cho HC, Marbán E. Circ Res 101 166-175 (2007)
  21. Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. Tadross MR, Ben Johny M, Yue DT. J Gen Physiol 135 197-215 (2010)
  22. Functional modularity of the beta-subunit of voltage-gated Ca2+ channels. He LL, Zhang Y, Chen YH, Yamada Y, Yang J. Biophys J 93 834-845 (2007)
  23. Transfer of beta subunit regulation from high to low voltage-gated Ca2+ channels. Arias JM, Murbartián J, Vitko I, Lee JH, Perez-Reyes E. FEBS Lett 579 3907-3912 (2005)
  24. Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M. EMBO J 31 3730-3744 (2012)
  25. A global characterization and identification of multifunctional enzymes. Cheng XY, Huang WJ, Hu SC, Zhang HL, Wang H, Zhang JX, Lin HH, Chen YZ, Zou Q, Ji ZL. PLoS One 7 e38979 (2012)
  26. Cardiac CaV1.2 channels require β subunits for β-adrenergic-mediated modulation but not trafficking. Yang L, Katchman A, Kushner J, Kushnir A, Zakharov SI, Chen BX, Shuja Z, Subramanyam P, Liu G, Papa A, Roybal D, Pitt GS, Colecraft HM, Marx SO. J Clin Invest 129 647-658 (2019)
  27. Alternative splicing of the voltage-gated Ca2+ channel beta4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. Vendel AC, Terry MD, Striegel AR, Iverson NM, Leuranguer V, Rithner CD, Lyons BA, Pickard GE, Tobet SA, Horne WA. J Neurosci 26 2635-2644 (2006)
  28. The β3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II-infused C57BL/6 mice. Kharade SV, Sonkusare SK, Srivastava AK, Thakali KM, Fletcher TW, Rhee SW, Rusch NJ. Hypertension 61 137-142 (2013)
  29. What is the mechanism of action of praziquantel and how might resistance strike? Cupit PM, Cunningham C. Future Med Chem 7 701-705 (2015)
  30. A single CaVbeta can reconstitute both trafficking and macroscopic conductance of voltage-dependent calcium channels. Dalton S, Takahashi SX, Miriyala J, Colecraft HM. J Physiol 567 757-769 (2005)
  31. Modulation of inactivation properties of CaV2.2 channels by 14-3-3 proteins. Li Y, Wu Y, Zhou Y. Neuron 51 755-771 (2006)
  32. Regulation of maximal open probability is a separable function of Ca(v)beta subunit in L-type Ca2+ channel, dependent on NH2 terminus of alpha1C (Ca(v)1.2alpha). Kanevsky N, Dascal N. J Gen Physiol 128 15-36 (2006)
  33. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes. Weng G, Wang E, Chen F, Sun H, Wang Z, Hou T. Phys Chem Chem Phys 21 10135-10145 (2019)
  34. Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels. Zhang Y, Chen YH, Bangaru SD, He L, Abele K, Tanabe S, Kozasa T, Yang J. J Neurosci 28 14176-14188 (2008)
  35. Voltage-gated calcium channels: their discovery, function and importance as drug targets. Dolphin AC. Brain Neurosci Adv 2 2398212818794805 (2018)
  36. Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. Jeon D, Song I, Guido W, Kim K, Kim E, Oh U, Shin HS. J Biol Chem 283 12093-12101 (2008)
  37. The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials. Savalli N, Pantazis A, Sigg D, Weiss JN, Neely A, Olcese R. J Gen Physiol 148 147-159 (2016)
  38. Adrenergic CaV1.2 Activation via Rad Phosphorylation Converges at α1C I-II Loop. Papa A, Kushner J, Hennessey JA, Katchman AN, Zakharov SI, Chen BX, Yang L, Lu R, Leong S, Diaz J, Liu G, Roybal D, Liao X, Del Rivero Morfin PJ, Colecraft HM, Pitt GS, Clarke O, Topkara V, Ben-Johny M, Marx SO. Circ Res 128 76-88 (2021)
