1zop Citations

The role of the divalent cation in the structure of the I domain from the CD11a/CD18 integrin.

Structure 4 931-42 (1996)
Related entries: 1zon, 1zoo

Cited: 91 times
EuropePMC logo PMID: 8805579

Abstract

Background

The integrin family of cell-surface receptors mediates a wide variety of cell-cell and cell-extracellular matrix interactions. Integrin-ligand interactions are invariably dependent on the presence of divalent cations, and a subset of integrins contain a approximately 200 amino acid inserted (I) domain that is important for ligand binding activity and contains a single divalent cation binding site. Many integrins are believed to respond to stimuli by undergoing a conformational change that increases their affinity for ligand, and there is a clear difference between two crystal structures of the CD11b I domain with different divalent cations (magnesium and manganese) bound. In addition to the different bound cation, a 'ligand mimetic' crystal lattice interaction in the CD11b I domain structure with bound magnesium has led to the interpretation that the different CD11b I domain structures represent different affinity states of I domains. The influence of the bound cation on I domain structure and function remains incompletely understood, however. The crystal structure of the CD11a I domain bound to manganese is known. We therefore set out to determine whether this structure changes when the metal ion is altered or removed.

Results

We report here the crystal structures of the CD11a I domain determined in the absence of bound metal ion and with bound magnesium ion. No major structural rearrangements are observed in the metal-binding site of the CD11a I domain in the absence or presence of bound manganese ion. The structures of the CD11a I domain with magnesium or manganese bound are extremely similar.

Conclusion

The conformation of the CD11a I domain is not altered by changes in metal ion binding. The cation-dependence of ligand binding thus indicates that the metal ion is either involved in direct interaction with ligand or required to promote a favorable quaternary arrangement of the integrin.

Articles - 1zop mentioned but not cited (8)

  1. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin alphaL I domains with high affinity and antagonist activity in vivo. Shimaoka M, Lu C, Palframan RT, von Andrian UH, McCormack A, Takagi J, Springer TA. Proc Natl Acad Sci U S A 98 6009-6014 (2001)
  2. Druggability Assessment of Allosteric Proteins by Dynamics Simulations in the Presence of Probe Molecules. Bakan A, Nevins N, Lakdawala AS, Bahar I. J Chem Theory Comput 8 2435-2447 (2012)
  3. An unusual allosteric mobility of the C-terminal helix of a high-affinity alphaL integrin I domain variant bound to ICAM-5. Zhang H, Zhang H, Casasnovas JM, Jin M, Liu JH, Gahmberg CG, Springer TA, Wang JH. Mol Cell 31 432-437 (2008)
  4. Efalizumab binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via steric hindrance. Li S, Wang H, Peng B, Zhang M, Zhang D, Hou S, Guo Y, Ding J. Proc Natl Acad Sci U S A 106 4349-4354 (2009)
  5. The connection between metal ion affinity and ligand affinity in integrin I domains. Vorup-Jensen T, Waldron TT, Astrof N, Shimaoka M, Springer TA. Biochim Biophys Acta 1774 1148-1155 (2007)
  6. A pivotal role for a conserved bulky residue at the α1-helix of the αI integrin domain in ligand binding. Wang Z, Thinn AMM, Zhu J. J Biol Chem 292 20756-20768 (2017)
  7. Structure and dynamics of the integrin LFA-1 I-domain in the inactive state underlie its inside-out/outside-in signaling and allosteric mechanisms. Kukic P, Alvin Leung HT, Bemporad F, Aprile FA, Kumita JR, De Simone A, Camilloni C, Vendruscolo M. Structure 23 745-753 (2015)
  8. Structural modifications of ICAM-1 cyclic peptides to improve the activity to inhibit heterotypic adhesion of T cells. Iskandarsyah, Tejo BA, Tambunan US, Verkhivker G, Siahaan TJ. Chem Biol Drug Des 72 27-33 (2008)


Reviews citing this publication (24)

