1xdn Citations

High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1.

J Mol Biol 343 601-13 (2004)
Cited: 63 times
EuropePMC logo PMID: 15465048

Abstract

Trypanosomatids are causative agents of several devastating tropical diseases such as African sleeping sickness, Chagas' disease and leishmaniasis. There are no effective vaccines available to date for treatment of these protozoan diseases, while current drugs have limited efficacy, significant toxicity and suffer from increasing resistance. Trypanosomatids have several remarkable and unique metabolic and structural features that are of great interest for developing new anti-protozoan therapeutics. One such feature is "RNA editing", an essential process in these pathogenic protozoa. Transcripts for key trypanosomatid mitochondrial proteins undergo extensive post-transcriptional RNA editing by specifically inserting or deleting uridylates from pre-mature mRNA in order to create mature mRNAs that encode functional proteins. The RNA editing process is carried out in a approximately 1.6 MDa multi-protein complex, the editosome. In Trypanosoma brucei, one of the editosome's core enzymes, the RNA editing ligase 1 (TbREL1), has been shown to be essential for survival of both insect and bloodstream forms of the parasite. We report here the crystal structure of the catalytic domain of TbREL1 at 1.2 A resolution, in complex with ATP and magnesium. The magnesium ion interacts with the beta and gamma-phosphate groups and is almost perfectly octahedrally coordinated by six phosphate and water oxygen atoms. ATP makes extensive direct and indirect interactions with the ligase via essentially all its atoms while extending its base into a deep pocket. In addition, the ATP makes numerous interactions with residues that are conserved in the editing ligases only. Further away from the active site, TbREL1 contains a unique loop containing several hydrophobic residues that are highly conserved among trypanosomatid RNA editing ligases which may play a role in protein-protein interactions in the editosome. The distinct characteristics of the adenine-binding pocket, and the absence of any close homolog in the human genome, bode well for the design of selective inhibitors that will block the essential RNA ligase function in a number of major protozoan pathogens.

Reviews - 1xdn mentioned but not cited (1)

Articles - 1xdn mentioned but not cited (17)

  1. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. Durrant JD, McCammon JA. J Chem Inf Model 50 1865-1871 (2010)
  2. BINANA: a novel algorithm for ligand-binding characterization. Durrant JD, McCammon JA. J. Mol. Graph. Model. 29 888-893 (2011)
  3. Novel naphthalene-based inhibitors of Trypanosoma brucei RNA editing ligase 1. Durrant JD, Hall L, Swift RV, Landon M, Schnaufer A, Amaro RE. PLoS Negl Trop Dis 4 e803 (2010)
  4. The structure of an archaeal homodimeric ligase which has RNA circularization activity. Brooks MA, Meslet-Cladiére L, Graille M, Kuhn J, Blondeau K, Myllykallio H, van Tilbeurgh H. Protein Sci. 17 1336-1345 (2008)
  5. AutoGrow 3.0: an improved algorithm for chemically tractable, semi-automated protein inhibitor design. Durrant JD, Lindert S, McCammon JA. J. Mol. Graph. Model. 44 104-112 (2013)
  6. Naphthalene-based RNA editing inhibitor blocks RNA editing activities and editosome assembly in Trypanosoma brucei. Moshiri H, Acoca S, Kala S, Najafabadi HS, Hogues H, Purisima E, Salavati R. J. Biol. Chem. 286 14178-14189 (2011)
  7. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Unciuleac MC, Goldgur Y, Shuman S. Proc. Natl. Acad. Sci. U.S.A. 112 13868-13873 (2015)
  8. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei. Amaro RE, Swift RV, McCammon JA. PLoS Negl Trop Dis 1 e68 (2007)
  9. Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms. Swift RV, Amaro RE. Expert Opin Drug Discov 4 1281-1294 (2009)
  10. Distinct Conformation of ATP Molecule in Solution and on Protein. Kobayashi E, Yura K, Nagai Y. Biophysics (Nagoya-shi) 9 1-12 (2013)
  11. Toward understanding the conformational dynamics of RNA ligation. Swift RV, Durrant J, Amaro RE, McCammon JA. Biochemistry 48 709-719 (2009)
  12. Assisted assignment of ligands corresponding to unknown electron density. Binkowski TA, Cuff M, Nocek B, Chang C, Joachimiak A. J Struct Funct Genomics 11 21-30 (2010)
  13. Towards the development of novel Trypanosoma brucei RNA editing ligase 1 inhibitors. Durrant JD, McCammon JA. BMC Pharmacol. 11 9 (2011)
  14. Scoria: a Python module for manipulating 3D molecular data. Ropp P, Friedman A, Durrant JD. J Cheminform 9 52 (2017)
  15. High-throughput sequencing reveals circular substrates for an archaeal RNA ligase. Becker HF, Héliou A, Djaout K, Lestini R, Regnier M, Myllykallio H. RNA Biol 14 1075-1085 (2017)
  16. Three-dimensional structure model and predicted ATP interaction rewiring of a deviant RNA ligase 2. Moreira S, Noutahi E, Lamoureux G, Burger G. BMC Struct. Biol. 15 20 (2015)
  17. The discovery and characterization of two novel structural motifs on the carboxy-terminal domain of kinetoplastid RNA editing ligases. Moses D, Mehta V, Salavati R. RNA 29 188-199 (2023)


