1ys1 Citations

Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol.

Chem Biol 12 427-37 (2005)

Abstract

Synthetic chemists often exploit the high enantioselectivity of lipases to prepare pure enantiomers of primary alcohols, but the molecular basis for this enantioselectivity is unknown. The crystal structures of two phosphonate transition-state analogs bound to Burkholderia cepacia lipase reveal this molecular basis for a typical primary alcohol: 2-methyl-3-phenyl-1-propanol. The enantiomeric alcohol moieties adopt surprisingly similar orientations, with only subtle differences that make it difficult to predict how to alter enantioselectivity. These structures, along with a survey of previous structures of enzyme bound enantiomers, reveal that binding of enantiomers does not involve an exchange of two substituent positions as most researchers assumed. Instead, the enantiomers adopt mirror-image packing, where three of the four substituents at the stereocenter lie in similar positions. The fourth substituent, hydrogen, points in opposite directions.

Reviews - 1ys1 mentioned but not cited (1)

Articles - 1ys1 mentioned but not cited (7)

  1. How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes. Rauwerdink A, Kazlauskas RJ. ACS Catal 5 6153-6176 (2015)
  2. Additives enhancing the catalytic properties of lipase from Burkholderia cepacia immobilized on mixed-function-grafted mesoporous silica gel. Abaházi E, Boros Z, Poppe L. Molecules 19 9818-9837 (2014)
  3. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking. Juhl PB, Trodler P, Tyagi S, Pleiss J. BMC Struct Biol 9 39 (2009)
  4. Design, synthesis and pharmaco-toxicological assessment of 5-mercapto-1,2,4-triazole derivatives with antibacterial and antiproliferative activity. Mioc M, Soica C, Bercean V, Avram S, Balan-Porcarasu M, Coricovac D, Ghiulai R, Muntean D, Andrica F, Dehelean C, Spandidos DA, Tsatsakis AM, Kurunczi L. Int J Oncol 50 1175-1183 (2017)
  5. Lipases immobilization for effective synthesis of biodiesel starting from coffee waste oils. Ferrario V, Veny H, De Angelis E, Navarini L, Ebert C, Gardossi L. Biomolecules 3 514-534 (2013)
  6. Comparative Structural Analysis of Different Mycobacteriophage-Derived Mycolylarabinogalactan Esterases (Lysin B). Korany AH, Abouhmad A, Bakeer W, Essam T, Amin MA, Hatti-Kaul R, Dishisha T. Biomolecules 10 E45 (2019)
  7. AMWEst, a new thermostable and detergent-tolerant esterase retrieved from the Albian aquifer. Adjeroud M, Kecha M, Escuder-Rodríguez JJ, Becerra M, González-Siso MI. Appl Microbiol Biotechnol 108 114 (2024)


Reviews citing this publication (3)

  1. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. Front Bioeng Biotechnol 5 16 (2017)
  2. Properties, structure, and applications of microbial sterol esterases. Vaquero ME, Barriuso J, Martínez MJ, Prieto A. Appl Microbiol Biotechnol 100 2047-2061 (2016)
  3. Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. Godoy CA, Pardo-Tamayo JS, Barbosa O. Int J Mol Sci 23 9933 (2022)

Articles citing this publication (20)

  1. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. Martínez L. PLoS One 10 e0119264 (2015)
  2. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Barbe S, Lafaquière V, Guieysse D, Monsan P, Remaud-Siméon M, André I. Proteins 77 509-523 (2009)
  3. Different active-site loop orientation in serine hydrolases versus acyltransferases. Jiang Y, Morley KL, Schrag JD, Kazlauskas RJ. Chembiochem 12 768-776 (2011)
  4. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase. Trodler P, Schmid RD, Pleiss J. BMC Struct Biol 9 38 (2009)
  5. Enantiomeric propanolamines as selective N-methyl-D-aspartate 2B receptor antagonists. Tahirovic YA, Geballe M, Gruszecka-Kowalik E, Myers SJ, Lyuboslavsky P, Le P, French A, Irier H, Choi WB, Easterling K, Yuan H, Wilson LJ, Kotloski R, McNamara JO, Dingledine R, Liotta DC, Traynelis SF, Snyder JP. J Med Chem 51 5506-5521 (2008)
  6. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach. Guieysse D, Cortés J, Puech-Guenot S, Barbe S, Lafaquière V, Monsan P, Siméon T, André I, Remaud-Siméon M. Chembiochem 9 1308-1317 (2008)
  7. The active site of an enzyme can host both enantiomers of a racemic ligand simultaneously. Mentel M, Blankenfeldt W, Breinbauer R. Angew Chem Int Ed Engl 48 9084-9087 (2009)
  8. Influence of delta-functional groups on the enantiorecognition of secondary alcohols by Candida antarctica lipase B. Nyhlén J, Martín-Matute B, Sandström AG, Bocola M, Bäckvall JE. Chembiochem 9 1968-1974 (2008)
  9. A mixed molecular modeling-robotics approach to investigate lipase large molecular motions. Barbe S, Cortés J, Siméon T, Monsan P, Remaud-Siméon M, André I. Proteins 79 2517-2529 (2011)
  10. Dependence of the enantioselectivity on reversion of layer directions in cholamide inclusion compounds. Aburaya K, Hisaki I, Tohnai N, Miyata M. Chem Commun (Camb) 4257-4259 (2007)
  11. Molecular basis for the stereoselective ammoniolysis of N-alkyl aziridine-2-carboxylates catalyzed by Candida antarctica lipase B. Park JH, Ha HJ, Lee WK, Généreux-Vincent T, Kazlauskas RJ. Chembiochem 10 2213-2222 (2009)
  12. Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate. Mathpati AC, Badgujar KC, Bhanage BM. Enzyme Microb Technol 84 1-10 (2016)
  13. A network model predicts the intensity of residue-protein thermal coupling. Censoni L, Dos Santos Muniz H, Martínez L. Bioinformatics 33 2106-2113 (2017)
  14. Mirror-Image Packing Provides a Molecular Basis for the Nanomolar Equipotency of Enantiomers of an Experimental Herbicide. Bisson C, Britton KL, Sedelnikova SE, Rodgers HF, Eadsforth TC, Viner RC, Hawkes TR, Baker PJ, Rice DW. Angew Chem Int Ed Engl 55 13485-13489 (2016)
  15. Molecular basis for competitive solvation of the Burkholderia cepacia lipase by sorbitol and urea. Oliveira IP, Martínez L. Phys Chem Chem Phys 18 21797-21808 (2016)
  16. Quantitative structure-activity relationship correlation between molecular structure and the Rayleigh enantiomeric enrichment factor. Jammer S, Rizkov D, Gelman F, Lev O. Environ Sci Process Impacts 17 1370-1376 (2015)
  17. Structural Elucidation of the Mechanism of Molecular Recognition in Chiral Crystalline Sponges. Zhang SY, Fairen-Jimenez D, Zaworotko MJ. Angew Chem Int Ed Engl 59 17600-17606 (2020)
  18. Conformational plasticity of the calcium-binding pocket in the Burkholderia glumae lipase: remodeling induced by mutation of calcium coordinating residues. Papaleo E, Invernizzi G. Biopolymers 95 117-126 (2011)
  19. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces. de Oliveira IP, Jara GE, Martínez L. Phys Chem Chem Phys 19 31499-31507 (2017)
  20. Computational study of the lipase-mediated desymmetrisation of 2-substituted-propane-1,3-diamines. García-Urdiales E, Busto E, Ríos-Lombardía N, Gotor-Fernández V, Gotor V. Chembiochem 10 2875-2883 (2009)