1w0j Citations

The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride.

EMBO J 23 2734-44 (2004)
Related entries: 1bmf, 1e79, 1h8e, 1qo1, 1w0k, 2xok

Cited: 112 times
EuropePMC logo PMID: 15229653

Abstract

The structure of bovine F1-ATPase inhibited with ADP and beryllium fluoride at 2.0 angstroms resolution contains two ADP.BeF3- complexes mimicking ATP, bound in the catalytic sites of the beta(TP) and beta(DP) subunits. Except for a 1 angstrom shift in the guanidinium of alphaArg373, the conformations of catalytic side chains are very similar in both sites. However, the ordered water molecule that carries out nucleophilic attack on the gamma-phosphate of ATP during hydrolysis is 2.6 angstroms from the beryllium in the beta(DP) subunit and 3.8 angstroms away in the beta(TP) subunit, strongly indicating that the beta(DP) subunit is the catalytically active conformation. In the structure of F1-ATPase with five bound ADP molecules (three in alpha-subunits, one each in the beta(TP) and beta(DP) subunits), which has also been determined, the conformation of alphaArg373 suggests that it senses the presence (or absence) of the gamma-phosphate of ATP. Two catalytic schemes are discussed concerning the various structures of bovine F1-ATPase.

Reviews - 1w0j mentioned but not cited (2)

  1. On helicases and other motor proteins. Enemark EJ, Joshua-Tor L. Curr Opin Struct Biol 18 243-257 (2008)
  2. Metal Fluorides: Tools for Structural and Computational Analysis of Phosphoryl Transfer Enzymes. Jin Y, Molt RW, Blackburn GM. Top Curr Chem (Cham) 375 36 (2017)

Articles - 1w0j mentioned but not cited (13)

  1. How azide inhibits ATP hydrolysis by the F-ATPases. Bowler MW, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 103 8646-8649 (2006)
  2. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. Kagawa R, Montgomery MG, Braig K, Leslie AG, Walker JE. EMBO J 23 2734-2744 (2004)
  3. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Okuno D, Fujisawa R, Iino R, Hirono-Hara Y, Imamura H, Noji H. Proc Natl Acad Sci U S A 105 20722-20727 (2008)
  4. Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Egli M, Mori T, Pattanayek R, Xu Y, Qin X, Johnson CH. Biochemistry 51 1547-1558 (2012)
  5. Asymmetric structure of the yeast F1 ATPase in the absence of bound nucleotides. Kabaleeswaran V, Shen H, Symersky J, Walker JE, Leslie AG, Mueller DM. J Biol Chem 284 10546-10551 (2009)
  6. Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Thomsen ND, Lawson MR, Witkowsky LB, Qu S, Berger JM. Proc Natl Acad Sci U S A 113 E7691-E7700 (2016)
  7. Principal role of the arginine finger in rotary catalysis of F1-ATPase. Komoriya Y, Ariga T, Iino R, Imamura H, Okuno D, Noji H. J Biol Chem 287 15134-15142 (2012)
  8. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. Nucleic Acids Res 49 D1282-D1288 (2021)
  9. Allosteric communication in DNA polymerase clamp loaders relies on a critical hydrogen-bonded junction. Subramanian S, Gorday K, Marcus K, Orellana MR, Ren P, Luo XR, O'Donnell ME, Kuriyan J. Elife 10 e66181 (2021)
  10. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution. Morales-Ríos E, Montgomery MG, Leslie AG, García-Trejo JJ, Walker JE. Acta Crystallogr F Struct Biol Commun 71 1309-1317 (2015)
  11. Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F1-ATPase Ring. Dai L, Flechsig H, Yu J. Biophys J 113 1440-1453 (2017)
  12. From primordial clocks to circadian oscillators. Pitsawong W, Pádua RAP, Grant T, Hoemberger M, Otten R, Bradshaw N, Grigorieff N, Kern D. Nature 616 183-189 (2023)
  13. Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F1-ATPase. Nath S. Biomolecules 13 1596 (2023)


Reviews citing this publication (16)