Reviews citing this publication (9)

  1. Complex management: RNA editing in trypanosomes. Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK. Trends Biochem. Sci. 30 97-105 (2005)
  2. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. Aphasizhev R, Aphasizheva I. Wiley Interdiscip Rev RNA 2 669-685 (2011)
  3. DNA and RNA ligases: structural variations and shared mechanisms. Pascal JM. Curr. Opin. Struct. Biol. 18 96-105 (2008)
  4. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Aphasizhev R, Aphasizheva I. Biochimie 100 125-131 (2014)
  5. 'Gestalt,' composition and function of the Trypanosoma brucei editosome. Göringer HU. Annu. Rev. Microbiol. 66 65-82 (2012)
  6. U-Insertion/Deletion mRNA-Editing Holoenzyme: Definition in Sight. Aphasizheva I, Aphasizhev R. Trends Parasitol. 32 144-156 (2016)
  7. The structural landscape of native editosomes in African trypanosomes. Göringer HU, Katari VS, Böhm C. Wiley Interdiscip Rev RNA 2 395-407 (2011)
  8. Protozoan genomes: gene identification and annotation. Worthey EA, Myler PJ. Int. J. Parasitol. 35 495-512 (2005)
  9. Inhibitors of RNA editing as potential chemotherapeutics against trypanosomatid pathogens. Salavati R, Moshiri H, Kala S, Shateri Najafabadi H. Int J Parasitol Drugs Drug Resist 2 36-46 (2012)

Articles citing this publication (36)

