1zc4 Citations

Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase.

EMBO J 24 2064-74 (2005)
Cited: 97 times
EuropePMC logo PMID: 15920473

Abstract

The Sec6/8 complex, also known as the exocyst complex, is an octameric protein complex that has been implicated in tethering of secretory vesicles to specific regions on the plasma membrane. Two subunits of the Sec6/8 complex, Exo84 and Sec5, have recently been shown to be effector targets for active Ral GTPases. However, the mechanism by which Ral proteins regulate the Sec6/8 activities remains unclear. Here, we present the crystal structure of the Ral-binding domain of Exo84 in complex with active RalA. The structure reveals that the Exo84 Ral-binding domain adopts a pleckstrin homology domain fold, and that RalA interacts with Exo84 via an extended interface that includes both switch regions. Key residues of Exo84 and RalA were found that determine the specificity of the complex interactions; these interactions were confirmed by mutagenesis binding studies. Structural and biochemical data show that Exo84 and Sec5 competitively bind to active RalA. Taken together, these results further strengthen the proposed role of RalA-regulated assembly of the Sec6/8 complex.

Articles - 1zc4 mentioned but not cited (4)

  1. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT. EMBO J 24 2064-2074 (2005)
  2. Discovery and characterization of small molecules that target the GTPase Ral. Yan C, Liu D, Li L, Wempe MF, Guin S, Khanna M, Meier J, Hoffman B, Owens C, Wysoczynski CL, Nitz MD, Knabe WE, Ahmed M, Brautigan DL, Paschal BM, Schwartz MA, Jones DN, Ross D, Meroueh SO, Theodorescu D. Nature 515 443-447 (2014)
  3. Cryo-EM structure of the exocyst complex. Mei K, Li Y, Wang S, Shao G, Wang J, Ding Y, Luo G, Yue P, Liu JJ, Wang X, Dong MQ, Wang HW, Guo W. Nat Struct Mol Biol 25 139-146 (2018)
  4. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies. Bueno A, Morilla I, Diez D, Moya-Garcia AA, Lozano J, Ranea JA. Oncotarget 7 75810-75826 (2016)


Reviews citing this publication (26)

  1. The autophagosome: origins unknown, biogenesis complex. Lamb CA, Yoshimori T, Tooze SA. Nat Rev Mol Cell Biol 14 759-774 (2013)
  2. Tethering factors as organizers of intracellular vesicular traffic. Yu IM, Hughson FM. Annu Rev Cell Dev Biol 26 137-156 (2010)
  3. Exorcising the exocyst complex. Heider MR, Munson M. Traffic 13 898-907 (2012)
  4. The exocyst defrocked, a framework of rods revealed. Munson M, Novick P. Nat Struct Mol Biol 13 577-581 (2006)
  5. The Exocyst at a Glance. Wu B, Guo W. J Cell Sci 128 2957-2964 (2015)
  6. The ghost in the machine: small GTPases as spatial regulators of exocytosis. Wu H, Rossi G, Brennwald P. Trends Cell Biol 18 397-404 (2008)
  7. Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. Scheffzek K, Welti S. FEBS Lett 586 2662-2673 (2012)
  8. The exocyst complex in exocytosis and cell migration. Liu J, Guo W. Protoplasma 249 587-597 (2012)
  9. Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. Gentry LR, Martin TD, Reiner DJ, Der CJ. Biochim Biophys Acta 1843 2976-2988 (2014)
  10. RAL GTPases: Biology and Potential as Therapeutic Targets in Cancer. Yan C, Theodorescu D. Pharmacol Rev 70 1-11 (2018)
  11. Ral: mediator of membrane trafficking. van Dam EM, Robinson PJ. Int J Biochem Cell Biol 38 1841-1847 (2006)
  12. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Mott HR, Owen D. Crit Rev Biochem Mol Biol 50 85-133 (2015)
  13. Survey of the year 2005 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 19 478-534 (2006)
  14. The molecular basis of induction and formation of tunneling nanotubes. Kimura S, Hase K, Ohno H. Cell Tissue Res 352 67-76 (2013)
  15. Regulation of membrane trafficking in polarized epithelial cells. Fölsch H. Curr Opin Cell Biol 20 208-213 (2008)
  16. Ral GTPases: crucial mediators of exocytosis and tumourigenesis. Shirakawa R, Horiuchi H. J Biochem 157 285-299 (2015)
  17. Exposing the Elusive Exocyst Structure. Lepore DM, Martínez-Núñez L, Munson M. Trends Biochem Sci 43 714-725 (2018)
  18. The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Synek L, Sekereš J, Zárský V. Front Plant Sci 4 543 (2014)
  19. Cell polarity during motile processes: keeping on track with the exocyst complex. Hertzog M, Chavrier P. Biochem J 433 403-409 (2011)
  20. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Polgar N, Fogelgren B. Cold Spring Harb Perspect Biol 10 a031401 (2018)
  21. Polarized Exocytosis. Zeng J, Feng S, Wu B, Guo W. Cold Spring Harb Perspect Biol 9 a027870 (2017)
  22. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Crit Rev Biochem Mol Biol 53 130-156 (2018)
  23. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity. Fölsch H. Cell Logist 5 e1074331 (2015)
  24. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. Tanaka T, Goto K, Iino M. J Cell Physiol 232 939-957 (2017)
  25. ELAVL1 Role in Cell Fusion and Tunneling Membrane Nanotube Formations with Implication to Treat Glioma Heterogeneity. Filippova N, Nabors LB. Cancers (Basel) 12 E3069 (2020)
  26. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. Cells 11 1645 (2022)

