1ya7 Citations

The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions.

Mol Cell 18 589-99 (2005)
Related entries: 1yar, 1yau, 1z7q

Cited: 148 times
EuropePMC logo PMID: 15916965

Abstract

Proteasomes are cylindrical structures that function in multiple cellular processes by degrading a wide variety of cytosolic and nuclear proteins. Substrate access and product release from the enclosed catalytic chamber occurs through axial pores that are opened by activator complexes. Here, we report high-resolution structures of wild-type and mutant archaeal proteasomes bound to the activator PA26. These structures support the proposal that an ordered open conformation is required for proteolysis and that its formation can be triggered by outward displacement of surrounding residues. The structures and associated biochemical assays reveal the mechanism of binding, which involves an interaction between the PA26 C terminus and a conserved lysine. Surprisingly, biochemical observations implicate an equivalent interaction for the unrelated ATP-dependent activators PAN and PA700.

Reviews - 1ya7 mentioned but not cited (1)

  1. Toward an atomic model of the 26S proteasome. Cheng Y. Curr Opin Struct Biol 19 203-208 (2009)

Articles - 1ya7 mentioned but not cited (12)

  1. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Rose PW, Prlić A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, Young J, Zardecki C, Berman HM, Bourne PE, Burley SK. Nucleic Acids Res 43 D345-56 (2015)
  2. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. Mol Cell 30 360-368 (2008)
  3. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. Yu Y, Smith DM, Kim HM, Rodriguez V, Goldberg AL, Cheng Y. EMBO J 29 692-702 (2010)
  4. Architecture and assembly of the archaeal Cdc48*20S proteasome. Barthelme D, Chen JZ, Grabenstatter J, Baker TA, Sauer RT. Proc Natl Acad Sci U S A 111 E1687-94 (2014)
  5. Accurate protein structure modeling using sparse NMR data and homologous structure information. Thompson JM, Sgourakis NG, Liu G, Rossi P, Tang Y, Mills JL, Szyperski T, Montelione GT, Baker D. Proc Natl Acad Sci U S A 109 9875-9880 (2012)
  6. Understanding the mechanism of proteasome 20S core particle gating. Latham MP, Sekhar A, Kay LE. Proc Natl Acad Sci U S A 111 5532-5537 (2014)
  7. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Zhang S, Huang G, Versloot RCA, Bruininks BMH, de Souza PCT, Marrink SJ, Maglia G. Nat Chem 13 1192-1199 (2021)
  8. Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Huang R, Pérez F, Kay LE. Proc Natl Acad Sci U S A 114 E9846-E9854 (2017)
  9. Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR. Rennella E, Huang R, Yu Z, Kay LE. Proc Natl Acad Sci U S A 117 5298-5309 (2020)
  10. The YΦ motif defines the structure-activity relationships of human 20S proteasome activators. Opoku-Nsiah KA, de la Pena AH, Williams SK, Chopra N, Sali A, Lander GC, Gestwicki JE. Nat Commun 13 1226 (2022)
  11. Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy. Toyama Y, Kay LE. Proc Natl Acad Sci U S A 118 e2116325118 (2021)
  12. research-article Minimal mechanistic component of HbYX-dependent proteasome activation. Chuah JJ, Thibaudeau TA, Rexroad MS, Smith DM. Res Sq rs.3.rs-2496767 (2023)


Reviews citing this publication (36)

