2a6q Citations

Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin.

Mol Cell 19 497-509 (2005)
Related entries: 2a6r, 2a6s

Cited: 139 times
EuropePMC logo PMID: 16109374

Abstract

The eubacterial chromosome encodes various addiction modules that control global levels of translation through RNA degradation. Crystal structures of the Escherichia coli YefM2 (antitoxin)-YoeB (toxin) complex and the free YoeB toxin have been determined. The structure of the heterotrimeric complex reveals an asymmetric disorder-to-order recognition strategy, in which one C terminus of the YefM homodimer exclusively interacts with an atypical microbial ribonuclease (RNase) fold of YoeB. Comparison with the YefM-free YoeB structure indicates a conformational rearrangement of the RNase catalytic site of YoeB, induced by interaction with YefM. Complementary biochemical experiments demonstrate that the YoeB toxin has an in vitro RNase activity that preferentially cleaves at the 3' end of purine ribonucleotides.

Reviews - 2a6q mentioned but not cited (5)

Articles - 2a6q mentioned but not cited (10)

  1. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. Brown BL, Grigoriu S, Kim Y, Arruda JM, Davenport A, Wood TK, Peti W, Page R. PLoS Pathog 5 e1000706 (2009)
  2. The yefM-yoeB toxin-antitoxin systems of Escherichia coli and Streptococcus pneumoniae: functional and structural correlation. Nieto C, Cherny I, Khoo SK, de Lacoba MG, Chan WT, Yeo CC, Gazit E, Espinosa M. J Bacteriol 189 1266-1278 (2007)
  3. Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM. J Biol Chem 289 1060-1070 (2014)
  4. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C, Su M, Rothenbacher FP, Abashidze M, Liu M, Hurley JM, Xiao R, Acton T, Inouye M, Montelione GT, Woychik NA, Hunt JF. Structure 18 996-1010 (2010)
  5. Comparative proteomics identifies the cell-associated lethality of M. tuberculosis RelBE-like toxin-antitoxin complexes. Miallau L, Jain P, Arbing MA, Cascio D, Phan T, Ahn CJ, Chan S, Chernishof I, Maxson M, Chiang J, Jacobs WR, Eisenberg DS. Structure 21 627-637 (2013)
  6. The higBA Toxin-Antitoxin Module From the Opportunistic Pathogen Acinetobacter baumannii - Regulation, Activity, and Evolution. Armalytė J, Jurėnas D, Krasauskas R, Čepauskas A, Sužiedėlienė E. Front Microbiol 9 732 (2018)
  7. Distinct oligomeric structures of the YoeB-YefM complex provide insights into the conditional cooperativity of type II toxin-antitoxin system. Xue L, Yue J, Ke J, Khan MH, Wen W, Sun B, Zhu Z, Niu L. Nucleic Acids Res 48 10527-10541 (2020)
  8. Identifying a Molecular Mechanism That Imparts Species-Specific Toxicity to YoeB Toxins. Ames JR, McGillick J, Murphy T, Reddem E, Bourne CR. Front Microbiol 11 959 (2020)
  9. Insights into the Neutralization and DNA Binding of Toxin-Antitoxin System ParESO-CopASO by Structure-Function Studies. Zhou J, Du XJ, Liu Y, Gao ZQ, Geng Z, Dong YH, Zhang H. Microorganisms 9 2506 (2021)
  10. The two paralogous copies of the YoeB-YefM toxin-antitoxin module in Staphylococcus aureus differ in DNA binding and recognition patterns. Xue L, Khan MH, Yue J, Zhu Z, Niu L. J Biol Chem 298 101457 (2022)


Reviews citing this publication (25)