  1. Integrins: bidirectional, allosteric signaling machines. Hynes RO. Cell 110 673-687 (2002)
  2. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Arkin MR, Wells JA. Nat Rev Drug Discov 3 301-317 (2004)
  3. Conformational regulation of integrin structure and function. Shimaoka M, Takagi J, Springer TA. Annu Rev Biophys Biomol Struct 31 485-516 (2002)
  4. Integrin structure, allostery, and bidirectional signaling. Arnaout MA, Mahalingam B, Xiong JP. Annu Rev Cell Dev Biol 21 381-410 (2005)
  5. Integrins as therapeutic targets: lessons and opportunities. Cox D, Brennan M, Moran N. Nat Rev Drug Discov 9 804-820 (2010)
  6. Rolling cell adhesion. McEver RP, Zhu C. Annu Rev Cell Dev Biol 26 363-396 (2010)
  7. Integrin activation and structural rearrangement. Takagi J, Springer TA. Immunol Rev 186 141-163 (2002)
  8. The molecular structure of cell adhesion molecules. Chothia C, Jones EY. Annu Rev Biochem 66 823-862 (1997)
  9. Are changes in integrin affinity and conformation overemphasized? Bazzoni G, Hemler ME. Trends Biochem Sci 23 30-34 (1998)
  10. Regulation of integrin activity and signalling. Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Grönholm M. Biochim Biophys Acta 1790 431-444 (2009)
  11. The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Tan SM. Biosci Rep 32 241-269 (2012)
  12. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Wang J, Springer TA. Immunol Rev 163 197-215 (1998)
  13. Perspectives series: cell adhesion in vascular biology. Integrin signaling in vascular biology. Shattil SJ, Ginsberg MH. J Clin Invest 100 1-5 (1997)
  14. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Anderson ME, Siahaan TJ. Peptides 24 487-501 (2003)
  15. The structure of cell-adhesion molecules. Humphries MJ, Newham P. Trends Cell Biol 8 78-83 (1998)
  16. Cell adhesion in vascular biology. New insights into integrin-ligand interaction. Loftus JC, Liddington RC. J Clin Invest 99 2302-2306 (1997)
  17. Structural and functional aspects of calcium binding in extracellular matrix proteins. Maurer P, Hohenester E. Matrix Biol 15 569-80; discussion 581 (1997)
  18. Emerging paradigms of integrin ligand binding and activation. Sugimori T, Griffith DL, Arnaout MA. Kidney Int 51 1454-1462 (1997)
  19. Where the outside meets the inside: integrins as activators and targets of signal transduction cascades. Brown E, Hogg N. Immunol Lett 54 189-193 (1996)
  20. Engineering and design of ligand-induced conformational change in proteins. Mizoue LS, Chazin WJ. Curr Opin Struct Biol 12 459-463 (2002)
  21. Ligand binding and affinity modulation of integrins. Tozer EC, Hughes PE, Loftus JC. Biochem Cell Biol 74 785-798 (1996)
  22. Implications of atomic-resolution structures for cell adhesion. Leahy DJ. Annu Rev Cell Dev Biol 13 363-393 (1997)
  23. Integrin-collagen complex: a metal-glutamate handshake. Bella J, Berman HM. Structure 8 R121-6 (2000)
  24. A proposed cascade of vascular events leading to granulomatous amoebic encephalitis. Baig AM, Khan NA. Microb Pathog 88 48-51 (2015)

Articles citing this publication (59)