  1. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Finley D. Annu Rev Biochem 78 477-513 (2009)
  2. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Ciechanover A, Kwon YT. Exp Mol Med 47 e147 (2015)
  3. The ubiquitin-proteasome system. Nandi D, Tahiliani P, Kumar A, Chandu D. J Biosci 31 137-155 (2006)
  4. The proteasome: overview of structure and functions. Tanaka K. Proc Jpn Acad Ser B Phys Biol Sci 85 12-36 (2009)
  5. Regulation of proteasome activity in health and disease. Schmidt M, Finley D. Biochim Biophys Acta 1843 13-25 (2014)
  6. Molecular architecture and assembly of the eukaryotic proteasome. Tomko RJ, Hochstrasser M. Annu Rev Biochem 82 415-445 (2013)
  7. Proteasome activators. Stadtmueller BM, Hill CP. Mol Cell 41 8-19 (2011)
  8. Regulated protein turnover: snapshots of the proteasome in action. Bhattacharyya S, Yu H, Mim C, Matouschek A. Nat Rev Mol Cell Biol 15 122-133 (2014)
  9. Structural biology of the proteasome. Kish-Trier E, Hill CP. Annu Rev Biophys 42 29-49 (2013)
  10. The 26S proteasome: assembly and function of a destructive machine. Gallastegui N, Groll M. Trends Biochem Sci 35 634-642 (2010)
  11. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Rosenzweig R, Kay LE. Annu Rev Biochem 83 291-315 (2014)
  12. Methyl groups as probes of supra-molecular structure, dynamics and function. Ruschak AM, Kay LE. J Biomol NMR 46 75-87 (2010)
  13. Proteasome deubiquitinases as novel targets for cancer therapy. D'Arcy P, Linder S. Int J Biochem Cell Biol 44 1729-1738 (2012)
  14. Proteasomes and their associated ATPases: a destructive combination. Smith DM, Benaroudj N, Goldberg A. J Struct Biol 156 72-83 (2006)
  15. PA28αβ: the enigmatic magic ring of the proteasome? Cascio P. Biomolecules 4 566-584 (2014)
  16. Structure characterization of the 26S proteasome. Kim HM, Yu Y, Cheng Y. Biochim Biophys Acta 1809 67-79 (2011)
  17. Assembly of the 20S proteasome. Kunjappu MJ, Hochstrasser M. Biochim Biophys Acta 1843 2-12 (2014)
  18. The RNA exosome and proteasome: common principles of degradation control. Makino DL, Halbach F, Conti E. Nat Rev Mol Cell Biol 14 654-660 (2013)
  19. Oxidative protein damage and the proteasome. Grimm S, Höhn A, Grune T. Amino Acids 42 23-38 (2012)
  20. The structural dynamics of macromolecular processes. Russel D, Lasker K, Phillips J, Schneidman-Duhovny D, Velázquez-Muriel JA, Sali A. Curr Opin Cell Biol 21 97-108 (2009)
  21. Misfolded PrP and a novel mechanism of proteasome inhibition. Andre R, Tabrizi SJ. Prion 6 32-36 (2012)
  22. Proteasome activator 200: the heat is on... Savulescu AF, Glickman MH. Mol Cell Proteomics 10 R110.006890 (2011)
  23. Aim for the core: suitability of the ubiquitin-independent 20S proteasome as a drug target in neurodegeneration. Opoku-Nsiah KA, Gestwicki JE. Transl Res 198 48-57 (2018)
  24. NMR Methods to Study Dynamic Allostery. Grutsch S, Brüschweiler S, Tollinger M. PLoS Comput Biol 12 e1004620 (2016)
  25. Assembly manual for the proteasome regulatory particle: the first draft. Park S, Tian G, Roelofs J, Finley D. Biochem Soc Trans 38 6-13 (2010)
  26. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Burmann BM, Hiller S. Prog Nucl Magn Reson Spectrosc 86-87 41-64 (2015)
  27. Effects of ethanol on the proteasome interacting proteins. Bardag-Gorce F. World J Gastroenterol 16 1349-1357 (2010)
  28. Precise assembly and regulation of 26S proteasome and correlation between proteasome dysfunction and neurodegenerative diseases. Im E, Chung KC. BMB Rep 49 459-473 (2016)
  29. Harnessing proteasome dynamics and allostery in drug design. Gaczynska M, Osmulski PA. Antioxid Redox Signal 21 2286-2301 (2014)
  30. PA28γ: New Insights on an Ancient Proteasome Activator. Cascio P. Biomolecules 11 228 (2021)
  31. Proteasome Activation to Combat Proteotoxicity. Jones CL, Tepe JJ. Molecules 24 E2841 (2019)
  32. Archaeal proteasomes and sampylation. Maupin-Furlow JA. Subcell Biochem 66 297-327 (2013)
  33. Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA. Nichols PJ, Born A, Henen MA, Strotz D, Celestine CN, Güntert P, Vögeli B. Chembiochem (2018)
  34. Regulation of proteasomes in prion disease. Zhu T, Hayat Khan S, Zhao D, Yang L. Acta Biochim Biophys Sin (Shanghai) 46 531-539 (2014)
  35. Highbrow proteasome in high-throughput technology. Gaczynska M, Rodriguez K, Madabhushi S, Osmulski PA. Expert Rev Proteomics 3 115-127 (2006)
  36. Structure, Function, and Allosteric Regulation of the 20S Proteasome by the 11S/PA28 Family of Proteasome Activators. Thomas T, Salcedo-Tacuma D, Smith DM. Biomolecules 13 1326 (2023)