  1. Toxin-antitoxin systems in bacteria and archaea. Yamaguchi Y, Park JH, Inouye M. Annu Rev Genet 45 61-79 (2011)
  2. Toxin-antitoxin systems in bacterial growth arrest and persistence. Page R, Peti W. Nat Chem Biol 12 208-214 (2016)
  3. Bacterial persistence and toxin-antitoxin loci. Gerdes K, Maisonneuve E. Annu Rev Microbiol 66 103-123 (2012)
  4. Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Yamaguchi Y, Inouye M. Nat Rev Microbiol 9 779-790 (2011)
  5. Toxin-antitoxin modules as bacterial metabolic stress managers. Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R. Trends Biochem Sci 30 672-679 (2005)
  6. Toxins-antitoxins: diversity, evolution and function. Hayes F, Van Melderen L. Crit Rev Biochem Mol Biol 46 386-408 (2011)
  7. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. Schuster CF, Bertram R. FEMS Microbiol Lett 340 73-85 (2013)
  8. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Sala A, Bordes P, Genevaux P. Toxins (Basel) 6 1002-1020 (2014)
  9. Maturation and degradation of RNA in bacteria. Condon C. Curr Opin Microbiol 10 271-278 (2007)
  10. Die for the community: an overview of programmed cell death in bacteria. Allocati N, Masulli M, Di Ilio C, De Laurenzi V. Cell Death Dis 6 e1609 (2015)
  11. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin-antitoxin partners. Blower TR, Salmond GP, Luisi BF. Curr Opin Struct Biol 21 109-118 (2011)
  12. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Hayes F, Kędzierska B. Toxins (Basel) 6 337-358 (2014)
  13. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. Yang QE, Walsh TR. FEMS Microbiol Rev 41 343-353 (2017)
  14. Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways. Muthuramalingam M, White JC, Bourne CR. Toxins (Basel) 8 E214 (2016)
  15. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents. Park SJ, Son WS, Lee BJ. Biochim Biophys Acta 1834 1155-1167 (2013)
  16. Shutdown decay of mRNA. Condon C. Mol Microbiol 61 573-583 (2006)
  17. Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Chan WT, Moreno-Córdoba I, Yeo CC, Espinosa M. Microbiol Mol Biol Rev 76 773-791 (2012)
  18. The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology. Inouye M. J Cell Physiol 209 670-676 (2006)
  19. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Masuda H, Inouye M. Toxins (Basel) 9 E140 (2017)
  20. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Uzan M, Miller ES. Virol J 7 360 (2010)
  21. The TB Structural Genomics Consortium: a decade of progress. Chim N, Habel JE, Johnston JM, Krieger I, Miallau L, Sankaranarayanan R, Morse RP, Bruning J, Swanson S, Kim H, Kim CY, Li H, Bulloch EM, Payne RJ, Manos-Turvey A, Hung LW, Baker EN, Lott JS, James MN, Terwilliger TC, Eisenberg DS, Sacchettini JC, Goulding CW. Tuberculosis (Edinb) 91 155-172 (2011)
  22. The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems. Jurėnas D, Van Melderen L. Front Genet 11 262 (2020)
  23. Cut to the chase--Regulating translation through RNA cleavage. Sofos N, Xu K, Dedic E, Brodersen DE. Biochimie 114 10-17 (2015)
  24. Substrate specificity of bacterial endoribonuclease toxins. Han Y, Lee EJ. BMB Rep 53 611-621 (2020)
  25. Bacterial Ribosome Rescue Systems. Kurita D, Himeno H. Microorganisms 10 372 (2022)

Articles citing this publication (99)