  39. Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. Herzig S, Khan IF, Gründemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R. FASEB J 21 1527-1538 (2007)
  40. The beta subunit of voltage-gated Ca2+ channels interacts with and regulates the activity of a novel isoform of Pax6. Zhang Y, Yamada Y, Fan M, Bangaru SD, Lin B, Yang J. J Biol Chem 285 2527-2536 (2010)
  41. The junctional SR protein JP-45 affects the functional expression of the voltage-dependent Ca2+ channel Cav1.1. Anderson AA, Altafaj X, Zheng Z, Wang ZM, Delbono O, Ronjat M, Treves S, Zorzato F. J Cell Sci 119 2145-2155 (2006)
  42. Interaction of bestrophin-1 and Ca2+ channel β-subunits: identification of new binding domains on the bestrophin-1 C-terminus. Milenkovic VM, Krejcova S, Reichhart N, Wagner A, Strauss O. PLoS One 6 e19364 (2011)
  43. New short splice variants of the human cardiac Cavbeta2 subunit: redefining the major functional motifs implemented in modulation of the Cav1.2 channel. Harry JB, Kobrinsky E, Abernethy DR, Soldatov NM. J Biol Chem 279 46367-46372 (2004)
  44. Targeting the CaVα-CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Khanna R, Yu J, Yang X, Moutal A, Chefdeville A, Gokhale V, Shuja Z, Chew LA, Bellampalli SS, Luo S, François-Moutal L, Serafini MJ, Ha T, Perez-Miller S, Park KD, Patwardhan AM, Streicher JM, Colecraft HM, Khanna M. Pain 160 1644-1661 (2019)
  45. Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression. Etemad S, Obermair GJ, Bindreither D, Benedetti A, Stanika R, Di Biase V, Burtscher V, Koschak A, Kofler R, Geley S, Wille A, Lusser A, Flockerzi V, Flucher BE. J Neurosci 34 1446-1461 (2014)
  46. Domain cooperativity in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle. Dayal A, Bhat V, Franzini-Armstrong C, Grabner M. Proc Natl Acad Sci U S A 110 7488-7493 (2013)
  47. Unique modulation of L-type Ca2+ channels by short auxiliary beta1d subunit present in cardiac muscle. Cohen RM, Foell JD, Balijepalli RC, Shah V, Hell JW, Kamp TJ. Am J Physiol Heart Circ Physiol 288 H2363-74 (2005)
  48. Bio-inspired voltage-dependent calcium channel blockers. Yang T, He LL, Chen M, Fang K, Colecraft HM. Nat Commun 4 2540 (2013)
  49. Homodimerization of the Src homology 3 domain of the calcium channel β-subunit drives dynamin-dependent endocytosis. Miranda-Laferte E, Gonzalez-Gutierrez G, Schmidt S, Zeug A, Ponimaskin EG, Neely A, Hidalgo P. J Biol Chem 286 22203-22210 (2011)
  50. Ca2+ channel-independent requirement for MAGUK family CACNB4 genes in initiation of zebrafish epiboly. Ebert AM, McAnelly CA, Srinivasan A, Linker JL, Horne WA, Garrity DM. Proc Natl Acad Sci U S A 105 198-203 (2008)
  51. Molecular determinants of the CaVbeta-induced plasma membrane targeting of the CaV1.2 channel. Bourdin B, Marger F, Wall-Lacelle S, Schneider T, Klein H, Sauvé R, Parent L. J Biol Chem 285 22853-22863 (2010)
  52. Orientation of the calcium channel beta relative to the alpha(1)2.2 subunit is critical for its regulation of channel activity. Vitko I, Shcheglovitov A, Baumgart JP, Arias-Olguín II, Murbartián J, Arias JM, Perez-Reyes E. PLoS One 3 e3560 (2008)