Articles citing this publication (99)

  1. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. Mol Cell 27 731-744 (2007)
  2. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Sprangers R, Kay LE. Nature 445 618-622 (2007)
  3. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL. Mol Cell 20 687-698 (2005)
  4. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, Martínez de Villarreal L, dos Santos HG, Garg A. Am J Hum Genet 87 866-872 (2010)
  5. Molecular model of the human 26S proteasome. da Fonseca PC, He J, Morris EP. Mol Cell 46 54-66 (2012)
  6. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Saez I, Vilchez D. Curr Genomics 15 38-51 (2014)
  7. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Religa TL, Sprangers R, Kay LE. Science 328 98-102 (2010)
  8. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Zhang F, Hu M, Tian G, Zhang P, Finley D, Jeffrey PD, Shi Y. Mol Cell 34 473-484 (2009)
  9. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN. Mol Cell 24 39-50 (2006)
  10. An atomic structure of the human 26S proteasome. Huang X, Luan B, Wu J, Shi Y. Nat Struct Mol Biol 23 778-785 (2016)
  11. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Lee BG, Park EY, Lee KE, Jeon H, Sung KH, Paulsen H, Rübsamen-Schaeff H, Brötz-Oesterhelt H, Song HK. Nat Struct Mol Biol 17 471-478 (2010)
  12. Chaperone-mediated pathway of proteasome regulatory particle assembly. Roelofs J, Park S, Haas W, Tian G, McAllister FE, Huo Y, Lee BH, Zhang F, Shi Y, Gygi SP, Finley D. Nature 459 861-865 (2009)
  13. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, Finley D. Nat Struct Mol Biol 14 1180-1188 (2007)
  14. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. Gillette TG, Kumar B, Thompson D, Slaughter CA, DeMartino GN. J Biol Chem 283 31813-31822 (2008)
  15. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Sadre-Bazzaz K, Whitby FG, Robinson H, Formosa T, Hill CP. Mol Cell 37 728-735 (2010)
  16. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, Finley D. Nature 459 866-870 (2009)
  17. Insights into the molecular architecture of the 26S proteasome. Nickell S, Beck F, Scheres SH, Korinek A, Förster F, Lasker K, Mihalache O, Sun N, Nagy I, Sali A, Plitzko JM, Carazo JM, Mann M, Baumeister W. Proc Natl Acad Sci U S A 106 11943-11947 (2009)
  18. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Wehmer M, Rudack T, Beck F, Aufderheide A, Pfeifer G, Plitzko JM, Förster F, Schulten K, Baumeister W, Sakata E. Proc Natl Acad Sci U S A 114 1305-1310 (2017)
  19. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Martin A, Baker TA, Sauer RT. Mol Cell 27 41-52 (2007)
  20. Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes. Book AJ, Gladman NP, Lee SS, Scalf M, Smith LM, Vierstra RD. J Biol Chem 285 25554-25569 (2010)
  21. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Hu G, Lin G, Wang M, Dick L, Xu RM, Nathan C, Li H. Mol Microbiol 59 1417-1428 (2006)
  22. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Lin G, Hu G, Tsu C, Kunes YZ, Li H, Dick L, Parsons T, Li P, Chen Z, Zwickl P, Weich N, Nathan C. Mol Microbiol 59 1405-1416 (2006)
  23. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. Striebel F, Hunkeler M, Summer H, Weber-Ban E. EMBO J 29 1262-1271 (2010)
