1w1n Citations

The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability.

J Biol Chem 280 20558-64 (2005)
Cited: 89 times
EuropePMC logo PMID: 15772072

Abstract

The target of rapamycin (TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR.

Reviews - 1w1n mentioned but not cited (1)

Articles - 1w1n mentioned but not cited (3)



Reviews citing this publication (36)

  1. TOR signaling in growth and metabolism. Wullschleger S, Loewith R, Hall MN. Cell 124 471-484 (2006)
  2. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Lee J, Giordano S, Zhang J. Biochem. J. 441 523-540 (2012)
  3. The two TORCs and Akt. Bhaskar PT, Hay N. Dev. Cell 12 487-502 (2007)
  4. Immunoregulatory functions of mTOR inhibition. Thomson AW, Turnquist HR, Raimondi G. Nat. Rev. Immunol. 9 324-337 (2009)
  5. Rapamycin passes the torch: a new generation of mTOR inhibitors. Benjamin D, Colombi M, Moroni C, Hall MN. Nat Rev Drug Discov 10 868-880 (2011)
  6. Target of rapamycin (TOR) in nutrient signaling and growth control. Loewith R, Hall MN. Genetics 189 1177-1201 (2011)
  7. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Corradetti MN, Guan KL. Oncogene 25 6347-6360 (2006)
  8. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. FEMS Microbiol. Rev. 38 254-299 (2014)
  9. Emerging common themes in regulation of PIKKs and PI3Ks. Lempiäinen H, Halazonetis TD. EMBO J. 28 3067-3073 (2009)
  10. Cell growth control: little eukaryotes make big contributions. De Virgilio C, Loewith R. Oncogene 25 6392-6415 (2006)
  11. The redox regulation of PI 3-kinase-dependent signaling. Leslie NR. Antioxid. Redox Signal. 8 1765-1774 (2006)
  12. ATM protein kinase: the linchpin of cellular defenses to stress. Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK. Cell. Mol. Life Sci. 68 2977-3006 (2011)
  13. Key factors in mTOR regulation. Bai X, Jiang Y. Cell. Mol. Life Sci. 67 239-253 (2010)
  14. KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Dodson M, Redmann M, Rajasekaran NS, Darley-Usmar V, Zhang J. Biochem. J. 469 347-355 (2015)
  15. Mammalian target of rapamycin and the kidney. I. The signaling pathway. Lieberthal W, Levine JS. Am. J. Physiol. Renal Physiol. 303 F1-10 (2012)
  16. Adaptive response, evidence of cross-resistance and its potential clinical use. Milisav I, Poljsak B, Suput D. Int J Mol Sci 13 10771-10806 (2012)
  17. Mammalian TOR signaling to the AGC kinases. Su B, Jacinto E. Crit. Rev. Biochem. Mol. Biol. 46 527-547 (2011)
  18. Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Elshorbagy AK, Kozich V, Smith AD, Refsum H. Curr Opin Clin Nutr Metab Care 15 49-57 (2012)
  19. mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused. Bracho-Valdés I, Moreno-Alvarez P, Valencia-Martínez I, Robles-Molina E, Chávez-Vargas L, Vázquez-Prado J. IUBMB Life 63 896-914 (2011)
  20. Involvement of redox state in the aging of Drosophila melanogaster. Orr WC, Radyuk SN, Sohal RS. Antioxid. Redox Signal. 19 788-803 (2013)
  21. Molecular basis of ataxia telangiectasia and related diseases. Ball LG, Xiao W. Acta Pharmacol. Sin. 26 897-907 (2005)
  22. Targeting mTOR in cancer: renal cell is just a beginning. Azim H, Azim HA, Escudier B. Target Oncol 5 269-280 (2010)
  23. Redox homeostasis, oxidative stress and mitophagy. Garza-Lombó C, Pappa A, Panayiotidis MI, Franco R. Mitochondrion 51 105-117 (2020)
  24. The peroxide dilemma: opposing and mediating insulin action. Szypowska AA, Burgering BM. Antioxid. Redox Signal. 15 219-232 (2011)
  25. Plant TOR signaling components. John F, Roffler S, Wicker T, Ringli C. Plant Signal Behav 6 1700-1705 (2011)
  26. mTOR signaling in lymphangioleiomyomatosis. Kristof AS. Lymphat Res Biol 8 33-42 (2010)
  27. Investigating mammalian target of rapamycin inhibitors for their anticancer properties. Smolewski P. Expert Opin Investig Drugs 15 1201-1227 (2006)
  28. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. Jamsheer K M, Jindal S, Laxmi A. J Exp Bot 70 2239-2259 (2019)
  29. Insight into Tor2, a budding yeast microdomain protein. Bartlett K, Kim K. Eur. J. Cell Biol. 93 87-97 (2014)
  30. Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Zhang W, Du G, Zhou J, Chen J. Microbiol. Mol. Biol. Rev. 82 (2018)
  31. Evidence that a mitochondrial death spiral underlies antagonistic pleiotropy. Stern M. Aging Cell 16 435-443 (2017)
  32. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Jurcau A. Int J Mol Sci 22 11847 (2021)
  33. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Bakshi A, Moin M, Madhav MS, Kirti PB. Plant Biol (Stuttg) 21 190-205 (2019)
  34. mTOR Signaling in the Inner Ear as Potential Target to Treat Hearing Loss. Cortada M, Levano S, Bodmer D. Int J Mol Sci 22 6368 (2021)
  35. How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Lei Y, Huang Y, Wen X, Yin Z, Zhang Z, Klionsky DJ. Antioxidants (Basel) 11 304 (2022)
  36. Recent Insights into the Mitochondrial Role in Autophagy and Its Regulation by Oxidative Stress. Roca-Agujetas V, de Dios C, Lestón L, Marí M, Morales A, Colell A. Oxid Med Cell Longev 2019 3809308 (2019)