  1. Bacterial persistence by RNA endonucleases. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. Proc Natl Acad Sci U S A 108 13206-13211 (2011)
  2. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. Jørgensen MG, Pandey DP, Jaskolska M, Gerdes K. J Bacteriol 191 1191-1199 (2009)
  3. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD, Charlier D, van Nuland NA, Loris R. Cell 142 101-111 (2010)
  4. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Neubauer C, Gao YG, Andersen KR, Dunham CM, Kelley AC, Hentschel J, Gerdes K, Ramakrishnan V, Brodersen DE. Cell 139 1084-1095 (2009)
  5. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Christensen-Dalsgaard M, Jørgensen MG, Gerdes K. Mol Microbiol 75 333-348 (2010)
  6. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L. J Bacteriol 189 6101-6108 (2007)
  7. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Overgaard M, Borch J, Jørgensen MG, Gerdes K. Mol Microbiol 69 841-857 (2008)
  8. Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Christensen-Dalsgaard M, Gerdes K. Mol Microbiol 62 397-411 (2006)
  9. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. Yamaguchi Y, Park JH, Inouye M. J Biol Chem 284 28746-28753 (2009)
  10. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Tan Q, Awano N, Inouye M. Mol Microbiol 79 109-118 (2011)
  11. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. Hurley JM, Woychik NA. J Biol Chem 284 18605-18613 (2009)
  12. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. Garcia-Pino A, Christensen-Dalsgaard M, Wyns L, Yarmolinsky M, Magnuson RD, Gerdes K, Loris R. J Biol Chem 283 30821-30827 (2008)
  13. Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. Madl T, Van Melderen L, Mine N, Respondek M, Oberer M, Keller W, Khatai L, Zangger K. J Mol Biol 364 170-185 (2006)
  14. The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. Zhang Y, Inouye M. J Biol Chem 284 6627-6638 (2009)
  15. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. Overgaard M, Borch J, Gerdes K. J Mol Biol 394 183-196 (2009)
  16. prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli. Schmidt O, Schuenemann VJ, Hand NJ, Silhavy TJ, Martin J, Lupas AN, Djuranovic S. J Mol Biol 372 894-905 (2007)
  17. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. Zhu L, Inoue K, Yoshizumi S, Kobayashi H, Zhang Y, Ouyang M, Kato F, Sugai M, Inouye M. J Bacteriol 191 3248-3255 (2009)
  18. Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. Motiejūnaite R, Armalyte J, Markuckas A, Suziedeliene E. FEMS Microbiol Lett 268 112-119 (2007)
  19. Structural mechanism of transcriptional autorepression of the Escherichia coli RelB/RelE antitoxin/toxin module. Li GY, Zhang Y, Inouye M, Ikura M. J Mol Biol 380 107-119 (2008)
  20. A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. Dalton KM, Crosson S. Biochemistry 49 2205-2215 (2010)
  21. Toxin-antitoxin regulation: bimodal interaction of YefM-YoeB with paired DNA palindromes exerts transcriptional autorepression. Kedzierska B, Lian LY, Hayes F. Nucleic Acids Res 35 325-339 (2007)
  22. Inhibitory mechanism of Escherichia coli RelE-RelB toxin-antitoxin module involves a helix displacement near an mRNA interferase active site. Li GY, Zhang Y, Inouye M, Ikura M. J Biol Chem 284 14628-14636 (2009)
  23. Regulation of the Escherichia coli HipBA toxin-antitoxin system by proteolysis. Hansen S, Vulić M, Min J, Yen TJ, Schumacher MA, Brennan RG, Lewis K. PLoS One 7 e39185 (2012)
  24. Characterization of YafO, an Escherichia coli toxin. Zhang Y, Yamaguchi Y, Inouye M. J Biol Chem 284 25522-25531 (2009)
  25. Structure of the Escherichia coli antitoxin MqsA (YgiT/b3021) bound to its gene promoter reveals extensive domain rearrangements and the specificity of transcriptional regulation. Brown BL, Wood TK, Peti W, Page R. J Biol Chem 286 2285-2296 (2011)