  53. The role of a voltage-dependent Ca2+ channel intracellular linker: a structure-function analysis. Almagor L, Chomsky-Hecht O, Ben-Mocha A, Hendin-Barak D, Dascal N, Hirsch JA. J Neurosci 32 7602-7613 (2012)
  54. The structural biology of voltage-gated calcium channel function and regulation. Van Petegem F, Minor DL. Biochem Soc Trans 34 887-893 (2006)
  55. Calmodulin-dependent gating of Ca(v)1.2 calcium channels in the absence of Ca(v)beta subunits. Ravindran A, Lao QZ, Harry JB, Abrahimi P, Kobrinsky E, Soldatov NM. Proc Natl Acad Sci U S A 105 8154-8159 (2008)
  56. Orientation of palmitoylated CaVbeta2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation. Mitra-Ganguli T, Vitko I, Perez-Reyes E, Rittenhouse AR. J Gen Physiol 134 385-396 (2009)
  57. The N-terminal domain tethers the voltage-gated calcium channel β2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions. Miranda-Laferte E, Ewers D, Guzman RE, Jordan N, Schmidt S, Hidalgo P. J Biol Chem 289 10387-10398 (2014)
  58. The importance of occupancy rather than affinity of CaV(beta) subunits for the calcium channel I-II linker in relation to calcium channel function. Butcher AJ, Leroy J, Richards MW, Pratt WS, Dolphin AC. J Physiol 574 387-398 (2006)
  59. A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation. Abderemane-Ali F, Findeisen F, Rossen ND, Minor DL. Neuron 101 1134-1149.e3 (2019)
  60. Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes. Stölting G, de Oliveira RC, Guzman RE, Miranda-Laferte E, Conrad R, Jordan N, Schmidt S, Hendriks J, Gensch T, Hidalgo P. J Biol Chem 290 4561-4572 (2015)
  61. Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavbeta4 versus Cavbeta2 subunits to synaptic terminals. Xie M, Li X, Han J, Vogt DL, Wittemann S, Mark MD, Herlitze S. J Cell Biol 178 489-502 (2007)
  62. Negatively charged residues in the N-terminal of the AID helix confer slow voltage dependent inactivation gating to CaV1.2. Dafi O, Berrou L, Dodier Y, Raybaud A, Sauvé R, Parent L. Biophys J 87 3181-3192 (2004)
  63. Analysis of the Rem2 - voltage dependant calcium channel beta subunit interaction and Rem2 interaction with phosphorylated phosphatidylinositide lipids. Correll RN, Botzet GJ, Satin J, Andres DA, Finlin BS. Cell Signal 20 400-408 (2008)
  64. Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Taylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O. Aging Cell 8 584-594 (2009)
  65. Regulation of high-voltage-activated Ca2+ channel function, trafficking, and membrane stability by auxiliary subunits. Felix R, Calderón-Rivera A, Andrade A. Wiley Interdiscip Rev Membr Transp Signal 2 207-220 (2013)
  66. Stapled Voltage-Gated Calcium Channel (CaV) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of CaV Function. Findeisen F, Campiglio M, Jo H, Abderemane-Ali F, Rumpf CH, Pope L, Rossen ND, Flucher BE, DeGrado WF, Minor DL. ACS Chem Neurosci 8 1313-1326 (2017)
  67. The alpha(1S) III-IV loop influences 1,4-dihydropyridine receptor gating but is not directly involved in excitation-contraction coupling interactions with the type 1 ryanodine receptor. Bannister RA, Grabner M, Beam KG. J Biol Chem 283 23217-23223 (2008)