  1. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Deng J, Lewis PA, Greggio E, Sluch E, Beilina A, Cookson MR. Proc. Natl. Acad. Sci. U.S.A. 105 1499-1504 (2008)
  2. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. Amaro RE, Baron R, McCammon JA. J. Comput. Aided Mol. Des. 22 693-705 (2008)
  3. Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei. Deng J, Ernst NL, Turley S, Stuart KD, Hol WG. EMBO J. 24 4007-4017 (2005)
  4. Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Amaro RE, Schnaufer A, Interthal H, Hol W, Stuart KD, McCammon JA. Proc. Natl. Acad. Sci. U.S.A. 105 17278-17283 (2008)
  5. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Nandakumar J, Nair PA, Shuman S. Mol. Cell 26 257-271 (2007)
  6. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics. Durrant JD, Votapka L, Sørensen J, Amaro RE. J Chem Theory Comput 10 5047-5056 (2014)
  7. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. Nandakumar J, Shuman S, Lima CD. Cell 127 71-84 (2006)
  8. Molecular architecture and ligand recognition determinants for T4 RNA ligase. El Omari K, Ren J, Bird LE, Bona MK, Klarmann G, LeGrice SF, Stammers DK. J Biol Chem 281 1573-1579 (2006)
  9. Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. Akey D, Martins A, Aniukwu J, Glickman MS, Shuman S, Berger JM. J. Biol. Chem. 281 13412-13423 (2006)
  10. Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo. Golas MM, Böhm C, Sander B, Effenberger K, Brecht M, Stark H, Göringer HU. EMBO J. 28 766-778 (2009)
  11. A protein-protein interaction map of trypanosome ~20S editosomes. Schnaufer A, Wu M, Park YJ, Nakai T, Deng J, Proff R, Hol WG, Stuart KD. J. Biol. Chem. 285 5282-5295 (2010)
  12. Structure-function analysis of yeast tRNA ligase. Wang LK, Shuman S. RNA 11 966-975 (2005)
  13. The sequential 2',3'-cyclic phosphodiesterase and 3'-phosphate/5'-OH ligation steps of the RtcB RNA splicing pathway are GTP-dependent. Chakravarty AK, Shuman S. Nucleic Acids Res. 40 8558-8567 (2012)
  14. Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. Wu M, Park YJ, Pardon E, Turley S, Hayhurst A, Deng J, Steyaert J, Hol WG. J. Struct. Biol. 174 124-136 (2011)
  15. Crystal structure of a heterodimer of editosome interaction proteins in complex with two copies of a cross-reacting nanobody. Park YJ, Pardon E, Wu M, Steyaert J, Hol WG. Nucleic Acids Res. 40 1828-1840 (2012)
  16. HBonanza: a computer algorithm for molecular-dynamics-trajectory hydrogen-bond analysis. Durrant JD, McCammon JA. J. Mol. Graph. Model. 31 5-9 (2011)
  17. Kinetoplastid RNA editing involves a 3' nucleotidyl phosphatase activity. Niemann M, Kaibel H, Schlüter E, Weitzel K, Brecht M, Göringer HU. Nucleic Acids Res. 37 1897-1906 (2009)
  18. Structure-guided mutational analysis of T4 RNA ligase 1. Wang LK, Schwer B, Shuman S. RNA 12 2126-2134 (2006)
  19. Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Kyrieleis OJ, Chang J, de la Peña M, Shuman S, Cusack S. Structure 22 452-465 (2014)
  20. Comparison of the Mitochondrial Genomes and Steady State Transcriptomes of Two Strains of the Trypanosomatid Parasite, Leishmania tarentolae. Simpson L, Douglass SM, Lake JA, Pellegrini M, Li F. PLoS Negl Trop Dis 9 e0003841 (2015)
  21. Functional complementation of Trypanosoma brucei RNA in vitro editing with recombinant RNA ligase. Gao G, Simpson AM, Kang X, Rogers K, Nebohacova M, Li F, Simpson L. Proc. Natl. Acad. Sci. U.S.A. 102 4712-4717 (2005)
  22. Effects of 3'-OH and 5'-PO4 base mispairs and damaged base lesions on the fidelity of nick sealing by Deinococcus radiodurans RNA ligase. Schmier BJ, Shuman S. J. Bacteriol. 196 1704-1712 (2014)
  23. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase. Samai P, Shuman S. J. Biol. Chem. 286 13314-13326 (2011)
  24. The Architecture of Trypanosoma brucei editosomes. McDermott SM, Luo J, Carnes J, Ranish JA, Stuart K. Proc. Natl. Acad. Sci. U.S.A. 113 E6476-E6485 (2016)
  25. CrystalDock: a novel approach to fragment-based drug design. Durrant JD, Friedman AJ, McCammon JA. J Chem Inf Model 51 2573-2580 (2011)
  26. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3'-OH base mispairs and damaged base lesions. Chauleau M, Shuman S. RNA 19 1840-1847 (2013)
  27. The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Park YJ, Budiarto T, Wu M, Pardon E, Steyaert J, Hol WG. Nucleic Acids Res. 40 6966-6977 (2012)
  28. Elements of nucleotide specificity in the Trypanosoma brucei mitochondrial RNA editing enzyme RET2. Demir Ö, Amaro RE. J Chem Inf Model 52 1308-1318 (2012)
  29. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis. Gu H, Yoshinari S, Ghosh R, Ignatochkina AV, Gollnick PD, Murakami KS, Ho CK. Nucleic Acids Res. 44 2337-2347 (2016)
  30. Explorations of linked editosome domains leading to the discovery of motifs defining conserved pockets in editosome OB-folds. Park YJ, Hol WG. J. Struct. Biol. 180 362-373 (2012)
  31. Mutational analysis of Trypanosoma brucei RNA editing ligase reveals regions critical for interaction with KREPA2. Mehta V, Sen R, Moshiri H, Salavati R. PLoS ONE 10 e0120844 (2015)
  32. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases. Zimmermann S, Hall L, Riley S, Sørensen J, Amaro RE, Schnaufer A. Nucleic Acids Res. 44 e24 (2016)
  33. Research Support, Non-U.S. Gov't Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques. Rajendiran N, Durrant JD. J Comput Chem 39 748-755 (2018)
  34. Differential effects of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride on the recognition and catalysis in ATP hydrolysis. Ma Y, Lu G. Dalton Trans 1081-1086 (2008)
  35. Kinetoplastid RNA editing ligases 1 and 2 exhibit different electrostatic properties. Shaneh A, Salavati R. J Mol Model 16 61-76 (2010)
  36. Structural basis of gRNA stabilization and mRNA recognition in trypanosomal RNA editing. Liu S, Wang H, Li X, Zhang F, Lee JKJ, Li Z, Yu C, Hu JJ, Zhao X, Suematsu T, Alvarez-Cabrera AL, Liu Q, Zhang L, Huang L, Aphasizheva I, Aphasizhev R, Zhou ZH. Science 381 eadg4725 (2023)