1xr2 Citations

Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication.

OpenAccess logo PLoS Biol 3 e31 (2005)
Related entries: 1t7l, 1xdj, 1xpg

Cited: 60 times
EuropePMC logo PMID: 15630480

Abstract

Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (betaalpha)(8) barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys)(3)Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E.Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

Articles - 1xr2 mentioned but not cited (2)



Reviews citing this publication (8)

  1. The structural and functional diversity of metabolite-binding riboswitches. Roth A, Breaker RR. Annu. Rev. Biochem. 78 305-334 (2009)
  2. Getting a handle on the role of coenzyme M in alkene metabolism. Krishnakumar AM, Sliwa D, Endrizzi JA, Boyd ES, Ensign SA, Peters JW. Microbiol. Mol. Biol. Rev. 72 445-456 (2008)
  3. Vitamin B(12) metabolism in Mycobacterium tuberculosis. Gopinath K, Moosa A, Mizrahi V, Warner DF. Future Microbiol 8 1405-1418 (2013)
  4. Catalysis of methyl group transfers involving tetrahydrofolate and B(12). Ragsdale SW. Vitam. Horm. 79 293-324 (2008)
  5. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis. Young DB, Comas I, de Carvalho LP. Front Mol Biosci 2 6 (2015)
  6. Genetic and molecular biology of autism spectrum disorder among Middle East population: a review. Rahmani Z, Fayyazi Bordbar MR, Dibaj M, Alimardani M, Moghbeli M. Hum Genomics 15 17 (2021)
  7. Regulatory Mechanisms of the LuxS/AI-2 System and Bacterial Resistance. Wang Y, Liu B, Grenier D, Yi L. Antimicrob Agents Chemother 63 (2019)
  8. Modular arrangement of regulatory RNA elements. Roßmanith J, Narberhaus F. RNA Biol 14 287-292 (2017)

Articles citing this publication (50)