  68. Two PEST-like motifs regulate Ca2+/calpain-mediated cleavage of the CaVbeta3 subunit and provide important determinants for neuronal Ca2+ channel activity. Sandoval A, Oviedo N, Tadmouri A, Avila T, De Waard M, Felix R. Eur J Neurosci 23 2311-2320 (2006)
  69. Gene expression profile of Clonorchis sinensis metacercariae. Cho PY, Kim TI, Whang SM, Hong SJ. Parasitol Res 102 277-282 (2008)
  70. New Determinant for the CaVbeta2 subunit modulation of the CaV1.2 calcium channel. Lao QZ, Kobrinsky E, Harry JB, Ravindran A, Soldatov NM. J Biol Chem 283 15577-15588 (2008)
  71. Novel CaV2.1 clone replicates many properties of Purkinje cell CaV2.1 current. Richards KS, Swensen AM, Lipscombe D, Bommert K. Eur J Neurosci 26 2950-2961 (2007)
  72. Uncoupling of calcium channel alpha1 and beta subunits in developing neurons. Spafford JD, Van Minnen J, Larsen P, Smit AB, Syed NI, Zamponi GW. J Biol Chem 279 41157-41167 (2004)
  73. A potent voltage-gated calcium channel inhibitor engineered from a nanobody targeted to auxiliary CaVβ subunits. Morgenstern TJ, Park J, Fan QR, Colecraft HM. Elife 8 e49253 (2019)
  74. RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P. FASEB J 23 2627-2638 (2009)
  75. The C-terminal residues in the alpha-interacting domain (AID) helix anchor CaV beta subunit interaction and modulation of CaV2.3 channels. Berrou L, Dodier Y, Raybaud A, Tousignant A, Dafi O, Pelletier JN, Parent L. J Biol Chem 280 494-505 (2005)
  76. Organization of calcium channel beta1a subunits in triad junctions in skeletal muscle. Leuranguer V, Papadopoulos S, Beam KG. J Biol Chem 281 3521-3527 (2006)
  77. Amino acid residues 489-503 of dihydropyridine receptor (DHPR) β1a subunit are critical for structural communication between the skeletal muscle DHPR complex and type 1 ryanodine receptor. Eltit JM, Franzini-Armstrong C, Perez CF. J Biol Chem 289 36116-36124 (2014)
  78. Calcium Channelopathies: Structural Insights into Disorders of the Muscle Excitation-Contraction Complex. Pancaroglu R, Van Petegem F. Annu Rev Genet 52 373-396 (2018)
  79. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants. Tuluc P, Flucher BE. J Muscle Res Cell Motil 32 249-256 (2011)
  80. EMC chaperone-CaV structure reveals an ion channel assembly intermediate. Chen Z, Mondal A, Abderemane-Ali F, Jang S, Niranjan S, Montaño JL, Zaro BW, Minor DL. Nature 619 410-419 (2023)
  81. Skeletal muscle excitation-contraction coupling is independent of a conserved heptad repeat motif in the C-terminus of the DHPRbeta(1a) subunit. Dayal A, Schredelseker J, Franzini-Armstrong C, Grabner M. Cell Calcium 47 500-506 (2010)
  82. The beta 1 subunit of L-type voltage-gated Ca2+ channels independently binds to and inhibits the gating of large-conductance Ca2+-activated K+ channels. Zou S, Jha S, Kim EY, Dryer SE. Mol Pharmacol 73 369-378 (2008)
  83. The guanylate kinase domain of the beta-subunit of voltage-gated calcium channels suffices to modulate gating. Gonzalez-Gutierrez G, Miranda-Laferte E, Nothmann D, Schmidt S, Neely A, Hidalgo P. Proc Natl Acad Sci U S A 105 14198-14203 (2008)
  84. Calcium channels of schistosomes: unresolved questions and unexpected answers. Salvador-Recatalà V, Greenberg RM. Wiley Interdiscip Rev Membr Transp Signal 1 85-93 (2012)
