1ylz Citations

Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases.

J Am Chem Soc 127 5423-34 (2005)
Related entries: 1yly, 1ym1, 1yms, 1ymx

Cited: 69 times
EuropePMC logo PMID: 15826180

Abstract

CTX-M enzymes are an emerging group of extended spectrum beta-lactamases (ESBLs) that hydrolyze not only the penicillins but also the first-, second-, and third-generation cephalosporins. Although they have become the most frequently observed ESBLs in certain areas, there are few effective inhibitors and relatively little is known about their detailed mechanism. Here we describe the X-ray crystal structures of CTX-M enzymes in complex with different transition-state analogues and beta-lactam inhibitors, representing the enzyme as it progresses from its acylation transition state to its acyl enzyme complex to the deacylation transition state. As the enzyme moves along this reaction coordinate, two key catalytic residues, Lys73 and Glu166, change conformations, tracking the state of the reaction. Unexpectedly, the acyl enzyme complex with the beta-lactam inhibitor cefoxitin still has the catalytic water bound; this water had been predicted to be displaced by the unusual 7alpha-methoxy of the inhibitor. Instead, the 7alpha-group appears to inhibit by preventing the formation of the deacylation transition state through steric hindrance. From an inhibitor design standpoint, we note that the best of the reversible inhibitors, a ceftazidime-like boronic acid compound, binds to CTX-M-16 with a K(i) value of 4 nM. When used together in cell culture, this inhibitor reversed cefotaxime resistance in CTX-M-producing bacteria. The structure of its complex with CTX-M enzyme and the structural view of the reaction coordinate described here provide templates for inhibitor design and intervention to combat this family of antibiotic resistance enzymes.

Articles - 1ylz mentioned but not cited (1)

  1. Conserved water molecules stabilize the Omega-loop in class A beta-lactamases. Bös F, Pleiss J. Antimicrob Agents Chemother 52 1072-1079 (2008)


Reviews citing this publication (13)

  1. Three decades of beta-lactamase inhibitors. Drawz SM, Bonomo RA. Clin Microbiol Rev 23 160-201 (2010)
  2. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. FEMS Microbiol Rev 30 673-691 (2006)
  3. Beta-lactam antibiotic resistance: a current structural perspective. Wilke MS, Lovering AL, Strynadka NC. Curr Opin Microbiol 8 525-533 (2005)
  4. Boron-containing inhibitors of synthetases. Baker SJ, Tomsho JW, Benkovic SJ. Chem Soc Rev 40 4279-4285 (2011)
  5. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Drugs 70 651-679 (2010)
  6. Boron chemicals in diagnosis and therapeutics. Das BC, Thapa P, Karki R, Schinke C, Das S, Kambhampati S, Banerjee SK, Van Veldhuizen P, Verma A, Weiss LM, Evans T. Future Med Chem 5 653-676 (2013)
  7. Resistance to antibiotics targeted to the bacterial cell wall. Nikolaidis I, Favini-Stabile S, Dessen A. Protein Sci 23 243-259 (2014)
  8. Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. Pournaras S, Poulou A, Tsakris A. J Antimicrob Chemother 65 1319-1321 (2010)
  9. Three decades of the class A beta-lactamase acyl-enzyme. Fisher JF, Mobashery S. Curr Protein Pept Sci 10 401-407 (2009)
  10. Will morphing boron-based inhibitors beat the β-lactamases? Krajnc A, Lang PA, Panduwawala TD, Brem J, Schofield CJ. Curr Opin Chem Biol 50 101-110 (2019)
  11. Fragment-based inhibitor discovery against β-lactamase. Nichols DA, Renslo AR, Chen Y. Future Med Chem 6 413-427 (2014)
  12. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. Nowak MG, Skwarecki AS, Milewska MJ. ChemMedChem 16 3513-3544 (2021)
  13. Structural Comparisons of Cefotaximase (CTX-M-ase) Sub Family 1. Shurina BA, Page RC. Front Microbiol 12 688509 (2021)

Articles citing this publication (55)