  24. Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. Deriziotis P, André R, Smith DM, Goold R, Kinghorn KJ, Kristiansen M, Nathan JA, Rosenzweig R, Krutauz D, Glickman MH, Collinge J, Goldberg AL, Tabrizi SJ. EMBO J 30 3065-3077 (2011)
  25. Proteasome allostery as a population shift between interchanging conformers. Ruschak AM, Kay LE. Proc Natl Acad Sci U S A 109 E3454-62 (2012)
  26. Identification of substrates of the Mycobacterium tuberculosis proteasome. Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH. EMBO J 25 5423-5432 (2006)
  27. The central unit within the 19S regulatory particle of the proteasome. Rosenzweig R, Osmulski PA, Gaczynska M, Glickman MH. Nat Struct Mol Biol 15 573-580 (2008)
  28. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y. Mol Cell 34 485-496 (2009)
  29. Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating. Eisele MR, Reed RG, Rudack T, Schweitzer A, Beck F, Nagy I, Pfeifer G, Plitzko JM, Baumeister W, Tomko RJ, Sakata E. Cell Rep 24 1301-1315.e5 (2018)
  30. 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. Campbell MG, Veesler D, Cheng A, Potter CS, Carragher B. Elife 4 (2015)
  31. An asymmetric interface between the regulatory and core particles of the proteasome. Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D. Nat Struct Mol Biol 18 1259-1267 (2011)
  32. A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Kusmierczyk AR, Kunjappu MJ, Kim RY, Hochstrasser M. Nat Struct Mol Biol 18 622-629 (2011)
  33. Global organization and function of mammalian cytosolic proteasome pools: Implications for PA28 and 19S regulatory complexes. Shibatani T, Carlson EJ, Larabee F, McCormack AL, Früh K, Skach WR. Mol Biol Cell 17 4962-4971 (2006)
  34. Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. Dange T, Smith D, Noy T, Rommel PC, Jurzitza L, Cordero RJ, Legendre A, Finley D, Goldberg AL, Schmidt M. J Biol Chem 286 42830-42839 (2011)
  35. Reconfiguration of the proteasome during chaperone-mediated assembly. Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, Lovell S, Battaile KP, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D. Nature 497 512-516 (2013)
  36. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. Park S, Kim W, Tian G, Gygi SP, Finley D. J Biol Chem 286 36652-36666 (2011)
  37. Expanded polyglutamine-containing N-terminal huntingtin fragments are entirely degraded by mammalian proteasomes. Juenemann K, Schipper-Krom S, Wiemhoefer A, Kloss A, Sanz Sanz A, Reits EAJ. J Biol Chem 288 27068-27084 (2013)
  38. Mdm2 facilitates the association of p53 with the proteasome. Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C. Proc Natl Acad Sci U S A 107 10038-10043 (2010)
  39. Structural models for interactions between the 20S proteasome and its PAN/19S activators. Stadtmueller BM, Ferrell K, Whitby FG, Heroux A, Robinson H, Myszka DG, Hill CP. J Biol Chem 285 13-17 (2010)
  40. Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Barthelme D, Sauer RT. Proc Natl Acad Sci U S A 110 3327-3332 (2013)
  41. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Förster F, Lasker K, Beck F, Nickell S, Sali A, Baumeister W. Biochem Biophys Res Commun 388 228-233 (2009)
  42. Characterization of Fully Recombinant Human 20S and 20S-PA200 Proteasome Complexes. Toste Rêgo A, da Fonseca PCA. Mol Cell 76 138-147.e5 (2019)
