1z3s Citations

Structure of the angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition.

Structure 13 825-32 (2005)
Cited: 42 times
EuropePMC logo PMID: 15893672

Abstract

The angiopoietins comprise a small class of secreted glycoproteins that play crucial roles in the maturation and maintenance of the mammalian vascular and lymphatic systems. They exert their effects through a member of the tyrosine kinase receptor family, Tie2. Angiopoietin/Tie2 signaling is unique among tyrosine kinase receptor-ligand systems in that distinct angiopoietin ligands, although highly homologous, can function as agonists or antagonists in a context-dependent manner. In an effort to understand this molecular dichotomy, we have crystallized and determined the 2.4 A crystal structure of the Angiopoietin-2 (Ang2) receptor binding region. The structure reveals a fibrinogen fold with a unique C-terminal P domain. Conservation analysis and structure-based mutagenesis identify a groove on the Ang2 molecular surface that mediates receptor recognition.

Articles - 1z3s mentioned but not cited (5)

  1. Structural basis for angiopoietin-1-mediated signaling initiation. Yu X, Seegar TC, Dalton AC, Tzvetkova-Robev D, Goldgur Y, Rajashankar KR, Nikolov DB, Barton WA. Proc Natl Acad Sci U S A 110 7205-7210 (2013)
  2. Structures of Angptl3 and Angptl4, modulators of triglyceride levels and coronary artery disease. Biterova E, Esmaeeli M, Alanen HI, Saaranen M, Ruddock LW. Sci Rep 8 6752 (2018)
  3. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration. Koenig P, Lee CV, Sanowar S, Wu P, Stinson J, Harris SF, Fuh G. J Biol Chem 290 21773-21786 (2015)
  4. Targeting the Tie2-αvβ3 integrin axis with bi-specific reagents for the inhibition of angiogenesis. Shlamkovich T, Aharon L, Koslawsky D, Einav Y, Papo N. BMC Biol 16 92 (2018)
  5. Variations of VEGFR2 Chemical Space: Stimulator and Inhibitory Peptides. Lungu CN, Mangalagiu II, Gurau G, Mehedinti MC. Int J Mol Sci 25 7787 (2024)


Reviews citing this publication (11)

  1. The role of monocytes in angiogenesis and atherosclerosis. Jaipersad AS, Lip GY, Silverman S, Shantsila E. J Am Coll Cardiol 63 1-11 (2014)
  2. Dysregulation of the angiopoietin-Tie-2 axis in sepsis and ARDS. Parikh SM. Virulence 4 517-524 (2013)
  3. The Angiopoietin-Tie2 Signaling Axis in Systemic Inflammation. Parikh SM. J Am Soc Nephrol 28 1973-1982 (2017)
  4. Correlating structure and function during the evolution of fibrinogen-related domains. Doolittle RF, McNamara K, Lin K. Protein Sci 21 1808-1823 (2012)
  5. The opening act: vasculogenesis and the origins of circulation. Jin SW, Patterson C. Arterioscler Thromb Vasc Biol 29 623-629 (2009)
  6. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Zuliani-Alvarez L, Midwood KS. Adv Wound Care (New Rochelle) 4 273-285 (2015)
  7. Molecular control of angiopoietin signalling. Singh H, Tahir TA, Alawo DO, Issa E, Brindle NP. Biochem Soc Trans 39 1592-1596 (2011)
  8. Tie2 and Eph receptor tyrosine kinase activation and signaling. Barton WA, Dalton AC, Seegar TC, Himanen JP, Nikolov DB. Cold Spring Harb Perspect Biol 6 a009142 (2014)
  9. Update Overview of the Role of Angiopoietins in Lung Cancer. Tsakogiannis D, Nikolakopoulou A, Zagouri F, Stratakos G, Syrigos K, Zografos E, Koulouris N, Bletsa G. Medicina (Kaunas) 57 1191 (2021)
  10. Corneal Lymphangiogenesis: Current Pathophysiological Understandings and Its Functional Role in Ocular Surface Disease. Lee HK, Lee SM, Lee DI. Int J Mol Sci 22 11628 (2021)
  11. Role of endotoxemia in causing renal dysfunction in cirrhosis. Peng JL, Techasatian W, Hato T, Liangpunsakul S. J Investig Med 68 26-29 (2020)

Articles citing this publication (26)