  1. How protein stability and new functions trade off. Tokuriki N, Stricher F, Serrano L, Tawfik DS. PLoS Comput Biol 4 e1000002 (2008)
  2. Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases. Lahiri SD, Mangani S, Durand-Reville T, Benvenuti M, De Luca F, Sanyal G, Docquier JD. Antimicrob Agents Chemother 57 2496-2505 (2013)
  3. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Chen Y, Shoichet BK. Nat Chem Biol 5 358-364 (2009)
  4. Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase. Papp-Wallace KM, Taracila M, Hornick JM, Hujer AM, Hujer KM, Distler AM, Endimiani A, Bonomo RA. Antimicrob Agents Chemother 54 2867-2877 (2010)
  5. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases. Delmas J, Chen Y, Prati F, Robin F, Shoichet BK, Bonnet R. J Mol Biol 375 192-201 (2008)
  6. Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography. Nichols DA, Hargis JC, Sanishvili R, Jaishankar P, Defrees K, Smith EW, Wang KK, Prati F, Renslo AR, Woodcock HL, Chen Y. J Am Chem Soc 137 8086-8095 (2015)
  7. The acylation mechanism of CTX-M beta-lactamase at 0.88 a resolution. Chen Y, Bonnet R, Shoichet BK. J Am Chem Soc 129 5378-5380 (2007)
  8. A fitness cost associated with the antibiotic resistance enzyme SME-1 beta-lactamase. Marciano DC, Karkouti OY, Palzkill T. Genetics 176 2381-2392 (2007)
  9. Exploring sequence requirements for C₃/C₄ carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: Insights into plasticity of the AmpC β-lactamase. Drawz SM, Taracila M, Caselli E, Prati F, Bonomo RA. Protein Sci 20 941-958 (2011)
  10. Inhibition of the class C beta-lactamase from Acinetobacter spp.: insights into effective inhibitor design. Drawz SM, Babic M, Bethel CR, Taracila M, Distler AM, Ori C, Caselli E, Prati F, Bonomo RA. Biochemistry 49 329-340 (2010)
  11. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Kotsakis SD, Miriagou V, Tzelepi E, Tzouvelekis LS. Antimicrob Agents Chemother 54 4864-4871 (2010)
  12. Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative. Tondi D, Venturelli A, Bonnet R, Pozzi C, Shoichet BK, Costi MP. J Med Chem 57 5449-5458 (2014)
  13. Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Smith JD, Kumarasiri M, Zhang W, Hesek D, Lee M, Toth M, Vakulenko S, Fisher JF, Mobashery S, Chen Y. Antimicrob Agents Chemother 57 3137-3146 (2013)
  14. Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Nicola G, Tomberg J, Pratt RF, Nicholas RA, Davies C. Biochemistry 49 8094-8104 (2010)
  15. Twelve positions in a β-lactamase that can expand its substrate spectrum with a single amino acid substitution. Yi H, Cho KH, Cho YS, Kim K, Nierman WC, Kim HS. PLoS One 7 e37585 (2012)
  16. Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Rojas LJ, Taracila MA, Papp-Wallace KM, Bethel CR, Caselli E, Romagnoli C, Winkler ML, Spellberg B, Prati F, Bonomo RA. Antimicrob Agents Chemother 60 1751-1759 (2016)
  17. Neutron diffraction studies of a class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant. Tomanicek SJ, Blakeley MP, Cooper J, Chen Y, Afonine PV, Coates L. J Mol Biol 396 1070-1080 (2010)
  18. Prediction of the evolution of ceftazidime resistance in extended-spectrum beta-lactamase CTX-M-9. Delmas J, Robin F, Carvalho F, Mongaret C, Bonnet R. Antimicrob Agents Chemother 50 731-738 (2006)
  19. Exploring the inhibition of CTX-M-9 by beta-lactamase inhibitors and carbapenems. Bethel CR, Taracila M, Shyr T, Thomson JM, Distler AM, Hujer KM, Hujer AM, Endimiani A, Papp-Wallace K, Bonnet R, Bonomo RA. Antimicrob Agents Chemother 55 3465-3475 (2011)
  20. Neutron and X-ray crystal structures of a perdeuterated enzyme inhibitor complex reveal the catalytic proton network of the Toho-1 β-lactamase for the acylation reaction. Tomanicek SJ, Standaert RF, Weiss KL, Ostermann A, Schrader TE, Ng JD, Coates L. J Biol Chem 288 4715-4722 (2013)