  85. Decreased myocardial injury and improved contractility after administration of a peptide derived against the alpha-interacting domain of the L-type calcium channel. Viola HM, Jordan MC, Roos KP, Hool LC. J Am Heart Assoc 3 e000961 (2014)
  86. Determinants of the voltage dependence of G protein modulation within calcium channel beta subunits. Dresviannikov AV, Page KM, Leroy J, Pratt WS, Dolphin AC. Pflugers Arch 457 743-756 (2009)
  87. Polyunsaturated fatty acid analogues differentially affect cardiac NaV, CaV, and KV channels through unique mechanisms. Bohannon BM, de la Cruz A, Wu X, Jowais JJ, Perez ME, Dykxhoorn DM, Liin SI, Larsson HP. Elife 9 e51453 (2020)
  88. Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Pozdnyakov I, Matantseva O, Skarlato S. Sci Rep 8 3539 (2018)
  89. Inactivation of L-type calcium channels is determined by the length of the N terminus of mutant beta(1) subunits. Jangsangthong W, Kuzmenkina E, Khan IF, Matthes J, Hullin R, Herzig S. Pflugers Arch 459 399-411 (2010)
  90. Oligomerization of Cavbeta subunits is an essential correlate of Ca2+ channel activity. Lao QZ, Kobrinsky E, Liu Z, Soldatov NM. FASEB J 24 5013-5023 (2010)
  91. Solution structure of the N-terminal A domain of the human voltage-gated Ca2+channel beta4a subunit. Vendel AC, Rithner CD, Lyons BA, Horne WA. Protein Sci 15 378-383 (2006)
  92. A quartet of leucine residues in the guanylate kinase domain of CaVβ determines the plasma membrane density of the CaV2.3 channel. Shakeri B, Bourdin B, Demers-Giroux PO, Sauvé R, Parent L. J Biol Chem 287 32835-32847 (2012)
  93. Modified sympathetic nerve system activity with overexpression of the voltage-dependent calcium channel beta3 subunit. Murakami M, Ohba T, Xu F, Satoh E, Miyoshi I, Suzuki T, Takahashi Y, Takahashi E, Watanabe H, Ono K, Sasano H, Kasai N, Ito H, Iijima T. J Biol Chem 283 24554-24560 (2008)
  94. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels. Cens T, Rousset M, Collet C, Charreton M, Garnery L, Le Conte Y, Le Conte Y, Chahine M, Sandoz JC, Charnet P. Insect Biochem Mol Biol 58 12-27 (2015)
  95. Potentiation of high voltage-activated calcium channels by 4-aminopyridine depends on subunit composition. Li L, Li DP, Chen SR, Chen J, Hu H, Pan HL. Mol Pharmacol 86 760-772 (2014)
  96. β1a490-508, a 19-residue peptide from C-terminal tail of Cav1.1 β1a subunit, potentiates voltage-dependent calcium release in adult skeletal muscle fibers. Hernández-Ochoa EO, Olojo RO, Rebbeck RT, Dulhunty AF, Schneider MF. Biophys J 106 535-547 (2014)
  97. Ahnak1 interaction is affected by phosphorylation of Ser-296 on Cavβ₂. Pankonien I, Otto A, Dascal N, Morano I, Haase H. Biochem Biophys Res Commun 421 184-189 (2012)
  98. Effect of Ca(v)beta subunits on structural organization of Ca(v)1.2 calcium channels. Kobrinsky E, Abrahimi P, Duong SQ, Thomas S, Harry JB, Patel C, Lao QZ, Soldatov NM. PLoS One 4 e5587 (2009)
  99. Functional dissection of the intramolecular Src homology 3-guanylate kinase domain coupling in voltage-gated Ca2+ channel beta-subunits. Chen YH, He LL, Buchanan DR, Zhang Y, Fitzmaurice A, Yang J. FEBS Lett 583 1969-1975 (2009)
  100. Rad and Rem are non-canonical G-proteins with respect to the regulatory role of guanine nucleotide binding in Ca(V)1.2 channel regulation. Chang DD, Colecraft HM. J Physiol 593 5075-5090 (2015)