  1. Structural basis of collagen recognition by integrin alpha2beta1. Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Cell 101 47-56 (2000)
  2. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, Springer TA. Cell 112 99-111 (2003)
  3. Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. Kallen J, Welzenbach K, Ramage P, Geyl D, Kriwacki R, Legge G, Cottens S, Weitz-Schmidt G, Hommel U. J Mol Biol 292 1-9 (1999)
  4. NMR and mutagenesis evidence for an I domain allosteric site that regulates lymphocyte function-associated antigen 1 ligand binding. Huth JR, Olejniczak ET, Mendoza R, Liang H, Harris EA, Lupher ML, Wilson AE, Fesik SW, Staunton DE. Proc Natl Acad Sci U S A 97 5231-5236 (2000)
  5. Importance of force linkage in mechanochemistry of adhesion receptors. Astrof NS, Salas A, Shimaoka M, Chen J, Springer TA. Biochemistry 45 15020-15028 (2006)
  6. An isolated, surface-expressed I domain of the integrin alphaLbeta2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide bond. Lu C, Shimaoka M, Ferzly M, Oxvig C, Takagi J, Springer TA. Proc Natl Acad Sci U S A 98 2387-2392 (2001)
  7. Conformational changes in tertiary structure near the ligand binding site of an integrin I domain. Oxvig C, Lu C, Springer TA. Proc Natl Acad Sci U S A 96 2215-2220 (1999)
  8. Two functional states of the CD11b A-domain: correlations with key features of two Mn2+-complexed crystal structures. Li R, Rieu P, Griffith DL, Scott D, Arnaout MA. J Cell Biol 143 1523-1534 (1998)
  9. Conversion between three conformational states of integrin I domains with a C-terminal pull spring studied with molecular dynamics. Jin M, Andricioaei I, Springer TA. Structure 12 2137-2147 (2004)
  10. Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding. Huizinga EG, Martijn van der Plas R, Kroon J, Sixma JJ, Gros P. Structure 5 1147-1156 (1997)
  11. The subunit interfaces of weakly associated homodimeric proteins. Dey S, Pal A, Chakrabarti P, Janin J. J Mol Biol 398 146-160 (2010)
  12. Affinity modulation of platelet integrin alphaIIbbeta3 by beta3-endonexin, a selective binding partner of the beta3 integrin cytoplasmic tail. Kashiwagi H, Schwartz MA, Eigenthaler M, Davis KA, Ginsberg MH, Shattil SJ. J Cell Biol 137 1433-1443 (1997)
  13. Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Park EJ, Peixoto A, Imai Y, Goodarzi A, Cheng G, Carman CV, von Andrian UH, Shimaoka M. Blood 115 1572-1581 (2010)
  14. Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, alpha(1)beta(1) integrin and Staphylococcus aureus cna MSCRAMM. Rich RL, Deivanayagam CC, Owens RT, Carson M, Höök A, Moore D, Symersky J, Yang VW, Narayana SV, Höök M. J Biol Chem 274 24906-24913 (1999)
  15. Structure and allosteric regulation of the alpha X beta 2 integrin I domain. Vorup-Jensen T, Ostermeier C, Shimaoka M, Hommel U, Springer TA. Proc Natl Acad Sci U S A 100 1873-1878 (2003)
  16. Structural and functional studies with antibodies to the integrin beta 2 subunit. A model for the I-like domain. Huang C, Zang Q, Takagi J, Springer TA. J Biol Chem 275 21514-21524 (2000)
  17. NMR solution structure of the inserted domain of human leukocyte function associated antigen-1. Legge GB, Kriwacki RW, Chung J, Hommel U, Ramage P, Case DA, Dyson HJ, Wright PE. J Mol Biol 295 1251-1264 (2000)
  18. Cation binding to the integrin CD11b I domain and activation model assessment. Baldwin ET, Sarver RW, Bryant GL, Curry KA, Fairbanks MB, Finzel BC, Garlick RL, Heinrikson RL, Horton NC, Kelley LL, Mildner AM, Moon JB, Mott JE, Mutchler VT, Tomich CS, Watenpaugh KD, Wiley VH. Structure 6 923-935 (1998)
  19. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion. Mazur A, Holthoff E, Vadali S, Kelly T, Post SR. PLoS One 11 e0150287 (2016)
  20. Activation-induced conformational changes in the I domain region of lymphocyte function-associated antigen 1. Ma Q, Shimaoka M, Lu C, Jing H, Carman CV, Springer TA. J Biol Chem 277 10638-10641 (2002)