  1. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. BMC Genomics 10 78 (2009)
  2. S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Chi BK, Gronau K, Mäder U, Hessling B, Becher D, Antelmann H. Mol. Cell Proteomics 10 M111.009506 (2011)
  3. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. Morris P, Marinelli LJ, Jacobs-Sera D, Hendrix RW, Hatfull GF. J. Bacteriol. 190 2172-2182 (2008)
  4. Mutants of the zinc ligands of lacticin 481 synthetase retain dehydration activity but have impaired cyclization activity. Paul M, Patton GC, van der Donk WA. Biochemistry 46 6268-6276 (2007)
  5. Nutritional control of epigenetic processes in yeast and human cells. Sadhu MJ, Guan Q, Li F, Sales-Lee J, Iavarone AT, Hammond MC, Cande WZ, Rine J. Genetics 195 831-844 (2013)
  6. Zinc-promoted alkyl transfer: a new role for zinc. Penner-Hahn J. Curr Opin Chem Biol 11 166-171 (2007)
  7. Metal active site elasticity linked to activation of homocysteine in methionine synthases. Koutmos M, Pejchal R, Bomer TM, Matthews RG, Smith JL, Ludwig ML. Proc. Natl. Acad. Sci. U.S.A. 105 3286-3291 (2008)
  8. Surface functionalization of quantum dots for biological applications. Karakoti AS, Shukla R, Shanker R, Singh S. Adv Colloid Interface Sci 215 28-45 (2015)
  9. A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption. Schneider MJ, Ulland M, Sloboda RD. Mol. Biol. Cell 19 4319-4327 (2008)
  10. Purification and properties of cobalamin-independent methionine synthase from Candida albicans and Saccharomyces cerevisiae. Suliman HS, Sawyer GM, Appling DR, Robertus JD. Arch. Biochem. Biophys. 441 56-63 (2005)
  11. The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target. Suliman HS, Appling DR, Robertus JD. Arch. Biochem. Biophys. 467 218-226 (2007)
  12. Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli. Hondorp ER, Matthews RG. J. Bacteriol. 191 3407-3410 (2009)
  13. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. Francis BR. J. Mol. Evol. 77 134-158 (2013)
  14. Evolved cobalamin-independent methionine synthase (MetE) improves the acetate and thermal tolerance of Escherichia coli. Mordukhova EA, Pan JG. Appl. Environ. Microbiol. 79 7905-7915 (2013)
  15. Crystal structures of cobalamin-independent methionine synthase (MetE) from Streptococcus mutans: a dynamic zinc-inversion model. Fu TM, Almqvist J, Liang YH, Li L, Huang Y, Su XD. J. Mol. Biol. 412 688-697 (2011)
  16. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Wang Y, Huang JM, Cui GJ, Nunoura T, Takaki Y, Li WL, Li J, Gao ZM, Takai K, Zhang AQ, Stepanauskas R. Environ Microbiol 21 716-729 (2019)
  17. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans. Prasannan P, Suliman HS, Robertus JD. Biochem. Biophys. Res. Commun. 382 730-734 (2009)
  18. Identification of methionine synthase (Sal k 3), as a novel allergen of Salsola kali pollen. Assarehzadegan MA, Sankian M, Jabbari F, Tehrani M, Falak R, Varasteh A. Mol. Biol. Rep. 38 65-73 (2011)
  19. Activation of methyltetrahydrofolate by cobalamin-independent methionine synthase. Taurog RE, Matthews RG. Biochemistry 45 5092-5102 (2006)
  20. Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002. Pérez AA, Rodionov DA, Bryant DA. J. Bacteriol. 198 2753-2761 (2016)
  21. Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota. Danchin A, Braham S. Microb Biotechnol 10 688-701 (2017)
  22. Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo. Pérez AA, Liu Z, Rodionov DA, Li Z, Bryant DA. J. Bacteriol. 198 2743-2752 (2016)
  23. Methylfolate Trap Promotes Bacterial Thymineless Death by Sulfa Drugs. Guzzo MB, Nguyen HT, Pham TH, Wyszczelska-Rokiel M, Jakubowski H, Wolff KA, Ogwang S, Timpona JL, Gogula S, Jacobs MR, Ruetz M, Kräutler B, Jacobsen DW, Zhang GF, Nguyen L. PLoS Pathog. 12 e1005949 (2016)
  24. Micronutrient Deficiencies and the Human Gut Microbiota. Mach N, Clark A. Trends Microbiol. 25 607-610 (2017)
  25. Synergistic, random sequential binding of substrates in cobalamin-independent methionine synthase. Taurog RE, Jakubowski H, Matthews RG. Biochemistry 45 5083-5091 (2006)
  26. Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract. Yang YX, Mu CL, Luo Z, Zhu WY. Appl. Environ. Microbiol. 82 778-787 (2016)
  27. Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H, Takaki Y, Nunoura T, Jørgensen SL, Schleper C. ISME J 15 2792-2808 (2021)
  28. Structural analysis of a fungal methionine synthase with substrates and inhibitors. Ubhi D, Kago G, Monzingo AF, Robertus JD. J. Mol. Biol. 426 1839-1847 (2014)
