1wkv Citations

Three-dimensional structure of a new enzyme, O-phosphoserine sulfhydrylase, involved in l-cysteine biosynthesis by a hyperthermophilic archaeon, Aeropyrum pernix K1, at 2.0A resolution.

J Mol Biol 351 334-44 (2005)
Cited: 21 times
EuropePMC logo PMID: 16005886

Abstract

O-Phosphoserine sulfhydrylase is a new enzyme found in a hyperthermophilic archaeon, Aeropyrum pernix K1. This enzyme catalyzes a novel cysteine synthetic reaction from O-phospho-l-serine and sulfide. The crystal structure of the enzyme was determined at 2.0A resolution using the method of multi-wavelength anomalous dispersion. A monomer consists of three domains, including an N-terminal domain with a new alpha/beta fold. The topology folds of the middle and C-terminal domains were similar to those of the O-acetylserine sulfhydrylase-A from Salmonella typhimurium and the cystathionine beta-synthase from human. The cofactor, pyridoxal 5'-phosphate, is bound in a cleft between the middle and C-terminal domains through a covalent linkage to Lys127. Based on the structure determined, O-phospho-l-serine could be rationally modeled into the active site of the enzyme. An enzyme-substrate complex model and a mutation experiment revealed that Arg297, unique to hyperthermophilic archaea, is one of the most crucial residues for O-phosphoserine sulfhydrylation activity. There are more hydrophobic areas and less electric charges at the dimer interface, compared to the S.typhimurium O-acetylserine sulfhydrylase.

Articles - 1wkv mentioned but not cited (2)



Reviews citing this publication (3)

  1. Sulfur metabolism in archaea reveals novel processes. Liu Y, Beer LL, Whitman WB. Environ. Microbiol. 14 2632-2644 (2012)
  2. The cysteine regulatory complex from plants and microbes: what was old is new again. Jez JM, Dey S. Curr. Opin. Struct. Biol. 23 302-310 (2013)
  3. Structural biology of plant sulfur metabolism: from sulfate to glutathione. Jez JM. J Exp Bot 70 4089-4103 (2019)

Articles citing this publication (16)

  1. Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. Anderson I, Rodriguez J, Susanti D, Porat I, Reich C, Ulrich LE, Elkins JG, Mavromatis K, Lykidis A, Kim E, Thompson LS, Nolan M, Land M, Copeland A, Lapidus A, Lucas S, Detter C, Zhulin IB, Olsen GJ, Whitman W, Mukhopadhyay B, Bristow J, Kyrpides N. J. Bacteriol. 190 2957-2965 (2008)
  2. Two pathways for cysteine biosynthesis in Leishmania major. Williams RA, Westrop GD, Coombs GH. Biochem. J. 420 451-462 (2009)
  3. Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. Westrop GD, Goodall G, Mottram JC, Coombs GH. J. Biol. Chem. 281 25062-25075 (2006)
  4. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. Hauenstein SI, Perona JJ. J. Biol. Chem. 283 22007-22017 (2008)
  5. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, Raboni S, Benedetti P, Cruciani G, Kellogg GE, Cook PF, Mozzarelli A. PLoS ONE 8 e77558 (2013)
  6. Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Graham DE, Taylor SM, Wolf RZ, Namboori SC. Biochem. J. 424 467-478 (2009)
  7. Fine tuning of the active site modulates specificity in the interaction of O-acetylserine sulfhydrylase isozymes with serine acetyltransferase. Spyrakis F, Felici P, Bayden AS, Salsi E, Miggiano R, Kellogg GE, Cozzini P, Cook PF, Mozzarelli A, Campanini B. Biochim. Biophys. Acta 1834 169-181 (2013)
  8. Presence of tRNA-dependent pathways correlates with high cysteine content in methanogenic Archaea. Klipcan L, Frenkel-Morgenstern M, Safro MG. Trends Genet. 24 59-63 (2008)
  9. Structural, biochemical, and in vivo investigations of the threonine synthase from Mycobacterium tuberculosis. Covarrubias AS, Högbom M, Bergfors T, Carroll P, Mannerstedt K, Oscarson S, Parish T, Jones TA, Mowbray SL. J. Mol. Biol. 381 622-633 (2008)
  10. Structural analysis of the substrate recognition mechanism in O-phosphoserine sulfhydrylase from the hyperthermophilic archaeon Aeropyrum pernix K1. Nakamura T, Kawai Y, Kunimoto K, Iwasaki Y, Nishii K, Kataoka M, Ishikawa K. J. Mol. Biol. 422 33-44 (2012)
  11. An archaeal ADP-dependent serine kinase involved in cysteine biosynthesis and serine metabolism. Makino Y, Sato T, Kawamura H, Hachisuka SI, Takeno R, Imanaka T, Atomi H. Nat Commun 7 13446 (2016)
  12. CysK2 from Mycobacterium tuberculosis is an O-phospho-L-serine-dependent S-sulfocysteine synthase. Steiner EM, Böth D, Lössl P, Vilaplana F, Schnell R, Schneider G. J. Bacteriol. 196 3410-3420 (2014)
  13. Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis. Kobylarz MJ, Grigg JC, Liu Y, Lee MS, Heinrichs DE, Murphy ME. Biochemistry 55 927-939 (2016)
  14. Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand-based drug design. Magalhães J, Franko N, Annunziato G, Welch M, Dolan SK, Bruno A, Mozzarelli A, Armao S, Jirgensons A, Pieroni M, Costantino G, Campanini B. J Enzyme Inhib Med Chem 33 1444-1452 (2018)
  15. Thermostability and reactivity in organic solvent of O-phospho-L-serine sulfhydrylase from hyperthermophilic archaeon Aeropyrum pernix K1. Nakamura T, Asai S, Nakata K, Kunimoto K, Oguri M, Ishikawa K. Biosci. Biotechnol. Biochem. 79 1280-1286 (2015)
  16. Role of F225 in O-phosphoserine sulfhydrylase from Aeropyrum pernix K1. Takeda E, Kunimoto K, Kawai Y, Kataoka M, Ishikawa K, Nakamura T. Extremophiles 20 733-745 (2016)