  101. Single-channel monitoring of reversible L-type Ca(2+) channel Ca(V)α(1)-Ca(V)β subunit interaction. Jangsangthong W, Kuzmenkina E, Böhnke AK, Herzig S. Biophys J 101 2661-2670 (2011)
  102. The calcium channel beta2 (CACNB2) subunit repertoire in teleosts. Ebert AM, McAnelly CA, Srinivasan A, Mueller RL, Garrity DB, Garrity DM. BMC Mol Biol 9 38 (2008)
  103. Design of mutant beta2 subunits as decoy molecules to reduce the expression of functional Ca2+ channels in cardiac cells. Télémaque S, Sonkusare S, Grain T, Rhee SW, Stimers JR, Rusch NJ, Marsh JD. J Pharmacol Exp Ther 325 37-46 (2008)
  104. The alpha1S N-terminus is not essential for bi-directional coupling with RyR1. Bannister RA, Beam KG. Biochem Biophys Res Commun 336 134-141 (2005)
  105. The molecular architecture of dihydropyrindine receptor/L-type Ca2+ channel complex. Hu H, Wang Z, Wei R, Fan G, Wang Q, Zhang K, Yin CC. Sci Rep 5 8370 (2015)
  106. A novel molecular inactivation determinant of voltage-gated CaV1.2 L-type Ca2+ channel. Livneh A, Cohen R, Atlas D. Neuroscience 139 1275-1287 (2006)
  107. Gene splicing of an invertebrate beta subunit (LCavβ) in the N-terminal and HOOK domains and its regulation of LCav1 and LCav2 calcium channels. Dawson TF, Boone AN, Senatore A, Piticaru J, Thiyagalingam S, Jackson D, Davison A, Spafford JD. PLoS One 9 e92941 (2014)
  108. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel. Szpyt J, Lorenzon N, Perez CF, Norris E, Allen PD, Beam KG, Samsó M. J Biol Chem 287 43853-43861 (2012)
  109. Molecular Basis of Regulating High Voltage-Activated Calcium Channels by S-Nitrosylation. Zhou MH, Bavencoffe A, Pan HL. J Biol Chem 290 30616-30623 (2015)
  110. Mutations of nonconserved residues within the calcium channel alpha1-interaction domain inhibit beta-subunit potentiation. Gonzalez-Gutierrez G, Miranda-Laferte E, Naranjo D, Hidalgo P, Neely A. J Gen Physiol 132 383-395 (2008)
  111. A short polybasic segment between the two conserved domains of the β2a-subunit modulates the rate of inactivation of R-type calcium channel. Miranda-Laferte E, Schmidt S, Jara AC, Neely A, Hidalgo P. J Biol Chem 287 32588-32597 (2012)
  112. Characterization of the first honeybee Ca²⁺ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation. Cens T, Rousset M, Collet C, Raymond V, Démares F, Quintavalle A, Bellis M, Le Conte Y, Chahine M, Charnet P. Pflugers Arch 465 985-996 (2013)
  113. Comparative genomics of the human and Fugu voltage-gated calcium channel alpha1-subunit gene family reveals greater diversity in Fugu. Wong E, Yu WP, Yap WH, Venkatesh B, Soong TW. Gene 366 117-127 (2006)
  114. Genetic screening in C. elegans identifies rho-GTPase activating protein 6 as novel HERG regulator. Potet F, Petersen CI, Boutaud O, Shuai W, Stepanovic SZ, Balser JR, Kupershmidt S. J Mol Cell Cardiol 46 257-267 (2009)
  115. Genomic organization, expression, and phylogenetic analysis of Ca2+ channel beta4 genes in 13 vertebrate species. Ebert AM, McAnelly CA, Handschy AV, Mueller RL, Horne WA, Garrity DM. Physiol Genomics 35 133-144 (2008)
  116. Phosphorylation sites in the Hook domain of CaVβ subunits differentially modulate CaV1.2 channel function. Brunet S, Emrick MA, Sadilek M, Scheuer T, Catterall WA. J Mol Cell Cardiol 87 248-256 (2015)