  21. Identification of the binding site for fibrinogen recognition peptide gamma 383-395 within the alpha(M)I-domain of integrin alpha(M)beta2. Yakubenko VP, Solovjov DA, Zhang L, Yee VC, Plow EF, Ugarova TP. J Biol Chem 276 13995-14003 (2001)
  22. The lymphocyte function-associated antigen 1 I domain is a transient binding module for intercellular adhesion molecule (ICAM)-1 and ICAM-3 in hydrodynamic flow. Knorr R, Dustin ML. J Exp Med 186 719-730 (1997)
  23. Cellular activation of leukocyte function-associated antigen-1 and its affinity are regulated at the I domain allosteric site. Lupher ML, Harris EA, Beals CR, Sui LM, Liddington RC, Staunton DE. J Immunol 167 1431-1439 (2001)
  24. In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc. Shearier ER, Bowen PK, He W, Drelich A, Drelich J, Goldman J, Zhao F. ACS Biomater Sci Eng 2 634-642 (2016)
  25. Molecular basis for leukocyte integrin alpha(E)beta(7) adhesion to epithelial (E)-cadherin. Taraszka KS, Higgins JM, Tan K, Mandelbrot DA, Wang JH, Brenner MB. J Exp Med 191 1555-1567 (2000)
  26. Isoflurane binds and stabilizes a closed conformation of the leukocyte function-associated antigen-1. Yuki K, Bu W, Xi J, Sen M, Shimaoka M, Eckenhoff RG. FASEB J 26 4408-4417 (2012)
  27. Leukocyte integrin αLβ2 headpiece structures: The αI domain, the pocket for the internal ligand, and concerted movements of its loops. Sen M, Springer TA. Proc Natl Acad Sci U S A 113 2940-2945 (2016)
  28. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems. Zhang H, Astrof NS, Liu JH, Wang JH, Shimaoka M. FASEB J 23 2735-2740 (2009)
  29. Multimerization of the Toxoplasma gondii MIC2 integrin-like A-domain is required for binding to heparin and human cells. Harper JM, Hoff EF, Carruthers VB. Mol Biochem Parasitol 134 201-212 (2004)
  30. Crystal structure of the alpha1beta1 integrin I-domain: insights into integrin I-domain function. Nolte M, Pepinsky RB, Venyaminov SYu, Koteliansky V, Gotwals PJ, Karpusas M. FEBS Lett 452 379-385 (1999)
  31. How LFA-1 binds to different ligands. Binnerts ME, van Kooyk Y. Immunol Today 20 240-245 (1999)
  32. Identification of the C3b binding site in a recombinant vWF-A domain of complement factor B by surface-enhanced laser desorption-ionisation affinity mass spectrometry and homology modelling: implications for the activity of factor B. Hinshelwood J, Spencer DI, Edwards YJ, Perkins SJ. J Mol Biol 294 587-599 (1999)
  33. Stable coordination of the inhibitory Ca2+ ion at the metal ion-dependent adhesion site in integrin CD11b/CD18 by an antibody-derived ligand aspartate: implications for integrin regulation and structure-based drug design. Mahalingam B, Ajroud K, Alonso JL, Anand S, Adair BD, Horenstein AL, Malavasi F, Xiong JP, Arnaout MA. J Immunol 187 6393-6401 (2011)
  34. Crystal structure of the alpha1beta1 integrin I domain in complex with an antibody Fab fragment. Karpusas M, Ferrant J, Weinreb PH, Carmillo A, Taylor FR, Garber EA. J Mol Biol 327 1031-1041 (2003)
  35. Structural basis and kinetics of force-induced conformational changes of an αA domain-containing integrin. Xiang X, Lee CY, Li T, Chen W, Lou J, Zhu C. PLoS One 6 e27946 (2011)
  36. The integrin I domain: crystals, metals and related artefacts. Liddington R, Bankston L. Structure 6 937-938 (1998)
  37. Comparative normal mode analysis of LFA-1 integrin I-domains. Gaillard T, Martin E, San Sebastian E, Cossío FP, Lopez X, Dejaegere A, Stote RH. J Mol Biol 374 231-249 (2007)
  38. Propofol shares the binding site with isoflurane and sevoflurane on leukocyte function-associated antigen-1. Yuki K, Bu W, Xi J, Shimaoka M, Eckenhoff R. Anesth Analg 117 803-811 (2013)
  39. Characterization of binding properties of ICAM-1 peptides to LFA-1: inhibitors of T-cell adhesion. Anderson ME, Tejo BA, Yakovleva T, Siahaan TJ. Chem Biol Drug Des 68 20-28 (2006)
  40. Conformational stability analyses of alpha subunit I domain of LFA-1 and Mac-1. Mao D, Lü S, Li N, Zhang Y, Long M. PLoS One 6 e24188 (2011)