Articles citing this publication (67)

  1. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett CC, Yeaman C, Ohno H. Nat Cell Biol 11 1427-1432 (2009)
  2. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, Camonis JH, Yeaman C, Levine B, White MA. Cell 144 253-267 (2011)
  3. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM. Nat Struct Mol Biol 12 1094-1100 (2005)
  4. Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. Zhu G, Chen J, Liu J, Brunzelle JS, Huang B, Wakeham N, Terzyan S, Li X, Rao Z, Li G, Zhang XC. EMBO J 26 3484-3493 (2007)
  5. The anti-inflammatory TIPE2 is an inhibitor of the oncogenic Ras. Gus-Brautbar Y, Johnson D, Zhang L, Sun H, Wang P, Zhang S, Zhang L, Chen YH. Mol Cell 45 610-618 (2012)
  6. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. Kenniston JA, Lemmon MA. EMBO J 29 3054-3067 (2010)
  7. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs. Cascone I, Selimoglu R, Ozdemir C, Del Nery E, Yeaman C, White M, Camonis J. EMBO J 27 2375-2387 (2008)
  8. Ral-regulated interaction between Sec5 and paxillin targets Exocyst to focal complexes during cell migration. Spiczka KS, Yeaman C. J Cell Sci 121 2880-2891 (2008)
  9. Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Yamashita M, Kurokawa K, Sato Y, Yamagata A, Mimura H, Yoshikawa A, Sato K, Nakano A, Fukai S. Nat Struct Mol Biol 17 180-186 (2010)
  10. The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response. Simicek M, Lievens S, Laga M, Guzenko D, Aushev VN, Kalev P, Baietti MF, Strelkov SV, Gevaert K, Tavernier J, Sablina AA. Nat Cell Biol 15 1220-1230 (2013)
  11. The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. Moore BA, Robinson HH, Xu Z. J Mol Biol 371 410-421 (2007)
  12. Crystal structure of the S.cerevisiae exocyst component Exo70p. Hamburger ZA, Hamburger AE, West AP, Weis WI. J Mol Biol 356 9-21 (2006)
  13. Remote homology between Munc13 MUN domain and vesicle tethering complexes. Pei J, Ma C, Rizo J, Grishin NV. J Mol Biol 391 509-517 (2009)
  14. Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis and RalA to inhibit anchorage-independent growth. Falsetti SC, Wang DA, Peng H, Carrico D, Cox AD, Der CJ, Hamilton AD, Sebti SM. Mol Cell Biol 27 8003-8014 (2007)
  15. Identification of Rab11 as a small GTPase binding protein for the Evi5 oncogene. Westlake CJ, Junutula JR, Simon GC, Pilli M, Prekeris R, Scheller RH, Jackson PK, Eldridge AG. Proc Natl Acad Sci U S A 104 1236-1241 (2007)
  16. Exocyst function is regulated by effector phosphorylation. Chen XW, Leto D, Xiao J, Goss J, Wang Q, Shavit JA, Xiong T, Yu G, Ginsburg D, Toomre D, Xu Z, Saltiel AR. Nat Cell Biol 13 580-588 (2011)
  17. Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex. Nichols CD, Casanova JE. Curr Biol 20 1316-1320 (2010)
  18. A generic program for multistate protein design. Leaver-Fay A, Jacak R, Stranges PB, Kuhlman B. PLoS One 6 e20937 (2011)
  19. Exit of intracellular Porphyromonas gingivalis from gingival epithelial cells is mediated by endocytic recycling pathway. Takeuchi H, Furuta N, Morisaki I, Amano A. Cell Microbiol 13 677-691 (2011)