  1. The ATP synthase: the understood, the uncertain and the unknown. Walker JE. Biochem Soc Trans 41 1-16 (2013)
  2. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Bernardi P, Rasola A, Forte M, Lippe G. Physiol Rev 95 1111-1155 (2015)
  3. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Hong S, Pedersen PL. Microbiol Mol Biol Rev 72 590-641, Table of Contents (2008)
  4. ATP synthase: subunit-subunit interactions in the stator stalk. Weber J. Biochim Biophys Acta 1757 1162-1170 (2006)
  5. Catalytic robustness and torque generation of the F1-ATPase. Noji H, Ueno H, McMillan DGG. Biophys Rev 9 103-118 (2017)
  6. Mitochondrial and postmitochondrial survival signaling in cancer. Yadav N, Chandra D. Mitochondrion 16 18-25 (2014)
  7. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. Müller V, Lemker T, Lingl A, Weidner C, Coskun U, Grüber G. J Mol Microbiol Biotechnol 10 167-180 (2005)
  8. ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Ebanks B, Ingram TL, Chakrabarti L. Aging (Albany NY) 12 16647-16662 (2020)
  9. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics. Iino R, Noji H. IUBMB Life 65 238-246 (2013)
  10. Intersubunit coordination and cooperativity in ring-shaped NTPases. Iino R, Noji H. Curr Opin Struct Biol 23 229-234 (2013)
  11. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. ACS Nano 13 6207-6223 (2019)
  12. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Molecules 24 E504 (2019)
  13. Structure and dynamics of rotary V1 motor. Ueno H, Suzuki K, Murata T. Cell Mol Life Sci 75 1789-1802 (2018)
  14. Operating principles of rotary molecular motors: differences between F1 and V1 motors. Yamato I, Kakinuma Y, Murata T. Biophys Physicobiol 13 37-44 (2016)
  15. Architecture and mechanism of the central gear in an ancient molecular timer. Egli M. J R Soc Interface 14 20161065 (2017)
  16. Rotary mechanism of V/A-ATPases-how is ATP hydrolysis converted into a mechanical step rotation in rotary ATPases? Yokoyama K. Front Mol Biosci 10 1176114 (2023)

Articles citing this publication (81)