  41. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures. Guterres H, Park SJ, Jiang W, Im W. J Chem Inf Model 61 535-546 (2021)
  42. Dynamic structural changes are observed upon collagen and metal ion binding to the integrin α1 I domain. Weinreb PH, Li S, Gao SX, Liu T, Pepinsky RB, Caravella JA, Lee JH, Woods VL. J Biol Chem 287 32897-32912 (2012)
  43. Metal-dependent conformational changes in a recombinant vWF-A domain from human factor B: a solution study by circular dichroism, fourier transform infrared and (1)H NMR spectroscopy. Hinshelwood J, Perkins SJ. J Mol Biol 298 135-147 (2000)
  44. PilB from Streptococcus sanguinis is a bimodular type IV pilin with a direct role in adhesion. Raynaud C, Sheppard D, Berry JL, Gurung I, Pelicic V. Proc Natl Acad Sci U S A 118 e2102092118 (2021)
  45. Model of the alphaLbeta2 integrin I-domain/ICAM-1 DI interface suggests that subtle changes in loop orientation determine ligand specificity. Legge GB, Morris GM, Sanner MF, Takada Y, Olson AJ, Grynszpan F. Proteins 48 151-160 (2002)
  46. The structure of integrin α1I domain in complex with a collagen-mimetic peptide. Chin YK, Headey SJ, Mohanty B, Patil R, McEwan PA, Swarbrick JD, Mulhern TD, Emsley J, Simpson JS, Scanlon MJ. J Biol Chem 288 36796-36809 (2013)
  47. Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1- and α2-I domains. Brown KL, Banerjee S, Feigley A, Abe H, Blackwell TS, Pozzi A, Hudson BG, Zent R. Sci Rep 8 2916 (2018)
  48. Utilization of I-domain of LFA-1 to Target Drug and Marker Molecules to Leukocytes. Manikwar P, Tejo BA, Shinogle H, Moore DS, Zimmerman T, Blanco F, Siahaan TJ. Theranostics 1 277-289 (2011)
  49. CD11a polymorphisms regulate TH2 cell homing and TH2-related disease. Knight JM, Lee SH, Roberts L, Smith CW, Weiss ST, Kheradmand F, Corry DB. J Allergy Clin Immunol 133 189-97.e1-8 (2014)
  50. Expression, Purification and Characterization of a Recombinant Plasmodium Vivax Thrombospondin Related Adhesive Protein (PvTRAP). Ogunbanwo JA, Pendyala PR, Malhotra P, Chauhan VS. Int J Biomed Sci 2 251-259 (2006)
  51. Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble. Audagnotto M, Czechtizky W, De Maria L, Käck H, Papoian G, Tornberg L, Tyrchan C, Ulander J. Sci Rep 12 10018 (2022)
  52. NMR characterization of the conformational fluctuations of the human lymphocyte function-associated antigen-1 I-domain. Leung HT, Kukic P, Camilloni C, Bemporad F, De Simone A, Aprile FA, Kumita JR, Vendruscolo M. Protein Sci 23 1596-1606 (2014)
  53. Role of ligands in the activation of LFA-1. Buckley CD, Ferguson ED, Littler AJ, Bossy D, Simmons DL. Eur J Immunol 27 957-962 (1997)
  54. Stereoselectivity of isoflurane in adhesion molecule leukocyte function-associated antigen-1. Bu W, Pereira LM, Eckenhoff RG, Yuki K. PLoS One 9 e96649 (2014)
  55. Different cation binding to the I domains of alpha1 and alpha2 integrins: implication of the binding site structure. Obsil T, Hofbauerová K, Amler E, Teisinger J. FEBS Lett 457 311-315 (1999)
  56. SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2. Izumi H, Nafie LA, Dukor RK. ACS Omega 5 30556-30567 (2020)
  57. Ca2+-based allosteric switches and shape shifting in RGLG1 VWA domain. Wang Q, Chen Y, Li S, Yang W, Sun L, Jang M, Wu X, Wang Q, Chen L, Wu Y. Comput Struct Biotechnol J 18 821-833 (2020)
  58. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin. Lu B, Zhang B, Qi W, Zhu Y, Zhao Y, Zhou N, Sun R, Bao J, Wu C. Acta Biochim Biophys Sin (Shanghai) 46 923-934 (2014)
  59. Effects from metal ion in tumor endothelial marker 8 and anthrax protective antigen: BioLayer Interferometry experiment and molecular dynamics simulation study. Jia Z, Ackroyd C, Han T, Agrawal V, Liu Y, Christensen K, Dominy B. J Comput Chem 38 1183-1190 (2017)


Related citations provided by authors (1)

  1. Crystal Structure of the I-Domain from the Cd11A/Cd18 (Lfa-1, Alpha L Beta 2) Integrin. Qu A, Leahy DJ Proc. Natl. Acad. Sci. U.S.A. 92 10277- (1995)