  29. Structure of Candida albicans methionine synthase determined by employing surface residue mutagenesis. Ubhi D, Kavanagh KL, Monzingo AF, Robertus JD. Arch. Biochem. Biophys. 513 19-26 (2011)
  30. Intermediary metabolism in sea urchin: the first inferences from the genome sequence. Goel M, Mushegian A. Dev. Biol. 300 282-292 (2006)
  31. Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate. Weissgerber T, Watanabe M, Hoefgen R, Dahl C. Metabolomics 10 1094-1112 (2014)
  32. Molecular variation and horizontal gene transfer of the homocysteine methyltransferase gene mmuM and its distribution in clinical pathogens. Ying J, Wang H, Bao B, Zhang Y, Zhang J, Zhang C, Li A, Lu J, Li P, Ying J, Liu Q, Xu T, Yi H, Li J, Zhou L, Zhou T, Xu Z, Ni L, Bao Q. Int. J. Biol. Sci. 11 11-21 (2015)
  33. Cloning and identification of methionine synthase gene from Pichia pastoris. Huang L, Li DY, Wang SX, Zhang SM, Chen JH, Wu XF. Acta Biochim. Biophys. Sin. (Shanghai) 37 371-378 (2005)
  34. High hydrostatic pressure activates transcription factors involved in Saccharomyces cerevisiae stress tolerance. Bravim F, da Silva LF, Souza DT, Lippman SI, Broach JR, Fernandes AA, Fernandes PM. Curr Pharm Biotechnol 13 2712-2720 (2012)
  35. In Silico Analysis of Sequence-Structure-Function Relationship of the Escherichia coli Methionine Synthase. Kumar S, Bhagabati P, Sachan R, Kaushik AC, Dwivedi VD. Interdiscip Sci 7 382-390 (2015)
  36. In silico identification, phylogenetic and bioinformatic analysis of argonaute genes in plants. Mirzaei K, Bahramnejad B, Shamsifard MH, Zamani W. Int J Genomics 2014 967461 (2014)
  37. Proteomic insights into metabolic adaptation to deletion of metE in Saccharopolyspora spinosa. Yang Q, Li Y, Yang H, Rang J, Tang S, He L, Li L, Ding X, Xia L. Appl. Microbiol. Biotechnol. 99 8629-8641 (2015)
  38. Structure of the corrinoid:coenzyme M methyltransferase MtaA from Methanosarcina mazei. Hoeppner A, Thomas F, Rueppel A, Hensel R, Blankenfeldt W, Bayer P, Faust A. Acta Crystallogr. D Biol. Crystallogr. 68 1549-1557 (2012)
  39. Suppression of a methionine synthase by calmodulin under environmental stress in the entomopathogenic fungus Beauveria bassiana. Kim J, Oh J, Yoon DH, Sung GH. Environ Microbiol Rep 9 612-617 (2017)
  40. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives. Pompei S, Grimm C, Schiller C, Schober L, Kroutil W. Angew Chem Int Ed Engl 60 16906-16910 (2021)
  41. BINDER: computationally inferring a gene regulatory network for Mycobacterium abscessus. Staunton PM, Miranda-CasoLuengo AA, Loftus BJ, Gormley IC. BMC Bioinformatics 20 466 (2019)
  42. Binding studies of a putative C. pseudotuberculosis target protein from Vitamin B12 Metabolism. Peinado RDS, Olivier DS, Eberle RJ, de Moraes FR, Amaral MS, Arni RK, Coronado MA. Sci Rep 9 6350 (2019)
  43. Four families of folate-independent methionine synthases. Price MN, Deutschbauer AM, Arkin AP. PLoS Genet 17 e1009342 (2021)
  44. In silico bioprospecting of receptors for Doderlin: an antimicrobial peptide isolated from Lactobacillus acidophilus. Muniz Seif EJ, Icimoto MY, da Silva Junior PI. In Silico Pharmacol 11 11 (2023)
  45. Methionine synthase is localized to the nucleus in Pichia pastoris and Candida albicans and to the cytoplasm in Saccharomyces cerevisiae. Sahu U, Rajendra VKH, Kapnoor SS, Bhagavat R, Chandra N, Rangarajan PN. J. Biol. Chem. 292 14730-14746 (2017)
  46. Preparation, crystallization and preliminary X-ray analysis of the methionine synthase (MetE) from Streptococcus mutans. Fu TM, Zhang XY, Li LF, Liang YH, Su XD. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 984-985 (2006)
  47. Proteomic discovery of H2O2 response in roots and functional characterization of PutGLP gene from alkaligrass. Yu J, Zhang Y, Liu J, Wang L, Liu P, Yin Z, Guo S, Ma J, Lu Z, Wang T, She Y, Miao Y, Ma L, Chen S, Li Y, Dai S. Planta 248 1079-1099 (2018)
  48. Requirement for cobalamin by Salmonella enterica serovars Typhimurium, Pullorum, Gallinarum and Enteritidis during infection in chickens. Paiva JB, Penha Filho RA, Junior AB, Lemos MV. Braz. J. Microbiol. 42 1409-1418 (2011)
  49. The NarX-NarL two-component system regulates biofilm formation, natural product biosynthesis, and host-associated survival in Burkholderia pseudomallei. Mangalea MR, Borlee BR. Sci Rep 12 203 (2022)
  50. The cobalamin-independent methionine synthase enzyme captured in a substrate-induced closed conformation. Ubhi DK, Robertus JD. J. Mol. Biol. 427 901-909 (2015)