  1. Molecular dynamics and protein function. Karplus M, Kuriyan J. Proc Natl Acad Sci U S A 102 6679-6685 (2005)
  2. Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K. Cell 130 309-321 (2007)
  3. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Thomsen ND, Berger JM. Cell 139 523-534 (2009)
  4. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 104 13632-13637 (2007)
  5. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Liu F, Putnam A, Jankowsky E. Proc Natl Acad Sci U S A 105 20209-20214 (2008)
  6. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 104 15671-15676 (2007)
  7. Structure, mechanism, and regulation of the chloroplast ATP synthase. Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W. Science 360 eaat4318 (2018)
  8. Snapshots of the maltose transporter during ATP hydrolysis. Oldham ML, Chen J. Proc Natl Acad Sci U S A 108 15152-15156 (2011)
  9. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase. Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM. EMBO J 25 5433-5442 (2006)
  10. Phosphate release in F1-ATPase catalytic cycle follows ADP release. Watanabe R, Iino R, Noji H. Nat Chem Biol 6 814-820 (2010)
  11. Cooperative three-step motions in catalytic subunits of F(1)-ATPase correlate with 80 degrees and 40 degrees substep rotations. Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T. Nat Struct Mol Biol 15 1326-1333 (2008)
  12. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Gao YQ, Yang W, Karplus M. Cell 123 195-205 (2005)
  13. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, Murata T. Nature 493 703-707 (2013)
  14. Crystal structure of yeast V-ATPase subunit C reveals its stator function. Drory O, Frolow F, Nelson N. EMBO Rep 5 1148-1152 (2004)
  15. Visualizing ATP-dependent RNA translocation by the NS3 helicase from HCV. Appleby TC, Anderson R, Fedorova O, Pyle AM, Wang R, Liu X, Brendza KM, Somoza JR. J Mol Biol 405 1139-1153 (2011)
  16. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. Yamagata A, Tainer JA. EMBO J 26 878-890 (2007)
  17. Activation of pausing F1 motor by external force. Hirono-Hara Y, Ishizuka K, Kinosita K, Yoshida M, Noji H. Proc Natl Acad Sci U S A 102 4288-4293 (2005)
  18. Mechanism of ATP turnover inhibition in the EJC. Nielsen KH, Chamieh H, Andersen CB, Fredslund F, Hamborg K, Le Hir H, Andersen GR. RNA 15 67-75 (2009)
  19. Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria. Rees DM, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 109 11139-11143 (2012)
  20. Chemomechanical coupling of human mitochondrial F1-ATPase motor. Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M. Nat Chem Biol 10 930-936 (2014)
  21. Inhibition sites in F1-ATPase from bovine heart mitochondria. Gledhill JR, Walker JE. Biochem J 386 591-598 (2005)
  22. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Wollmann P, Cui S, Viswanathan R, Berninghausen O, Wells MN, Moldt M, Witte G, Butryn A, Wendler P, Beckmann R, Auble DT, Hopfner KP. Nature 475 403-407 (2011)
  23. Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, Nohara A, Ishida T, Maéda Y, Terauchi K, Kondo T, Akiyama S. EMBO J 30 68-78 (2011)
  24. Crystal structure of the Mg·ADP-inhibited state of the yeast F1c10-ATP synthase. Dautant A, Velours J, Giraud MF. J Biol Chem 285 29502-29510 (2010)
  25. Structure and mechanism of the ATPase that powers viral genome packaging. Hilbert BJ, Hayes JA, Stone NP, Duffy CM, Sankaran B, Kelch BA. Proc Natl Acad Sci U S A 112 E3792-9 (2015)
  26. Functional halt positions of rotary FOF1-ATPase correlated with crystal structures. Sielaff H, Rennekamp H, Engelbrecht S, Junge W. Biophys J 95 4979-4987 (2008)
  27. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. Balabaskaran Nina P, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB. PLoS Biol 8 e1000418 (2010)
  28. DNA translocation mechanism of the MCM complex and implications for replication initiation. Meagher M, Epling LB, Enemark EJ. Nat Commun 10 3117 (2019)
  29. A Trojan horse transition state analogue generated by MgF3- formation in an enzyme active site. Baxter NJ, Olguin LF, Golicnik M, Feng G, Hounslow AM, Bermel W, Blackburn GM, Hollfelder F, Waltho JP, Williams NH. Proc Natl Acad Sci U S A 103 14732-14737 (2006)
  30. How release of phosphate from mammalian F1-ATPase generates a rotary substep. Bason JV, Montgomery MG, Leslie AG, Walker JE. Proc Natl Acad Sci U S A 112 6009-6014 (2015)