  117. The HOOK region of voltage-gated Ca2+ channel β subunits senses and transmits PIP2 signals to the gate. Park CG, Park Y, Suh BC. J Gen Physiol 149 261-276 (2017)
  118. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis. Béguin P, Nagashima K, Mahalakshmi RN, Vigot R, Matsunaga A, Miki T, Ng MY, Ng YJ, Lim CH, Tay HS, Hwang LA, Firsov D, Tang BL, Inagaki N, Mori Y, Seino S, Launey T, Hunziker W. J Cell Biol 205 233-249 (2014)
  119. Delivery of ion channel genes to treat cardiovascular diseases. Marsh JD, Telemaque S, Rhee SW, Stimers JR, Rusch NJ. Trans Am Clin Climatol Assoc 119 171-82; discussion 182-3 (2008)
  120. Inhibition of protein kinase C (PKC) response of voltage-gated calcium (Cav)2.2 channels expressed in Xenopus oocytes by Cavβ subunits. Rajagopal S, Fields BL, Burton BK, On C, Reeder AA, Kamatchi GL. Neuroscience 280 1-9 (2014)
  121. Bimolecular fluorescence complementation and targeted biotinylation provide insight into the topology of the skeletal muscle Ca ( 2+) channel β1a subunit. Sheridan DC, Moua O, Lorenzon NM, Beam KG. Channels (Austin) 6 26-40 (2012)
  122. Comment Blocking the L-type Ca2+ channel with a gem: a paradigm for a more specific Ca2+ channel blocker. Balijepalli RC, Foell JD, Kamp TJ. Circ Res 95 337-339 (2004)
  123. Comparison of quinazoline and benzoylpyrazoline chemotypes targeting the CaVα-β interaction as antagonists of the N-type CaV2.2 channel. Ran D, Gomez K, Moutal A, Patek M, Perez-Miller S, Khanna R. Channels (Austin) 15 128-135 (2021)
  124. Divergent Ca2+/calmodulin feedback regulation of CaV1 and CaV2 voltage-gated calcium channels evolved in the common ancestor of Placozoa and Bilateria. Gauberg J, Elkhatib W, Smith CL, Singh A, Senatore A. J Biol Chem 298 101741 (2022)
  125. Structural and biophysical analyses of the skeletal dihydropyridine receptor β subunit β1a reveal critical roles of domain interactions for stability. Norris NC, Joseph S, Aditya S, Karunasekara Y, Board PG, Dulhunty AF, Oakley AJ, Casarotto MG. J Biol Chem 292 8401-8411 (2017)
  126. Selective posttranslational inhibition of CaVβ1-associated voltage-dependent calcium channels with a functionalized nanobody. Morgenstern TJ, Nirwan N, Hernández-Ochoa EO, Bibollet H, Choudhury P, Laloudakis YD, Ben Johny M, Bannister RA, Schneider MF, Minor DL, Colecraft HM. Nat Commun 13 7556 (2022)
  127. The GK domain of the voltage-dependent calcium channel beta subunit is essential for binding to the alpha subunit. Kobayashi T, Yamada Y, Fukao M, Shiratori K, Tsutsuura M, Tanimoto K, Tohse N. Biochem Biophys Res Commun 360 679-683 (2007)
  128. A Tripartite Interaction Among the Calcium Channel α1- and β-Subunits and F-Actin Increases the Readily Releasable Pool of Vesicles and Its Recovery After Depletion. Guzman GA, Guzman RE, Jordan N, Hidalgo P. Front Cell Neurosci 13 125 (2019)
  129. Structural flexibility of CaV1.2 and CaV2.2 I-II proximal linker fragments in solution. Almagor L, Avinery R, Hirsch JA, Beck R. Biophys J 104 2392-2400 (2013)
  130. The calcium channel beta4a subunit: a scaffolding protein between voltage-gated calcium channel and presynaptic vesicle-release machinery? Weiss N. J Neurosci 26 6117-6118 (2006)