  26. RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Zhang Y, Inouye M. Mol Microbiol 79 1418-1429 (2011)
  27. Structural basis for type VI secretion effector recognition by a cognate immunity protein. Li M, Le Trong I, Carl MA, Larson ET, Chou S, De Leon JA, Dove SL, Stenkamp RE, Mougous JD. PLoS Pathog 8 e1002613 (2012)
  28. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg²⁺ ion in the active site and a putative RNA-binding site. Min AB, Miallau L, Sawaya MR, Habel J, Cascio D, Eisenberg D. Protein Sci 21 1754-1767 (2012)
  29. The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Oberer M, Zangger K, Gruber K, Keller W. Protein Sci 16 1676-1688 (2007)
  30. Molecular structure and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus. Heaton BE, Herrou J, Blackwell AE, Wysocki VH, Crosson S. J Biol Chem 287 12098-12110 (2012)
  31. PemK toxin of Bacillus anthracis is a ribonuclease: an insight into its active site, structure, and function. Agarwal S, Mishra NK, Bhatnagar S, Bhatnagar R. J Biol Chem 285 7254-7270 (2010)
  32. Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms. Christensen-Dalsgaard M, Gerdes K. Nucleic Acids Res 36 6472-6481 (2008)
  33. Amino acid starvation and colicin D treatment induce A-site mRNA cleavage in Escherichia coli. Garza-Sánchez F, Gin JG, Hayes CS. J Mol Biol 378 505-519 (2008)
  34. Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Short FL, Pei XY, Blower TR, Ong SL, Fineran PC, Luisi BF, Salmond GP. Proc Natl Acad Sci U S A 110 E241-9 (2013)
  35. What Is the Link between Stringent Response, Endoribonuclease Encoding Type II Toxin-Antitoxin Systems and Persistence? Ramisetty BC, Ghosh D, Roy Chowdhury M, Santhosh RS. Front Microbiol 7 1882 (2016)
  36. Staphylococcus aureus YoeB homologues inhibit translation initiation. Yoshizumi S, Zhang Y, Yamaguchi Y, Chen L, Kreiswirth BN, Inouye M. J Bacteriol 191 5868-5872 (2009)
  37. YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Feng S, Chen Y, Kamada K, Wang H, Tang K, Wang M, Gao YG. Nucleic Acids Res 41 9549-9556 (2013)
  38. Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli. Ramisetty BC, Santhosh RS. FEMS Microbiol Lett 363 fnv238 (2016)
  39. Interactions of Kid-Kis toxin-antitoxin complexes with the parD operator-promoter region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid-Kis oligomers. Monti MC, Hernández-Arriaga AM, Kamphuis MB, López-Villarejo J, Heck AJ, Boelens R, Díaz-Orejas R, van den Heuvel RH. Nucleic Acids Res 35 1737-1749 (2007)
  40. Role of vapBC toxin-antitoxin loci in the thermal stress response of Sulfolobus solfataricus. Cooper CR, Daugherty AJ, Tachdjian S, Blum PH, Kelly RM. Biochem Soc Trans 37 123-126 (2009)
  41. Crystal structure of Mycobacterium tuberculosis YefM antitoxin reveals that it is not an intrinsically unstructured protein. Kumar P, Issac B, Dodson EJ, Turkenburg JP, Mande SC. J Mol Biol 383 482-493 (2008)
  42. Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ. Ruangprasert A, Maehigashi T, Miles SJ, Giridharan N, Liu JX, Dunham CM. J Biol Chem 289 20559-20569 (2014)
  43. Characterization of Escherichia coli dinJ-yafQ toxin-antitoxin system using insights from mutagenesis data. Armalyte J, Jurenaite M, Beinoraviciūte G, Teiserskas J, Suziedeliene E. J Bacteriol 194 1523-1532 (2012)
  44. Txe, an endoribonuclease of the enterococcal Axe-Txe toxin-antitoxin system, cleaves mRNA and inhibits protein synthesis. Halvorsen EM, Williams JJ, Bhimani AJ, Billings EA, Hergenrother PJ. Microbiology (Reading) 157 387-397 (2011)
  45. The relBE2Spn toxin-antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates. Nieto C, Sadowy E, de la Campa AG, Hryniewicz W, Espinosa M. PLoS One 5 e11289 (2010)
  46. Bacterial toxin RelE: a highly efficient ribonuclease with exquisite substrate specificity using atypical catalytic residues. Griffin MA, Davis JH, Strobel SA. Biochemistry 52 8633-8642 (2013)