  31. Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration. Spetzler D, Ishmukhametov R, Hornung T, Day LJ, Martin J, Frasch WD. Biochemistry 48 7979-7985 (2009)
  32. Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. J Mol Biol 351 824-838 (2005)
  33. Structure of the mitochondrial ATP synthase from Pichia angusta determined by electron cryo-microscopy. Vinothkumar KR, Montgomery MG, Liu S, Walker JE. Proc Natl Acad Sci U S A 113 12709-12714 (2016)
  34. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Stocker A, Keis S, Vonck J, Cook GM, Dimroth P. Structure 15 904-914 (2007)
  35. Understanding structure, function, and mutations in the mitochondrial ATP synthase. Xu T, Pagadala V, Mueller DM. Microb Cell 2 105-125 (2015)
  36. Structure of the active form of human origin recognition complex and its ATPase motor module. Tocilj A, On KF, Yuan Z, Sun J, Elkayam E, Li H, Stillman B, Joshua-Tor L. Elife 6 e20818 (2017)
  37. Cryo-EM structure of the homohexameric T3SS ATPase-central stalk complex reveals rotary ATPase-like asymmetry. Majewski DD, Worrall LJ, Hong C, Atkinson CE, Vuckovic M, Watanabe N, Yu Z, Strynadka NCJ. Nat Commun 10 626 (2019)
  38. Identification of the betaTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site. Mao HZ, Weber J. Proc Natl Acad Sci U S A 104 18478-18483 (2007)
  39. Involvement of ATP synthase residues alphaArg-376, betaArg-182, and betaLys-155 in Pi binding. Ahmad Z, Senior AE. FEBS Lett 579 523-528 (2005)
  40. Making ATP. Xing J, Liao JC, Oster G. Proc Natl Acad Sci U S A 102 16539-16546 (2005)
  41. Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Goedken ER, Kazmirski SL, Bowman GD, O'Donnell M, Kuriyan J. Nat Struct Mol Biol 12 183-190 (2005)
  42. Structural comparison of F1-ATPase: interplay among enzyme structures, catalysis, and rotations. Okazaki K, Takada S. Structure 19 588-598 (2011)
  43. The six steps of the complete F1-ATPase rotary catalytic cycle. Sobti M, Ueno H, Noji H, Stewart AG. Nat Commun 12 4690 (2021)
  44. A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA. Winger J, Nodelman IM, Levendosky RF, Bowman GD. Elife 7 e34100 (2018)
  45. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs). Han H, Monroe N, Votteler J, Shakya B, Sundquist WI, Hill CP. J Biol Chem 290 13490-13499 (2015)
  46. Mitochondrial F(0) F(1) -ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S. Br J Pharmacol 166 2331-2347 (2012)
  47. Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis. Masaike T, Suzuki T, Tsunoda SP, Konno H, Yoshida M. Biochem Biophys Res Commun 342 800-807 (2006)
  48. The structure of F₁-ATPase from Saccharomyces cerevisiae inhibited by its regulatory protein IF₁. Robinson GC, Bason JV, Montgomery MG, Fearnley IM, Mueller DM, Leslie AG, Walker JE. Open Biol 3 120164 (2013)
  49. ATP synthase from Saccharomyces cerevisiae: location of subunit h in the peripheral stalk region. Rubinstein JL, Dickson VK, Runswick MJ, Walker JE. J Mol Biol 345 513-520 (2005)
  50. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor. Suzuki K, Mizutani K, Maruyama S, Shimono K, Imai FL, Muneyuki E, Kakinuma Y, Ishizuka-Katsura Y, Shirouzu M, Yokoyama S, Yamato I, Murata T. Nat Commun 7 13235 (2016)
  51. Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride. Ahmad Z, Senior AE. FEBS Lett 580 517-520 (2006)
  52. Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion. Agrawal A, Roué M, Spitzfaden C, Petrella S, Aubry A, Hann M, Bax B, Mayer C. Biochem J 456 263-273 (2013)
  53. Inhibition of ATP synthase by chlorinated adenosine analogue. Chen LS, Nowak BJ, Ayres ML, Krett NL, Rosen ST, Zhang S, Gandhi V. Biochem Pharmacol 78 583-591 (2009)
  54. Rotary catalysis of bovine mitochondrial F1-ATPase studied by single-molecule experiments. Kobayashi R, Ueno H, Li CB, Noji H. Proc Natl Acad Sci U S A 117 1447-1456 (2020)
  55. ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. Proc Natl Acad Sci U S A 115 2102-2107 (2018)
  56. Normal-mode-based modeling of allosteric couplings that underlie cyclic conformational transition in F(1) ATPase. Zheng W. Proteins 76 747-762 (2009)
  57. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V1-ATPase. Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. J Biol Chem 294 17017-17030 (2019)
  58. EF-G Activation by Phosphate Analogs. Salsi E, Farah E, Ermolenko DN. J Mol Biol 428 2248-2258 (2016)
  59. Structural fluctuation and concerted motions in F(1)-ATPase: A molecular dynamics study. Ito Y, Ikeguchi M. J Comput Chem 31 2175-2185 (2010)