Articles citing this publication (49)

  1. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Budanov AV, Karin M. Cell 134 451-460 (2008)
  2. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Sun Y, Xu Y, Roy K, Price BD. Mol. Cell. Biol. 27 8502-8509 (2007)
  3. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. Sarbassov DD, Sabatini DM. J Biol Chem 280 39505-39509 (2005)
  4. Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Spagnolo L, Rivera-Calzada A, Pearl LH, Llorca O. Mol. Cell 22 511-519 (2006)
  5. Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Sibanda BL, Chirgadze DY, Blundell TL. Nature 463 118-121 (2010)
  6. ATM activation in the presence of oxidative stress. Guo Z, Deshpande R, Paull TT. Cell Cycle 9 4805-4811 (2010)
  7. Signals from type 1 sphingosine 1-phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia. Zhang J, Honbo N, Goetzl EJ, Chatterjee K, Karliner JS, Gray MO. Am. J. Physiol. Heart Circ. Physiol. 293 H3150-8 (2007)
  8. Hypoxia-induced endothelial proliferation requires both mTORC1 and mTORC2. Li W, Petrimpol M, Molle KD, Hall MN, Battegay EJ, Humar R. Circ. Res. 100 79-87 (2007)
  9. Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, Inoki K. J. Biol. Chem. 286 32651-32660 (2011)
  10. Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T, Toda T. Genes Cells 11 1367-1379 (2006)
  11. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Spoden GA, Rostek U, Lechner S, Mitterberger M, Mazurek S, Zwerschke W. Exp. Cell Res. 315 2765-2774 (2009)
  12. Drosophila target of rapamycin kinase functions as a multimer. Zhang Y, Billington CJ, Pan D, Neufeld TP. Genetics 172 355-362 (2006)
  13. Structure of TOR and its complex with KOG1. Adami A, García-Alvarez B, Arias-Palomo E, Barford D, Llorca O. Mol. Cell 27 509-516 (2007)
  14. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Sibanda BL, Chirgadze DY, Ascher DB, Blundell TL. Science 355 520-524 (2017)
  15. Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Knutson BA, Hahn S. Mol. Cell. Biol. 31 818-831 (2011)
  16. Superoxide anions regulate TORC1 and its ability to bind Fpr1:rapamycin complex. Neklesa TK, Davis RW. Proc. Natl. Acad. Sci. U.S.A. 105 15166-15171 (2008)
  17. Inhibition of hypoxia inducible factor by phenethyl isothiocyanate. Wang XH, Cavell BE, Syed Alwi SS, Packham G. Biochem. Pharmacol. 78 261-272 (2009)
  18. Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57. Ramírez-Rangel I, Bracho-Valdés I, Vázquez-Macías A, Carretero-Ortega J, Reyes-Cruz G, Vázquez-Prado J. Mol. Cell. Biol. 31 1657-1671 (2011)
  19. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME. BMC Genomics 11 510 (2010)
  20. Insights into the domain and repeat architecture of target of rapamycin. Knutson BA. J. Struct. Biol. 170 354-363 (2010)
  21. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway. Nishida K, Silver PA. PLoS Biol. 10 e1001269 (2012)
  22. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Shemi A, Ben-Dor S, Vardi A. Autophagy 11 701-715 (2015)
  23. Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1. Hoke SM, Irina Mutiu A, Genereaux J, Kvas S, Buck M, Yu M, Gloor GB, Brandl CJ. Curr. Genet. 56 447-465 (2010)
  24. Structural basis for the association of the redox-sensitive target of rapamycin FATC domain with membrane-mimetic micelles. Dames SA. J. Biol. Chem. 285 7766-7775 (2010)
  25. All stressed out without ATM kinase. Perry JJ, Tainer JA. Sci Signal 4 pe18 (2011)
  26. Cellular redox potential and the biomolecular electrochemical series: a systems hypothesis. Mallikarjun V, Clarke DJ, Campbell CJ. Free Radic. Biol. Med. 53 280-288 (2012)
  27. A fast and simple method for probing the interaction of peptides and proteins with lipids and membrane-mimetics using GB1 fusion proteins and NMR spectroscopy. Sommer LA, Meier MA, Dames SA. Protein Sci. 21 1566-1570 (2012)
  28. Genetic evidence for a SPO1-dependent signaling pathway controlling meiotic progression in yeast. Tevzadze GG, Pierce JV, Esposito RE. Genetics 175 1213-1227 (2007)