  47. Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30. McGavin MJ, Arsic B, Nickerson NN. Front Cell Infect Microbiol 2 48 (2012)
  48. An intrinsically disordered entropic switch determines allostery in Phd-Doc regulation. Garcia-Pino A, De Gieter S, Talavera A, De Greve H, Efremov RG, Loris R. Nat Chem Biol 12 490-496 (2016)
  49. Crystal structure of the antitoxin-toxin protein complex RelB-RelE from Methanococcus jannaschii. Francuski D, Saenger W. J Mol Biol 393 898-908 (2009)
  50. Ribosome-dependent Vibrio cholerae mRNAse HigB2 is regulated by a β-strand sliding mechanism. Hadži S, Garcia-Pino A, Haesaerts S, Jurenas D, Gerdes K, Lah J, Loris R. Nucleic Acids Res 45 4972-4983 (2017)
  51. Identification of the first functional toxin-antitoxin system in Streptomyces. Sevillano L, Díaz M, Yamaguchi Y, Inouye M, Santamaría RI. PLoS One 7 e32977 (2012)
  52. Mechanism of endonuclease cleavage by the HigB toxin. Schureck MA, Repack A, Miles SJ, Marquez J, Dunham CM. Nucleic Acids Res 44 7944-7953 (2016)
  53. Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. Bailey SE, Hayes F. J Bacteriol 191 762-772 (2009)
  54. Molecular basis of ribosome recognition and mRNA hydrolysis by the E. coli YafQ toxin. Maehigashi T, Ruangprasert A, Miles SJ, Dunham CM. Nucleic Acids Res 43 8002-8012 (2015)
  55. Identification and characterization of a HEPN-MNT family type II toxin-antitoxin in Shewanella oneidensis. Yao J, Guo Y, Zeng Z, Liu X, Shi F, Wang X. Microb Biotechnol 8 961-973 (2015)
  56. Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Łobocka M. Res Microbiol 168 194-207 (2017)
  57. Mechanism of regulation and neutralization of the AtaR-AtaT toxin-antitoxin system. Jurėnas D, Van Melderen L, Garcia-Pino A. Nat Chem Biol 15 285-294 (2019)
  58. Defining the mRNA recognition signature of a bacterial toxin protein. Schureck MA, Dunkle JA, Maehigashi T, Miles SJ, Dunham CM. Proc Natl Acad Sci U S A 112 13862-13867 (2015)
  59. Functional identification of toxin-antitoxin molecules from Helicobacter pylori 26695 and structural elucidation of the molecular interactions. Han KD, Matsuura A, Ahn HC, Kwon AR, Min YH, Park HJ, Won HS, Park SJ, Kim DY, Lee BJ. J Biol Chem 286 4842-4853 (2011)
  60. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. Dam B, Dam S, Blom J, Liesack W. PLoS One 8 e74767 (2013)
  61. Relaxed cleavage specificity within the RelE toxin family. Goeders N, Drèze PL, Van Melderen L. J Bacteriol 195 2541-2549 (2013)
  62. Solution structure and membrane binding of the toxin fst of the par addiction module. Göbl C, Kosol S, Stockner T, Rückert HM, Zangger K. Biochemistry 49 6567-6575 (2010)
  63. Structural and functional characterization of Escherichia coli toxin-antitoxin complex DinJ-YafQ. Liang Y, Gao Z, Wang F, Zhang Y, Dong Y, Liu Q. J Biol Chem 289 21191-21202 (2014)
  64. Identification and characterization of the chromosomal yefM-yoeB toxin-antitoxin system of Streptococcus suis. Zheng C, Xu J, Ren S, Li J, Xia M, Chen H, Bei W. Sci Rep 5 13125 (2015)
  65. YoeB toxin is activated during thermal stress. Janssen BD, Garza-Sánchez F, Hayes CS. Microbiologyopen 4 682-697 (2015)
  66. Toxin-antitoxin operon kacAT of Klebsiella pneumoniae is regulated by conditional cooperativity via a W-shaped KacA-KacT complex. Qian H, Yu H, Li P, Zhu E, Yao Q, Tai C, Deng Z, Gerdes K, He X, Gan J, Ou HY. Nucleic Acids Res 47 7690-7702 (2019)
  67. An efficient method for the purification of proteins from four distinct toxin-antitoxin modules. Sterckx YG, De Gieter S, Zorzini V, Hadži S, Haesaerts S, Loris R, Garcia-Pino A. Protein Expr Purif 108 30-40 (2015)
  68. Structural basis of transcriptional regulation by the HigA antitoxin. Schureck MA, Meisner J, Hoffer ED, Wang D, Onuoha N, Ei Cho S, Lollar P, Dunham CM. Mol Microbiol 111 1449-1462 (2019)