  43. Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. Kay LE. J Magn Reson 210 159-170 (2011)
  44. Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function. Stadtmueller BM, Kish-Trier E, Ferrell K, Petersen CN, Robinson H, Myszka DG, Eckert DM, Formosa T, Hill CP. J Biol Chem 287 37371-37382 (2012)
  45. An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. Velyvis A, Ruschak AM, Kay LE. PLoS One 7 e43725 (2012)
  46. Structure of the Blm10-20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes. Iwanczyk J, Sadre-Bazzaz K, Ferrell K, Kondrashkina E, Formosa T, Hill CP, Ortega J. J Mol Biol 363 648-659 (2006)
  47. Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle. Majumder P, Rudack T, Beck F, Danev R, Pfeifer G, Nagy I, Baumeister W. Proc Natl Acad Sci U S A 116 534-539 (2019)
  48. Toward an integrated structural model of the 26S proteasome. Förster F, Lasker K, Nickell S, Sali A, Baumeister W. Mol Cell Proteomics 9 1666-1677 (2010)
  49. Variably modulated gating of the 26S proteasome by ATP and polyubiquitin. Li X, Demartino GN. Biochem J 421 397-404 (2009)
  50. NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Mainz A, Religa TL, Sprangers R, Linser R, Kay LE, Reif B. Angew Chem Int Ed Engl 52 8746-8751 (2013)
  51. A Multi-model Approach to Assessing Local and Global Cryo-EM Map Quality. Herzik MA, Fraser JS, Lander GC. Structure 27 344-358.e3 (2019)
  52. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. Li X, Thompson D, Kumar B, DeMartino GN. J Biol Chem 289 17392-17405 (2014)
  53. The Ubiquitin-Proteasome System in Huntington's Disease: Are Proteasomes Impaired, Initiators of Disease, or Coming to the Rescue? Schipper-Krom S, Juenemann K, Reits EA. Biochem Res Int 2012 837015 (2012)
  54. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. Li D, Li H, Wang T, Pan H, Lin G, Li H. EMBO J 29 2037-2047 (2010)
  55. Structural insights into proteasome activation by the 19S regulatory particle. Ehlinger A, Walters KJ. Biochemistry 52 3618-3628 (2013)
  56. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis. Jastrab JB, Wang T, Murphy JP, Bai L, Hu K, Merkx R, Huang J, Chatterjee C, Ovaa H, Gygi SP, Li H, Darwin KH. Proc Natl Acad Sci U S A 112 E1763-72 (2015)
  57. C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. Kim YC, DeMartino GN. J Biol Chem 286 26652-26666 (2011)
  58. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase. Effantin G, Maurizi MR, Steven AC. J Biol Chem 285 14834-14840 (2010)
  59. Small Molecule Modulation of Proteasome Assembly. Njomen E, Osmulski PA, Jones CL, Gaczynska M, Tepe JJ. Biochemistry 57 4214-4224 (2018)
  60. Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome. Delley CL, Laederach J, Ziemski M, Bolten M, Boehringer D, Weber-Ban E. PLoS One 9 e114348 (2014)
  61. The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. Kumar B, Kim YC, DeMartino GN. J Biol Chem 285 39523-39535 (2010)
  62. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Open Biol 11 200390 (2021)
  63. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sokolova V, Li F, Polovin G, Park S. Sci Rep 5 14909 (2015)
  64. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis. Bai L, Hu K, Wang T, Jastrab JB, Darwin KH, Li H. Proc Natl Acad Sci U S A 113 E1983-92 (2016)
  65. Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Wani PS, Suppahia A, Capalla X, Ondracek A, Roelofs J. Sci Rep 6 27873 (2016)
