1xup Citations

Structures of enterococcal glycerol kinase in the absence and presence of glycerol: correlation of conformation to substrate binding and a mechanism of activation by phosphorylation.

Biochemistry 43 362-73 (2004)
Cited: 31 times
EuropePMC logo PMID: 14717590

Abstract

The first structure of a glycerol kinase from a Gram-positive organism, Enterococcus casseliflavus, has been determined to 2.8 A resolution in the presence of glycerol and to 2.5 A resolution in the absence of substrate. The substrate-induced closure of 7 degrees is significantly smaller than that reported for hexokinase, a model for substrate-mediated domain closure that has been proposed for glycerol kinase. Despite the 78% level of sequence identity and conformational similarity in the catalytic cleft regions of the En. casseliflavus and Escherichia coli glycerol kinases, remarkable structural differences have now been identified. These differences correlate well with their divergent regulatory schemes of activation by phosphorylation in En. casseliflavus and allosteric inhibition in E. coli. On the basis of our structural results, we propose a mechanism by which the phosphorylation of a histidyl residue located 25 A from the active site results in a 10-15-fold increase in the activity of the enterococcal glycerol kinase.

Articles - 1xup mentioned but not cited (1)

  1. The FGGY carbohydrate kinase family: insights into the evolution of functional specificities. Zhang Y, Zagnitko O, Rodionova I, Osterman A, Godzik A. PLoS Comput Biol 7 e1002318 (2011)


Reviews citing this publication (9)

  1. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Deutscher J, Francke C, Postma PW. Microbiol Mol Biol Rev 70 939-1031 (2006)
  2. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Deutscher J, Aké FM, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P. Microbiol Mol Biol Rev 78 231-256 (2014)
  3. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Jocken JW, Blaak EE. Physiol Behav 94 219-230 (2008)
  4. Metabolic impact of adipose and hepatic glycerol channels aquaporin 7 and aquaporin 9. Maeda N, Funahashi T, Shimomura I. Nat Clin Pract Endocrinol Metab 4 627-634 (2008)
  5. Role of aquaporin-7 in the pathophysiological control of fat accumulation in mice. Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G. FEBS Lett 580 4771-4776 (2006)
  6. Implications of glycerol metabolism for lipid production. Xue LL, Chen HH, Jiang JG. Prog Lipid Res 68 12-25 (2017)
  7. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs? Méndez-Giménez L, Ezquerro S, da Silva IV, Soveral G, Frühbeck G, Rodríguez A. Front Chem 6 99 (2018)
  8. Cardiovascular-metabolic impact of adiponectin and aquaporin. Maeda N, Funahashi T, Shimomura I. Endocr J 60 251-259 (2013)
  9. Advances, challenges and tools in characterizing bacterial serine, threonine and tyrosine kinases and phosphorylation target sites. Pagano GJ, Arsenault RJ. Expert Rev Proteomics 16 431-441 (2019)

Articles citing this publication (21)

  1. Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I. Proc Natl Acad Sci U S A 102 10993-10998 (2005)
  2. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Yeh JI, Chinte U, Du S. Proc Natl Acad Sci U S A 105 3280-3285 (2008)
  3. Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli. Applebee MK, Joyce AR, Conrad TM, Pettigrew DW, Palsson BØ. J Biol Chem 286 23150-23159 (2011)
  4. Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. Di Luccio E, Petschacher B, Voegtli J, Chou HT, Stahlberg H, Nidetzky B, Wilson DK. J Mol Biol 365 783-798 (2007)
  5. Structure and non-essential function of glycerol kinase in Plasmodium falciparum blood stages. Schnick C, Polley SD, Fivelman QL, Ranford-Cartwright LC, Wilkinson SR, Brannigan JA, Wilkinson AJ, Baker DA. Mol Microbiol 71 533-545 (2009)
  6. Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli. Grueninger D, Schulz GE. J Mol Biol 359 787-797 (2006)
  7. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system. Mazé A, Boël G, Poncet S, Mijakovic I, Le Breton Y, Benachour A, Monedero V, Deutscher J, Hartke A. J Bacteriol 186 4543-4555 (2004)
  8. Structural characterizations of glycerol kinase: unraveling phosphorylation-induced long-range activation. Yeh JI, Kettering R, Saxl R, Bourand A, Darbon E, Joly N, Briozzo P, Deutscher J. Biochemistry 48 346-356 (2009)
  9. Molecular Identification of d-Ribulokinase in Budding Yeast and Mammals. Singh C, Glaab E, Linster CL. J Biol Chem 292 1005-1028 (2017)
  10. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway. Monniot C, Zébré AC, Aké FM, Deutscher J, Milohanic E. J Bacteriol 194 4972-4982 (2012)
  11. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5. Zhang D, Tomisato W, Su L, Sun L, Choi JH, Zhang Z, Wang KW, Zhan X, Choi M, Li X, Tang M, Castro-Perez JM, Hildebrand S, Murray AR, Moresco EMY, Beutler B. Proc Natl Acad Sci U S A 114 E5197-E5206 (2017)
  12. Crystal structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon in a dimeric form. Koga Y, Katsumi R, You DJ, Matsumura H, Takano K, Kanaya S. FEBS J 275 2632-2643 (2008)
  13. Conformational itinerary of Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase during its catalytic cycle. Bacik JP, Tavassoli M, Patel TR, McKenna SA, Vocadlo DJ, Khajehpour M, Mark BL. J Biol Chem 289 4504-4514 (2014)
  14. Adaptive Laboratory Evolution of Cupriavidus necator H16 for Carbon Co-Utilization with Glycerol. González-Villanueva M, Galaiya H, Staniland P, Staniland J, Savill I, Wong TS, Tee KL. Int J Mol Sci 20 E5737 (2019)
  15. Amino acid substitutions in the sugar kinase/hsp70/actin superfamily conserved ATPase core of E. coli glycerol kinase modulate allosteric ligand affinity but do not alter allosteric coupling. Pettigrew DW. Arch Biochem Biophys 481 151-156 (2009)
  16. Molecular basis for the reverse reaction of African human trypanosomes glycerol kinase. Balogun EO, Inaoka DK, Shiba T, Kido Y, Tsuge C, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PA, Kita K, Harada S. Mol Microbiol 94 1315-1329 (2014)
  17. Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen. Husserl J, Hughes JB, Spain JC. Appl Environ Microbiol 78 3649-3655 (2012)
  18. Structural insight into mechanism and diverse substrate selection strategy of L-ribulokinase. Agarwal R, Burley SK, Swaminathan S. Proteins 80 261-268 (2012)
  19. Oligomeric interactions provide alternatives to direct steric modes of control of sugar kinase/actin/hsp70 superfamily functions by heterotropic allosteric effectors: inhibition of E. coli glycerol kinase. Pettigrew DW. Arch Biochem Biophys 492 29-39 (2009)
  20. Glycerol metabolism supports oral commensal interactions. Treerat P, Anderson D, Giacaman RA, Merritt J, Kreth J. ISME J 17 1116-1127 (2023)
  21. Crystal Structures of Putative Sugar Kinases from Synechococcus Elongatus PCC 7942 and Arabidopsis Thaliana. Xie Y, Li M, Chang W. PLoS One 11 e0156067 (2016)