  60. Formation of an energized inner membrane in mitochondria with a gamma-deficient F1-ATPase. Smith CP, Thorsness PE. Eukaryot Cell 4 2078-2086 (2005)
  61. Torque transmission mechanism via DELSEED loop of F1-ATPase. Watanabe R, Koyasu K, You H, Tanigawara M, Noji H. Biophys J 108 1144-1152 (2015)
  62. Torque generation mechanism of F1-ATPase upon NTP binding. Arai HC, Yukawa A, Iwatate RJ, Kamiya M, Watanabe R, Urano Y, Noji H. Biophys J 107 156-164 (2014)
  63. Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase. Ahmad Z, Okafor F, Laughlin TF. J Amino Acids 2011 785741 (2011)
  64. Structural Basis for the Activation and Target Site Specificity of CDC7 Kinase. Dick SD, Federico S, Hughes SM, Pye VE, O'Reilly N, Cherepanov P. Structure 28 954-962.e4 (2020)
  65. ATP synthase: from single molecule to human bioenergetics. Kagawa Y. Proc Jpn Acad Ser B Phys Biol Sci 86 667-693 (2010)
  66. Robustness of the rotary catalysis mechanism of F1-ATPase. Watanabe R, Matsukage Y, Yukawa A, Tabata KV, Noji H. J Biol Chem 289 19331-19340 (2014)
  67. Does F1-ATPase have a catalytic site that preferentially binds MgADP? Mao HZ, Gray WD, Weber J. FEBS Lett 580 4131-4135 (2006)
  68. Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force. Feniouk BA, Rebecchi A, Giovannini D, Anefors S, Mulkidjanian AY, Junge W, Turina P, Melandri BA. Biochim Biophys Acta 1767 1319-1330 (2007)
  69. The Chd1 chromatin remodeler forms long-lived complexes with nucleosomes in the presence of ADP·BeF3 - and transition state analogs. Ren R, Ghassabi Kondalaji S, Bowman GD. J Biol Chem 294 18181-18191 (2019)
  70. Crystallization and X-ray structure determination of an RNA-dependent hexameric helicase. Thomsen ND, Berger JM. Methods Enzymol 511 171-190 (2012)
  71. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor. La T, Clark-Walker GD, Wang X, Wilkens S, Chen XJ. Eukaryot Cell 12 1451-1461 (2013)
  72. Analysis of beryllium to biomolecule binding using a metal specific fluorescent probe and competitive assay. Zheng Y, Lin L, Hang W, Yan X, Marrone BL. Talanta 85 638-643 (2011)
  73. On the mechanism of phosphoenolpyruvate synthetase (PEPs) and its inhibition by sodium fluoride: potential magnesium and aluminum fluoride complexes of phosphoryl transfer. McCormick NE, Jakeman DL. Biochem Cell Biol 93 236-240 (2015)
  74. Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations. Shekhar M, Gupta C, Suzuki K, Chan CK, Murata T, Singharoy A. ACS Cent Sci 8 915-925 (2022)
  75. Structure of F1-ATPase from the obligate anaerobe Fusobacterium nucleatum. Petri J, Nakatani Y, Montgomery MG, Ferguson SA, Aragão D, Leslie AGW, Heikal A, Walker JE, Cook GM. Open Biol 9 190066 (2019)
  76. A first-principles investigation of the linear thermal expansion coefficients of BeF2: giant thermal expansion. Gan CK, Al-Sharif AI, Al-Shorman A, Qteish A. RSC Adv 12 26588-26595 (2022)
  77. ATP hydrolysis-driven H(+) translocation is stimulated by sulfate, a strong inhibitor of mitochondrial ATP synthesis. Lodeyro AF, Castelli MV, Roveri OA. J Bioenerg Biomembr 40 269-279 (2008)
  78. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1346 (2022)
  79. Research of the ATPase's rotation catalysis stochastic transition dynamics. Zheng Y, Yang MJ, Wu WX, Yu K, Han YR, Zhan Y, Huang YB. Interdiscip Sci 1 229-234 (2009)
  80. Rotary properties of hybrid F1-ATPases consisting of subunits from different species. Watanabe RR, Kiper BT, Zarco-Zavala M, Hara M, Kobayashi R, Ueno H, García-Trejo JJ, Li CB, Noji H. iScience 26 106626 (2023)
  81. Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation. Meagher M, Myasnikov A, Enemark EJ. Int J Mol Sci 23 14678 (2022)


Related citations provided by authors (6)

  1. Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis.. Menz RI, Walker JE, Leslie AG Cell 106 331-41 (2001)
  2. The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.. Gibbons C, Montgomery MG, Leslie AG, Walker JE Nat Struct Biol 7 1055-61 (2000)
  3. Molecular architecture of the rotary motor in ATP synthase.. Stock D, Leslie AG, Walker JE Science 286 1700-5 (1999)
  4. ATP Synthesis by Rotary Catalysis (Nobel Lecture). Walker JE Angew. Chem. Int. Ed. Engl. 37 2308- (1998)
  5. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.. Abrahams JP, Leslie AG, Lutter R, Walker JE Nature 370 621-8 (1994)
  6. Crystallization of F1-ATPase from bovine heart mitochondria.. Lutter R, Abrahams JP, van Raaij MJ, Todd RJ, Lundqvist T, Buchanan SK, Leslie AG, Walker JE J Mol Biol 229 787-90 (1993)