  21. Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam. Pemberton OA, Noor RE, Kumar M V V, Sanishvili R, Kemp MT, Kearns FL, Woodcock HL, Gelis I, Chen Y. Proc Natl Acad Sci U S A 117 5818-5825 (2020)
  22. Biochemical and structural analysis of inhibitors targeting the ADC-7 cephalosporinase of Acinetobacter baumannii. Powers RA, Swanson HC, Taracila MA, Florek NW, Romagnoli C, Caselli E, Prati F, Bonomo RA, Wallar BJ. Biochemistry 53 7670-7679 (2014)
  23. The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation. Tomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, Chen Y, Coates L. FEBS Lett 585 364-368 (2011)
  24. The Lys234Arg substitution in the enzyme SHV-72 is a determinant for resistance to clavulanic acid inhibition. Mendonça N, Manageiro V, Robin F, Salgado MJ, Ferreira E, Caniça M, Bonnet R. Antimicrob Agents Chemother 52 1806-1811 (2008)
  25. Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Santucci M, Spyrakis F, Cross S, Quotadamo A, Farina D, Tondi D, De Luca F, Docquier JD, Prieto AI, Ibacache C, Blázquez J, Venturelli A, Cruciani G, Costi MP. Sci Rep 7 17716 (2017)
  26. Novel insights into the mode of inhibition of class A SHV-1 beta-lactamases revealed by boronic acid transition state inhibitors. Ke W, Sampson JM, Ori C, Prati F, Drawz SM, Bethel CR, Bonomo RA, van den Akker F. Antimicrob Agents Chemother 55 174-183 (2011)
  27. Occurrence and Antimicrobial Resistance Traits of Escherichia coli from Wild Birds and Rodents in Singapore. Ong KH, Khor WC, Quek JY, Low ZX, Arivalan S, Humaidi M, Chua C, Seow KLG, Guo S, Tay MYF, Schlundt J, Ng LC, Aung KT. Int J Environ Res Public Health 17 E5606 (2020)
  28. bla CTX-M-152, a Novel Variant of CTX-M-group-25, Identified in a Study Performed on the Prevalence of Multidrug Resistance among Natural Inhabitants of River Yamuna, India. Azam M, Jan AT, Haq QM. Front Microbiol 7 176 (2016)
  29. Label-free fiber optic optrode for the detection of class C β-lactamases expressed by drug resistant bacteria. Zuppolini S, Quero G, Consales M, Diodato L, Vaiano P, Venturelli A, Santucci M, Spyrakis F, Costi MP, Giordano M, Cutolo A, Cusano A, Borriello A. Biomed Opt Express 8 5191-5205 (2017)
  30. Novel plasmid-encoded ceftazidime-hydrolyzing CTX-M-53 extended-spectrum beta-lactamase from Salmonella enterica serotypes Westhampton and Senftenberg. Doublet B, Granier SA, Robin F, Bonnet R, Fabre L, Brisabois A, Cloeckaert A, Weill FX. Antimicrob Agents Chemother 53 1944-1951 (2009)
  31. Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme. Latallo MJ, Cortina GA, Faham S, Nakamoto RK, Kasson PM. Chem Sci 8 6484-6492 (2017)
  32. Click Chemistry in Lead Optimization of Boronic Acids as β-Lactamase Inhibitors. Caselli E, Romagnoli C, Vahabi R, Taracila MA, Bonomo RA, Prati F. J Med Chem 58 5445-5458 (2015)
  33. Crystal structure of a preacylation complex of the β-lactamase inhibitor sulbactam bound to a sulfenamide bond-containing thiol-β-lactamase. Rodkey EA, Drawz SM, Sampson JM, Bethel CR, Bonomo RA, van den Akker F. J Am Chem Soc 134 16798-16804 (2012)
  34. Excess positional mutual information predicts both local and allosteric mutations affecting beta lactamase drug resistance. Cortina GA, Kasson PM. Bioinformatics 32 3420-3427 (2016)
  35. Unexpected enzyme TEM-126: role of mutation Asp179Glu. Delmas J, Robin F, Bittar F, Chanal C, Bonnet R. Antimicrob Agents Chemother 49 4280-4287 (2005)
  36. Antibacterial Properties of Metallocenyl-7-ADCA Derivatives and Structure in Complex with CTX-M β-Lactamase. Lewandowski EM, Szczupak Ł, Wong S, Skiba J, Guśpiel A, Solecka J, Vrček V, Kowalski K, Chen Y. Organometallics 36 1673-1676 (2017)
  37. Use of novel boronic acid transition state inhibitors to probe substrate affinity in SHV-type extended-spectrum beta-lactamases. Thomson JM, Prati F, Bethel CR, Bonomo RA. Antimicrob Agents Chemother 51 1577-1579 (2007)