  66. Potential allosteric modulators of the proteasome activity. Jankowska E, Gaczynska M, Osmulski P, Sikorska E, Rostankowski R, Madabhushi S, Tokmina-Lukaszewska M, Kasprzykowski F. Biopolymers 93 481-495 (2010)
  67. An archaeal homolog of proteasome assembly factor functions as a proteasome activator. Kumoi K, Satoh T, Murata K, Hiromoto T, Mizushima T, Kamiya Y, Noda M, Uchiyama S, Yagi H, Kato K. PLoS One 8 e60294 (2013)
  68. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome. Bolten M, Delley CL, Leibundgut M, Boehringer D, Ban N, Weber-Ban E. Structure 24 2138-2151 (2016)
  69. Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone. Li F, Tian G, Langager D, Sokolova V, Finley D, Park S. Proc Natl Acad Sci U S A 114 1548-1553 (2017)
  70. Conformational dynamics of the Rpt6 ATPase in proteasome assembly and Rpn14 binding. Ehlinger A, Park S, Fahmy A, Lary JW, Cole JL, Finley D, Walters KJ. Structure 21 753-765 (2013)
  71. Conformational maps of human 20S proteasomes reveal PA28- and immuno-dependent inter-ring crosstalks. Lesne J, Locard-Paulet M, Parra J, Zivković D, Menneteau T, Bousquet MP, Burlet-Schiltz O, Marcoux J. Nat Commun 11 6140 (2020)
  72. Cryo-EM structures of the human PA200 and PA200-20S complex reveal regulation of proteasome gate opening and two PA200 apertures. Guan H, Wang Y, Yu T, Huang Y, Li M, Saeed AFUH, Perčulija V, Li D, Xiao J, Wang D, Zhu P, Ouyang S. PLoS Biol 18 e3000654 (2020)
  73. The ubiquitin-proteasome system and microvascular complications of diabetes. Aghdam SY, Sheibani N. J Ophthalmic Vis Res 8 244-256 (2013)
  74. Characterization of a REG/PA28 proteasome activator homolog in Dictyostelium discoideum indicates that the ubiquitin- and ATP-independent REGgamma proteasome is an ancient nuclear protease. Masson P, Lundin D, Söderbom F, Young P. Eukaryot Cell 8 844-851 (2009)
  75. Experimental charge density from electron microscopic maps. Wang J. Protein Sci 26 1619-1626 (2017)
  76. Proteasome substrate capture and gate opening by the accessory factor PafE from Mycobacterium tuberculosis. Hu K, Jastrab JB, Zhang S, Kovach A, Zhao G, Darwin KH, Li H. J Biol Chem 293 4713-4723 (2018)
  77. Architecture and molecular mechanism of PAN, the archaeal proteasome regulatory ATPase. Medalia N, Beer A, Zwickl P, Mihalache O, Beck M, Medalia O, Navon A. J Biol Chem 284 22952-22960 (2009)
  78. Crystal structure of a low molecular weight activator Blm-pep with yeast 20S proteasome - insights into the enzyme activation mechanism. Witkowska J, Giżyńska M, Grudnik P, Golik P, Karpowicz P, Giełdoń A, Dubin G, Jankowska E. Sci Rep 7 6177 (2017)
  79. Unlocking the proteasome door. Saeki Y, Tanaka K. Mol Cell 27 865-867 (2007)
  80. Essential function of the N-termini tails of the proteasome for the gating mechanism revealed by molecular dynamics simulations. Ishida H. Proteins 82 1985-1999 (2014)
  81. Allosteric coupling between α-rings of the 20S proteasome. Yu Z, Yu Y, Wang F, Myasnikov AG, Coffino P, Cheng Y. Nat Commun 11 4580 (2020)
  82. Functional and structural characterization of the Methanosarcina mazei proteasome and PAN complexes. Medalia N, Sharon M, Martinez-Arias R, Mihalache O, Robinson CV, Medalia O, Zwickl P. J Struct Biol 156 84-92 (2006)