  20. Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2. Bunney TD, Opaleye O, Roe SM, Vatter P, Baxendale RW, Walliser C, Everett KL, Josephs MB, Christow C, Rodrigues-Lima F, Gierschik P, Pearl LH, Katan M. Mol Cell 34 223-233 (2009)
  21. The In Vivo Architecture of the Exocyst Provides Structural Basis for Exocytosis. Picco A, Irastorza-Azcarate I, Specht T, Böke D, Pazos I, Rivier-Cordey AS, Devos DP, Kaksonen M, Gallego O. Cell 168 400-412.e18 (2017)
  22. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic. Pathak R, Delorme-Walker VD, Howell MC, Anselmo AN, White MA, Bokoch GM, Dermardirossian C. Dev Cell 23 397-411 (2012)
  23. Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst. Teodoro RO, Pekkurnaz G, Nasser A, Higashi-Kovtun ME, Balakireva M, McLachlan IG, Camonis J, Schwarz TL. EMBO J 32 2039-2055 (2013)
  24. Molecular characterization of Rab11-FIP3 binding to ARF GTPases. Schonteich E, Pilli M, Simon GC, Matern HT, Junutula JR, Sentz D, Holmes RK, Prekeris R. Eur J Cell Biol 86 417-431 (2007)
  25. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans. Frische EW, Pellis-van Berkel W, van Haaften G, Cuppen E, Plasterk RH, Tijsterman M, Bos JL, Zwartkruis FJ. EMBO J 26 5083-5092 (2007)
  26. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. Lovering AL, Capeness MJ, Lambert C, Hobley L, Sockett RE. mBio 2 e00163-11 (2011)
  27. Structure-function study of the N-terminal domain of exocyst subunit Sec3. Baek K, Knödler A, Lee SH, Zhang X, Orlando K, Zhang J, Foskett TJ, Guo W, Dominguez R. J Biol Chem 285 10424-10433 (2010)
  28. Using HHsearch to tackle proteins of unknown function: A pilot study with PH domains. Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J, Levine TP. Traffic 17 1214-1226 (2016)
  29. Mechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis. Simon GC, Prekeris R. Biochem Soc Trans 36 391-394 (2008)
  30. Regulation of platelet dense granule secretion by the Ral GTPase-exocyst pathway. Kawato M, Shirakawa R, Kondo H, Higashi T, Ikeda T, Okawa K, Fukai S, Nureki O, Kita T, Horiuchi H. J Biol Chem 283 166-174 (2008)
  31. The RalA GTPase is a central regulator of insulin exocytosis from pancreatic islet beta cells. Lopez JA, Kwan EP, Xie L, He Y, James DE, Gaisano HY. J Biol Chem 283 17939-17945 (2008)
  32. The RalB-RLIP76 complex reveals a novel mode of ral-effector interaction. Fenwick RB, Campbell LJ, Rajasekar K, Prasannan S, Nietlispach D, Camonis J, Owen D, Mott HR. Structure 18 985-995 (2010)
  33. Conservation of helical bundle structure between the exocyst subunits. Croteau NJ, Furgason ML, Devos D, Munson M. PLoS One 4 e4443 (2009)
  34. Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain. Xu Q, Bateman A, Finn RD, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Carlton D, Chen C, Chiu HJ, Chiu M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, McMullan D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. J Mol Biol 396 31-46 (2010)
  35. Charge effects in the selection of NPF motifs by the EH domain of EHD1. Henry GD, Corrigan DJ, Dineen JV, Baleja JD. Biochemistry 49 3381-3392 (2010)
  36. RalA and RalB function as the critical GTP sensors for GTP-dependent exocytosis. Li G, Han L, Chou TC, Fujita Y, Arunachalam L, Xu A, Wong A, Chiew SK, Wan Q, Wang L, Sugita S. J Neurosci 27 190-202 (2007)