  29. In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study. Syed Alwi SS, Cavell BE, Telang U, Morris ME, Parry BM, Packham G. Br. J. Nutr. 104 1288-1296 (2010)
  30. Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation. Shawky NM, Segar L. Pharmacol. Res. 119 251-264 (2017)
  31. Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1. Genereaux J, Kvas S, Dobransky D, Karagiannis J, Gloor GB, Brandl CJ. Genetics 191 765-780 (2012)
  32. Conserved sequence motifs and the structure of the mTOR kinase domain. Sauer E, Imseng S, Maier T, Hall MN. Biochem. Soc. Trans. 41 889-895 (2013)
  33. Estrogen receptor potentiates mTORC2 signaling in breast cancer cells by upregulating superoxide anions. Kumari Kanchan R, Tripathi C, Singh Baghel K, Kumar Dwivedi S, Kumar B, Sanyal S, Sharma S, Mitra K, Garg V, Singh K, Sultana S, Kamal Tripathi R, Kumar Rath S, Bhadauria S. Free Radic. Biol. Med. 53 1929-1941 (2012)
  34. A novel apoptosis correlated molecule: expression and characterization of protein Latcripin-1 from Lentinula edodes C(91-3). Liu B, Zhong M, Lun Y, Wang X, Sun W, Li X, Ning A, Cao J, Zhang W, Liu L, Huang M. Int J Mol Sci 13 6246-6265 (2012)
  35. Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. Abuhagr AM, Maclea KS, Chang ES, Mykles DL. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 168 25-39 (2014)
  36. Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy. Sommer LA, Dames SA. FEBS Lett. 588 1755-1766 (2014)
  37. Reduced risk of apoptosis: mechanisms of stress responses. Milisav I, Poljšak B, Ribarič S. Apoptosis 22 265-283 (2017)
  38. Sulfur Partitioning between Glutathione and Protein Synthesis Determines Plant Growth. Speiser A, Silbermann M, Dong Y, Haberland S, Uslu VV, Wang S, Bangash SAK, Reichelt M, Meyer AJ, Wirtz M, Hell R. Plant Physiol. 177 927-937 (2018)
  39. The C-terminal residues of Saccharomyces cerevisiae Mec1 are required for its localization, stability, and function. DaSilva LF, Pillon S, Genereaux J, Davey MJ, Gloor GB, Karagiannis J, Brandl CJ. G3 (Bethesda) 3 1661-1674 (2013)
  40. A fast and simple method to prepare the FKBP-rapamycin binding domain of human target of rapamycin for NMR binding assays. Dames SA. Protein Expr. Purif. 59 31-37 (2008)
  41. Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis. Sul OJ, Park HJ, Son HJ, Choi HS. Mol. Cells 40 880-887 (2017)
  42. Mechanistic target of rapamycin in common carp: cDNA cloning, characterization, and tissue expression. Jiang J, Feng L, Liu Y, Jiang WD, Hu K, Li SH, Zhou XQ. Gene 512 566-572 (2013)
  43. Potential of mTOR inhibitors as therapeutic agents in hematological malignancies. Sankhala K, Giles FJ. Expert Rev Hematol 2 399-414 (2009)
  44. Loss of nonsense mediated decay suppresses mutations in Saccharomyces cerevisiae TRA1. Kvas S, Gloor GB, Brandl CJ. BMC Genet. 13 19 (2012)
  45. NMR- and MD simulation-based structural characterization of the membrane-associating FATC domain of ataxia telangiectasia mutated. Abd Rahim MS, Cherniavskyi YK, Tieleman DP, Dames SA. J Biol Chem 294 7098-7112 (2019)
  46. Toward an Integrated Understanding of Retrograde Control of Photosynthesis. Dietz KJ, Wesemann C, Wegener M, Seidel T. Antioxid. Redox Signal. 30 1186-1205 (2019)
  47. Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes. Picazo C, Matallana E, Aranda A. Sci Rep 8 16500 (2018)
  48. 1H, 15N, and 13C chemical shift assignments of the micelle immersed FAT C-terminal (FATC) domains of the human protein kinases ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) fused to the B1 domain of streptococcal protein G (GB1). Rahim MSA, Sommer LAM, Wacker A, Schaad M, Dames SA. Biomol NMR Assign 12 149-154 (2018)
  49. Cloning, expression, purification, and characterisation of the HEAT-repeat domain of TOR from the thermophilic eukaryote Chaetomium thermophilum. Robinson GC, Vegunta Y, Gabus C, Gaubitz C, Thore S. Protein Expr. Purif. 133 90-95 (2017)