  83. Cationic porphyrins are tunable gatekeepers of the 20S proteasome. Santoro AM, Cunsolo A, D'Urso A, Sbardella D, Tundo GR, Ciaccio C, Coletta M, Diana D, Fattorusso R, Persico M, Di Dato A, Fattorusso C, Milardi D, Purrello R. Chem Sci 7 1286-1297 (2016)
  84. Cryo-EM of mammalian PA28αβ-iCP immunoproteasome reveals a distinct mechanism of proteasome activation by PA28αβ. Chen J, Wang Y, Xu C, Chen K, Zhao Q, Wang S, Yin Y, Peng C, Ding Z, Cong Y. Nat Commun 12 739 (2021)
  85. Enabling NMR Studies of High Molecular Weight Systems Without the Need for Deuteration: The XL-ALSOFAST Experiment with Delayed Decoupling. Rößler P, Mathieu D, Gossert AD. Angew Chem Int Ed Engl 59 19329-19337 (2020)
  86. Mechanistic insights on petrosaspongiolide M inhibitory effects on immunoproteasome and autophagy. Monti MC, Margarucci L, Riccio R, Bonfili L, Mozzicafreddo M, Eleuteri AM, Casapullo A. Biochim Biophys Acta 1844 713-721 (2014)
  87. N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Yashiroda H, Toda Y, Otsu S, Takagi K, Mizushima T, Murata S. Mol Cell Biol 35 141-152 (2015)
  88. NOE-Derived Methyl Distances from a 360 kDa Proteasome Complex. Chi CN, Strotz D, Riek R, Vögeli B. Chemistry 24 2270-2276 (2018)
  89. Pipecolic esters as minimized templates for proteasome inhibition. Giletto MB, Osmulski PA, Jones CL, Gaczynska ME, Tepe JJ. Org Biomol Chem 17 2734-2746 (2019)
  90. Proteasome activator Blm10 levels and autophagic degradation directly impact the proteasome landscape. Burris A, Waite KA, Reuter Z, Ockerhausen S, Roelofs J. J Biol Chem 296 100468 (2021)
  91. Conversion of functionally undefined homopentameric protein PbaA into a proteasome activator by mutational modification of its C-terminal segment conformation. Yagi-Utsumi M, Sikdar A, Kozai T, Inoue R, Sugiyama M, Uchihashi T, Yagi H, Satoh T, Kato K. Protein Eng Des Sel 31 29-36 (2018)
  92. Minimal mechanistic component of HbYX-dependent proteasome activation that reverses impairment by neurodegenerative-associated oligomers. Chuah JJY, Thibaudeau TA, Smith DM. Commun Biol 6 725 (2023)
  93. High resolution structures define divergent and convergent mechanisms of archaeal proteasome activation. Chuah JJY, Rexroad MS, Smith DM. Commun Biol 6 733 (2023)
  94. Inhibition of the Proteasome Regulator PA28 Aggravates Oxidized Protein Overload in the Diabetic Rat Brain. Wu DG, Wang YN, Zhou Y, Gao H, Zhao B. Cell Mol Neurobiol 43 2857-2869 (2023)
  95. Mechanism of proteasome gate modulation by assembly chaperones Pba1 and Pba2. Schnell HM, Ang J, Rawson S, Walsh RM, Micoogullari Y, Hanna J. J Biol Chem 298 101906 (2022)
  96. Proteasome activator 28γ (PA28γ) allosterically activates trypsin-like proteolysis by binding to the α-ring of the 20S proteasome. Thomas TA, Smith DM. J Biol Chem 298 102140 (2022)
  97. Structural Outlier Detection and Zernike-Canterakis Moments for Molecular Surface Meshes-Fast Implementation in Python. Banach M. Molecules 29 52 (2023)
  98. The β-Grasp Domain of Proteasomal ATPase Mpa Makes Critical Contacts with the Mycobacterium tuberculosis 20S Core Particle to Facilitate Degradation. Xiao X, Feng X, Yoo JH, Kovach A, Darwin KH, Li H. mSphere 7 e0027422 (2022)
  99. What's the Key to Unlocking the Proteasome's Gate? de la Peña AH, Lander GC. Structure 24 2037-2038 (2016)