  38. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution. Lewandowski EM, Lethbridge KG, Sanishvili R, Skiba J, Kowalski K, Chen Y. FEBS J 285 87-100 (2018)
  39. Computational investigation of the oxidative deboronation of boroglycine, H2N-CH2-B(OH)2, Using H2O and H2O2. Larkin JD, Markham GD, Milkevitch M, Brooks BR, Bock CW. J Phys Chem A 113 11028-11034 (2009)
  40. Extended-spectrum β-lactamase-producing E. coli septicemia among rectal carriers in the ICU. Liu M, Li M, Wu L, Song Q, Zhao D, Chen Z, Kang M, Xie Y. Medicine (Baltimore) 97 e12445 (2018)
  41. High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL. Yi H, Choi JM, Hwang J, Prati F, Cao TP, Lee SH, Kim HS. Sci Rep 6 36527 (2016)
  42. Can molecular dynamics and QM/MM solve the penicillin binding protein protonation puzzle? Hargis JC, White JK, Chen Y, Woodcock HL. J Chem Inf Model 54 1412-1424 (2014)
  43. Engineering of the catalytic site of xylose isomerase to enhance bioconversion of a non-preferential substrate. Patel DH, Cho EJ, Kim HM, Choi IS, Bae HJ. Protein Eng Des Sel 25 331-336 (2012)
  44. Influence of the α-Methoxy Group on the Reaction of Temocillin with Pseudomonas aeruginosa PBP3 and CTX-M-14 β-Lactamase. Sacco MD, Kroeck KG, Kemp MT, Zhang X, Andrews LD, Chen Y. Antimicrob Agents Chemother 64 e01473-19 (2019)
  45. Noncovalent complexes of an inactive mutant of CTX-M-9 with the substrate piperacillin and the corresponding product. Leyssene D, Delmas J, Robin F, Cougnoux A, Gibold L, Bonnet R. Antimicrob Agents Chemother 55 5660-5665 (2011)
  46. Structural and Biochemical Characterization of the Novel CTX-M-151 Extended-Spectrum β-Lactamase and Its Inhibition by Avibactam. Ghiglione B, Rodríguez MM, Brunetti F, Papp-Wallace KM, Yoshizumi A, Ishii Y, Bonomo RA, Gutkind G, Klinke S, Power P. Antimicrob Agents Chemother 65 e01757-20 (2021)
  47. Structures of FOX-4 Cephamycinase in Complex with Transition-State Analog Inhibitors. Lefurgy ST, Caselli E, Taracila MA, Malashkevich VN, Biju B, Papp-Wallace KM, Bonanno JB, Prati F, Almo SC, Bonomo RA. Biomolecules 10 E671 (2020)
  48. Probing the role of the conserved residue Glu166 in a class A β-lactamase using neutron and X-ray protein crystallography. Langan PS, Sullivan B, Weiss KL, Coates L. Acta Crystallogr D Struct Biol 76 118-123 (2020)
  49. Structure-based virtual screening to identify the beta-lactamase CTX-M-9 inhibitors: An in silico effort to overcome antibiotic resistance in E. coli. Davari K, Nowroozi J, Hosseini F, Sepahy AA, Mirzaie S. Comput Biol Chem 67 174-181 (2017)
  50. Structural basis to repurpose boron-based proteasome inhibitors Bortezomib and Ixazomib as β-lactamase inhibitors. Perbandt M, Werner N, Prester A, Rohde H, Aepfelbacher M, Hinrichs W, Betzel C. Sci Rep 12 5510 (2022)
  51. Structural insights into the broadened substrate profile of the extended-spectrum β-lactamase OXY-1-1 from Klebsiella oxytoca. Liang YH, Gao R, Su XD. Acta Crystallogr D Biol Crystallogr 68 1460-1467 (2012)
  52. Kinetic characterization of GES-22 β-lactamase harboring the M169L clinical mutation. Saral A, Leonard DA, Duzgun AO, Cicek AC, June CM, Sandalli C. J Antibiot (Tokyo) 69 858-862 (2016)
  53. Mutation of the conserved Asp-Asp pair impairs the structure, function, and inhibition of CTX-M Class A β-lactamase. Kemp MT, Nichols DA, Zhang X, Defrees K, Na I, Renslo AR, Chen Y. FEBS Lett 595 2981-2994 (2021)
  54. N-(Sulfamoylbenzoyl)-L-proline Derivatives as Potential Non-β-lactam ESBL Inhibitors: Structure-Based Lead Identification, Medicinal Chemistry and Synergistic Antibacterial Activities. Liu X, Dong S, Ma Y, Xu H, Zhao H, Gao Q. Med Chem 15 196-206 (2019)
  55. Non-catalytic-Region Mutations Conferring Transition of Class A β-Lactamases Into ESBLs. Cao TP, Yi H, Dhanasingh I, Ghosh S, Choi JM, Lee KH, Ryu S, Kim HS, Lee SH. Front Mol Biosci 7 598998 (2020)