  37. Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking. Uhm M, Bazuine M, Zhao P, Chiang SH, Xiong T, Karunanithi S, Chang L, Saltiel AR. Sci Signal 10 eaah5085 (2017)
  38. RalA and RalB differentially regulate development of epithelial tight junctions. Hazelett CC, Sheff D, Yeaman C. Mol Biol Cell 22 4787-4800 (2011)
  39. GEF-H1: orchestrating the interplay between cytoskeleton and vesicle trafficking. Pathak R, Dermardirossian C. Small GTPases 4 174-179 (2013)
  40. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion. Xie L, Zhu D, Kang Y, Liang T, He Y, Gaisano HY. PLoS One 8 e67561 (2013)
  41. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes. Xu Q, Traag BA, Willemse J, McMullan D, Miller MD, Elsliger MA, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Carlton D, Chen C, Chiu HJ, Chruszcz M, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Ernst D, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Minor W, Mommaas AM, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Wang S, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA, van Wezel GP. J Biol Chem 284 25268-25279 (2009)
  42. Integrative structure and function of the yeast exocyst complex. Ganesan SJ, Feyder MJ, Chemmama IE, Fang F, Rout MP, Chait BT, Shi Y, Munson M, Sali A. Protein Sci 29 1486-1501 (2020)
  43. Ral GTPase and the exocyst regulate autophagy in a tissue-specific manner. Tracy K, Velentzas PD, Baehrecke EH. EMBO Rep 17 110-121 (2016)
  44. Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning. Shin H, Kaplan REW, Duong T, Fakieh R, Reiner DJ. Cell Rep 24 2669-2681.e5 (2018)
  45. Sec5 and Exo84 mediate distinct aspects of RalA-dependent cell polarization. Hazelett CC, Yeaman C. PLoS One 7 e39602 (2012)
  46. RalA GTPase tethers insulin granules to L- and R-type calcium channels through binding α2 δ-1 subunit. Xie L, Kang Y, Liang T, Dolai S, Xie H, Parsaud L, Lopez JA, He Y, Chidambaram S, Lam PP, James DE, Sugita S, Gaisano HY. Traffic 14 428-439 (2013)
  47. RalA and RalB proteins are ubiquitinated GTPases, and ubiquitinated RalA increases lipid raft exposure at the plasma membrane. Neyraud V, Aushev VN, Hatzoglou A, Meunier B, Cascone I, Camonis J. J Biol Chem 287 29397-29405 (2012)
  48. Mutations in the exocyst component EXOC2 cause severe defects in human brain development. Van Bergen NJ, Ahmed SM, Collins F, Cowley M, Vetro A, Dale RC, Hock DH, de Caestecker C, Menezes M, Massey S, Ho G, Pisano T, Glover S, Gusman J, Stroud DA, Dinger M, Guerrini R, Macara IG, Christodoulou J. J Exp Med 217 e20192040 (2020)
  49. RILP suppresses invasion of breast cancer cells by modulating the activity of RalA through interaction with RalGDS. Wang Z, Zhou Y, Hu X, Chen W, Lin X, Sun L, Xu X, Hong W, Wang T. Cell Death Dis 6 e1923 (2015)
  50. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling. Pawar A, Meier JA, Dasgupta A, Diwanji N, Deshpande N, Saxena K, Buwa N, Inchanalkar S, Schwartz MA, Balasubramanian N. Cell Signal 28 1225-1236 (2016)
  51. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport. Guichard A, Jain P, Moayeri M, Schwartz R, Chin S, Zhu L, Cruz-Moreno B, Liu JZ, Aguilar B, Hollands A, Leppla SH, Nizet V, Bier E. PLoS Pathog 13 e1006603 (2017)