  1. Signaling and functions of angiopoietin-1 in vascular protection. Brindle NP, Saharinen P, Alitalo K. Circ Res 98 1014-1023 (2006)
  2. Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Seegar TC, Eller B, Tzvetkova-Robev D, Kolev MV, Henderson SC, Nikolov DB, Barton WA. Mol Cell 37 643-655 (2010)
  3. Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Barton WA, Tzvetkova-Robev D, Miranda EP, Kolev MV, Rajashankar KR, Himanen JP, Nikolov DB. Nat Struct Mol Biol 13 524-532 (2006)
  4. Effects of angiopoietins-1 and -2 on the receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Hansen TM, Singh H, Tahir TA, Brindle NP. Cell Signal 22 527-532 (2010)
  5. Methylglyoxal-induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Bento CF, Fernandes R, Matafome P, Sena C, Seiça R, Pereira P. Exp Physiol 95 955-970 (2010)
  6. Vascular disruption and the role of angiogenic proteins after spinal cord injury. Ng MT, Stammers AT, Kwon BK. Transl Stroke Res 2 474-491 (2011)
  7. Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. Whidby J, Mateu G, Scarborough H, Demeler B, Grakoui A, Marcotrigiano J. J Virol 83 11078-11089 (2009)
  8. Kinetic analysis of the binding of monomeric and dimeric ephrins to Eph receptors: correlation to function in a growth cone collapse assay. Pabbisetty KB, Yue X, Li C, Himanen JP, Zhou R, Nikolov DB, Hu L. Protein Sci 16 355-361 (2007)
  9. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation. Singla N, Erdjument-Bromage H, Himanen JP, Muir TW, Nikolov DB. Chem Biol 18 361-371 (2011)
  10. Induction of angiopoietin-2 after spinal cord injury. Durham-Lee JC, Wu Y, Mokkapati VU, Paulucci-Holthauzen AA, Nesic O. Neuroscience 202 454-464 (2012)
  11. Angiopoietins bind thrombomodulin and inhibit its function as a thrombin cofactor. Daly C, Qian X, Castanaro C, Pasnikowski E, Jiang X, Thomson BR, Quaggin SE, Papadopoulos N, Wei Y, Rudge JS, Thurston G, Yancopoulos GD, Davis S. Sci Rep 8 505 (2018)
  12. The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition. Thomsen T, Moeller JB, Schlosser A, Sorensen GL, Moestrup SK, Palaniyar N, Wallis R, Mollenhauer J, Holmskov U. J Biol Chem 285 1229-1238 (2010)
  13. Activated protein C binds directly to Tie2: possible beneficial effects on endothelial barrier function. Minhas N, Xue M, Jackson CJ. Cell Mol Life Sci 74 1895-1906 (2017)
  14. Dimerization of Tie2 mediated by its membrane-proximal FNIII domains. Moore JO, Lemmon MA, Ferguson KM. Proc Natl Acad Sci U S A 114 4382-4387 (2017)
  15. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Vu D, Di Sanza C, Caille D, de Moerloose P, Scheib H, Meda P, Neerman-Arbez M. Hum Mol Genet 14 3271-3280 (2005)
  16. Computational selection of RNA aptamer against angiopoietin-2 and experimental evaluation. Hu WP, Kumar JV, Huang CJ, Chen WY. Biomed Res Int 2015 658712 (2015)
  17. Gln-362 of angiopoietin-2 mediates migration of tumor and endothelial cells through association with α5β1 integrin. Lee HS, Oh SJ, Lee KH, Lee YS, Ko E, Kim KE, Kim HC, Kim S, Song PH, Kim YI, Kim C, Han S. J Biol Chem 289 31330-31340 (2014)
  18. Elevated expression of Tie1 is accompanied by acquisition of cancer stemness properties in colorectal cancer. Torigata M, Yamakawa D, Takakura N. Cancer Med 6 1378-1388 (2017)
  19. GingisKHAN™ protease cleavage allows a high-throughput antibody to Fab conversion enabling direct functional assessment during lead identification of human monoclonal and bispecific IgG1 antibodies. Moelleken J, Endesfelder M, Gassner C, Lingke S, Tomaschek S, Tyshchuk O, Lorenz S, Reiff U, Mølhøj M. MAbs 9 1076-1087 (2017)
  20. Angiopoietins Modulate Survival, Migration, and the Components of the Ang-Tie2 Pathway of Chronic Lymphocytic Leukaemia (CLL) Cells In Vitro. Aguirre Palma LM, Flamme H, Gerke I, Kreuzer KA. Cancer Microenviron 9 13-26 (2016)
  21. Residue-level determinants of angiopoietin-2 interactions with its receptor Tie2. Bakhman A, Rabinovich E, Shlamkovich T, Papo N, Kosloff M. Proteins 87 185-197 (2019)
  22. Utilizing combinatorial engineering to develop Tie2 targeting antagonistic angiopoetin-2 ligands as candidates for anti-angiogenesis therapy. Shlamkovich T, Aharon L, Barton WA, Papo N. Oncotarget 8 33571-33585 (2017)
  23. High Plasma Angiopoietin-2 Levels Predict the Need to Initiate Dialysis within Two Years in Patients with Chronic Kidney Disease. Szymczak A, Kusztal M, Gołębiowski T, Letachowicz K, Goździk A, Kościelska-Kasprzak K, Tukiendorf A, Krajewska M. Int J Mol Sci 24 10036 (2023)
  24. Expression of Tie2 (angiopoietin receptor) on the monocyte subpopulations from ischemic stroke patients: Histological and flowcytometric studies. Alrafiah AR. Histol Histopathol 38 1257-1267 (2023)
  25. Letter Letter to the Editor Regarding "Virtual Screening of Natural and Synthetic Ligands Against Diabetic Retinopathy by Molecular Interaction With Angiopoietin-2". Ng TK. Asia Pac J Ophthalmol (Phila) 3 395-396 (2014)
  26. Literature watch. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Rockson SG. Lymphat Res Biol 3 263-267 (2005)