  131. Cavβ surface charged residues contribute to the regulation of neuronal calcium channels. Tran-Van-Minh A, De Waard M, Weiss N. Mol Brain 15 3 (2022)
  132. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET) of Dihydropyridine Receptor (DHPR) β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes. Bhattacharya D, Mehle A, Kamp TJ, Balijepalli RC. PLoS One 10 e0131399 (2015)
  133. The α2δ Calcium Channel Subunit Accessorily and Independently Affects the Biological Function of Ditylenchus destructor. Chen X, An M, Ye S, Yang Z, Ding Z. Int J Mol Sci 23 12999 (2022)
  134. Translocatable voltage-gated Ca2+ channel β subunits in α1-β complexes reveal competitive replacement yet no spontaneous dissociation. Yeon JH, Park CG, Hille B, Suh BC. Proc Natl Acad Sci U S A 115 E9934-E9943 (2018)
  135. A CACNA1C variant associated with cardiac arrhythmias provides mechanistic insights in the calmodulation of L-type Ca2+ channels. Zhao J, Segura E, Marsolais M, Parent L. J Biol Chem 298 102632 (2022)
  136. CaV1.1 Calcium Channel Signaling Complexes in Excitation-Contraction Coupling: Insights from Channelopathies. Campiglio M, Dyrda A, Tuinte WE, Török E. Handb Exp Pharmacol 279 3-39 (2023)
  137. Molecular basis of the PIP2-dependent regulation of CaV2.2 channel and its modulation by CaV β subunits. Park CG, Yu W, Suh BC. Elife 11 e69500 (2022)
  138. Molecular characterization of voltage-gated calcium channel β-subunits of Clonorchis sinensis. Cho PY, Yoo WG, Kim TI, Ahn SK, Cho SH, Kim TS, Hong SJ. Parasitol Res 113 121-129 (2014)
  139. The distal C terminus of the dihydropyridine receptor β1a subunit is essential for tetrad formation in skeletal muscle. Dayal A, Perni S, Franzini-Armstrong C, Beam KG, Grabner M. Proc Natl Acad Sci U S A 119 e2201136119 (2022)
  140. ¹H, ¹³C, and ¹⁵N backbone resonance assignments of the 37 kDa voltage-gated Ca²⁺ channel β4 subunit core SH3-GK domains. Xu X, Horne WA. Biomol NMR Assign 8 217-220 (2014)
  141. Inactivation influences the extent of inhibition of voltage-gated Ca+2 channels by Gem-implications for channelopathies. Allam S, Levenson-Palmer R, Chia Chang Z, Kaur S, Cernuda B, Raman A, Booth A, Dobbins S, Suppa G, Yang J, Buraei Z. Front Physiol 14 1155976 (2023)
  142. Increase of CaV3 channel activity induced by HVA β1b-subunit is not mediated by a physical interaction. Arteaga-Tlecuitl R, Sanchez-Sandoval AL, Ramirez-Cordero BE, Rosendo-Pineda MJ, Vaca L, Gomora JC. BMC Res Notes 11 810 (2018)
  143. Modified autonomic regulation in mice mutated in the β4 subunit of the lh/lh calcium channel. Murakami M, Suzuki T, Wu TW, Kuwasako K, Takahashi E, Watanabe H, Murakami AM, Miyoshi I, Yanagisawa T, Sasano H, Ono K, Ohba T. Biochem Biophys Res Commun 461 200-205 (2015)
  144. Peptides derived from high voltage-gated calcium channel β subunit reduce blood pressure in rats. Kim HK, Jun J, Kim TW, Youn DH. Korean J Physiol Pharmacol 27 481-491 (2023)
  145. Role of glycine residues highly conserved in the S2-S3 linkers of domains I and II of voltage-gated calcium channel alpha(1) subunits. Teng J, Iida K, Ito M, Izumi-Nakaseko H, Kojima I, Adachi-Akahane S, Iida H. Biochim Biophys Acta 1798 966-974 (2010)