  52. Crystal structure of Sec10, a subunit of the exocyst complex. Chen J, Yamagata A, Kubota K, Sato Y, Goto-Ito S, Fukai S. Sci Rep 7 40909 (2017)
  53. Structure and function of RLIP76 (RalBP1): an intersection point between Ras and Rho signalling. Mott HR, Owen D. Biochem Soc Trans 42 52-58 (2014)
  54. The cell polarity proteins Boi1p and Boi2p stimulate vesicle fusion at the plasma membrane of yeast cells. Kustermann J, Wu Y, Rieger L, Dedden D, Phan T, Walther P, Dünkler A, Johnsson N. J Cell Sci 130 2996-3008 (2017)
  55. Inhibition of Ral GTPases Using a Stapled Peptide Approach. Thomas JC, Cooper JM, Clayton NS, Wang C, White MA, Abell C, Owen D, Mott HR. J Biol Chem 291 18310-18325 (2016)
  56. VWF maturation and release are controlled by 2 regulators of Weibel-Palade body biogenesis: exocyst and BLOC-2. Sharda AV, Barr AM, Harrison JA, Wilkie AR, Fang C, Mendez LM, Ghiran IC, Italiano JE, Flaumenhaft R. Blood 136 2824-2837 (2020)
  57. Developmental fidelity is imposed by genetically separable RalGEF activities that mediate opposing signals. Shin H, Braendle C, Monahan KB, Kaplan REW, Zand TP, Mote FS, Peters EC, Reiner DJ. PLoS Genet 15 e1008056 (2019)
  58. Inhibition of Tunneling Nanotubes between Cancer Cell and the Endothelium Alters the Metastatic Phenotype. Dash C, Saha T, Sengupta S, Jang HL. Int J Mol Sci 22 6161 (2021)
  59. An old dog learns new tricks: novel functions of the exocyst complex in polarized epithelia in animals. Kang RS, Fölsch H. F1000 Biol Rep 1 83 (2009)
  60. The exocyst complex is an essential component of the mammalian constitutive secretory pathway. Pereira C, Stalder D, Anderson GSF, Shun-Shion AS, Houghton J, Antrobus R, Chapman MA, Fazakerley DJ, Gershlick DC. J Cell Biol 222 e202205137 (2023)
  61. Affinity maturation of the RLIP76 Ral binding domain to inform the design of stapled peptides targeting the Ral GTPases. Hurd CA, Brear P, Revell J, Ross S, Mott HR, Owen D. J Biol Chem 296 100101 (2021)
  62. 1H, 13C and 15N resonance assignments for the active conformation of the small G protein RalB in complex with its effector RLIP76. Fenwick RB, Prasannan S, Campbell LJ, Evetts KA, Nietlispach D, Owen D, Mott HR. Biomol NMR Assign 2 179-182 (2008)
  63. A novel nonsense variant in EXOC8 underlies a neurodevelopmental disorder. Ullah A, Krishin J, Haider N, Aurangzeb B, Abdullah, Suleman S, Ahmad W, Hansen T, Basit S. Neurogenetics 23 203-212 (2022)
  64. Allosteric regulation of exocyst: Discrete activation of tethering by two spatial signals. Miller BK, Rossi G, Hudson S, Cully D, Baker RW, Brennwald P. J Cell Biol 222 e202206108 (2023)
  65. Modeling the structural implications of an alternatively spliced Exoc3l2, a paralog of the tunneling nanotube-forming M-Sec. O'Callaghan P, Zarb Y, Noborn F, Kreuger J. PLoS One 13 e0201557 (2018)
  66. Regulation of cargo exocytosis by a Reps1-Ralbp1-RalA module. Wang S, Chen X, Crisman L, Dou X, Winborn CS, Wan C, Puscher H, Yin Q, Kennedy MJ, Shen J. Sci Adv 9 eade2540 (2023)
  67. NMR resonance assignments for the active and inactive conformations of the small G protein RalA. Shafiq A, Campbell LJ, Owen D, Mott HR. Biomol NMR Assign 14 87-91 (2020)