  69. Amino acid residues crucial for specificity of toxin-antitoxin interactions in the homologous Axe-Txe and YefM-YoeB complexes. Połom D, Boss L, Węgrzyn G, Hayes F, Kędzierska B. FEBS J 280 5906-5918 (2013)
  70. Global Analysis of the Specificities and Targets of Endoribonucleases from Escherichia coli Toxin-Antitoxin Systems. Culviner PH, Nocedal I, Fortune SM, Laub MT. mBio 12 e0201221 (2021)
  71. Identification of chromosomal HP0892-HP0893 toxin-antitoxin proteins in Helicobacter pylori and structural elucidation of their protein-protein interaction. Han KD, Ahn DH, Lee SA, Min YH, Kwon AR, Ahn HC, Lee BJ. J Biol Chem 288 6004-6013 (2013)
  72. Light activation of Staphylococcus aureus toxin YoeBSa1 reveals guanosine-specific endoribonuclease activity. Larson AS, Hergenrother PJ. Biochemistry 53 188-201 (2014)
  73. Structure-based design of peptides that trigger Streptococcus pneumoniae cell death. Kang SM, Jin C, Kim DH, Park SJ, Han SW, Lee BJ. FEBS J 288 1546-1564 (2021)
  74. The axe-txe complex of Enterococcus faecium presents a multilayered mode of toxin-antitoxin gene expression regulation. Boss L, Labudda Ł, Węgrzyn G, Hayes F, Kędzierska B. PLoS One 8 e73569 (2013)
  75. The structure and interactions of SpoIISA and SpoIISB, a toxin-antitoxin system in Bacillus subtilis. Florek P, Levdikov VM, Blagova E, Lebedev AA, Škrabana R, Resetárová S, Pavelcíková P, Barak I, Wilkinson AJ. J Biol Chem 286 6808-6819 (2011)
  76. The toxin-antitoxin proteins relBE2Spn of Streptococcus pneumoniae: characterization and association to their DNA target. Moreno-Córdoba I, Diago-Navarro E, Barendregt A, Heck AJ, Alfonso C, Díaz-Orejas R, Nieto C, Espinosa M. Proteins 80 1834-1846 (2012)
  77. mRNA bound to the 30S subunit is a HigB toxin substrate. Schureck MA, Maehigashi T, Miles SJ, Marquez J, Dunham CM. RNA 22 1261-1270 (2016)
  78. Expression of different ParE toxins results in conserved phenotypes with distinguishable classes of toxicity. Ames JR, Muthuramalingam M, Murphy T, Najar FZ, Bourne CR. Microbiologyopen 8 e902 (2019)
  79. Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability. Pavelich IJ, Maehigashi T, Hoffer ED, Ruangprasert A, Miles SJ, Dunham CM. Nucleic Acids Res 47 10400-10413 (2019)
  80. Transition State Charge Stabilization and Acid-Base Catalysis of mRNA Cleavage by the Endoribonuclease RelE. Dunican BF, Hiller DA, Strobel SA. Biochemistry 54 7048-7057 (2015)
  81. Structural insight into the E. coli HigBA complex. Yang J, Zhou K, Liu P, Dong Y, Gao Z, Zhang J, Liu Q. Biochem Biophys Res Commun 478 1521-1527 (2016)
  82. The intrinsically disordered domain of the antitoxin Phd chaperones the toxin Doc against irreversible inactivation and misfolding. De Gieter S, Konijnenberg A, Talavera A, Butterer A, Haesaerts S, De Greve H, Sobott F, Loris R, Garcia-Pino A. J Biol Chem 289 34013-34023 (2014)
  83. Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli. Guo Y, Yao J, Sun C, Wen Z, Wang X. Toxins (Basel) 8 E195 (2016)
  84. Importance of the E. coli DinJ antitoxin carboxy terminus for toxin suppression and regulated proteolysis. Ruangprasert A, Maehigashi T, Miles SJ, Dunham CM. Mol Microbiol 104 65-77 (2017)
  85. Solution structure of conserved hypothetical protein HP0892 from Helicobacter pylori. Han KD, Park SJ, Jang SB, Lee BJ. Proteins 70 599-602 (2008)
  86. Crystal structure of apo and copper bound HP0894 toxin from Helicobacter pylori 26695 and insight into mRNase activity. Pathak C, Im H, Yang YJ, Yoon HJ, Kim HM, Kwon AR, Lee BJ. Biochim Biophys Acta 1834 2579-2590 (2013)
  87. Insights into Transcriptional Repression of the Homologous Toxin-Antitoxin Cassettes yefM-yoeB and axe-txe. Kędzierska B, Potrykus K, Szalewska-Pałasz A, Wodzikowska B. Int J Mol Sci 21 E9062 (2020)
  88. Molecular mechanism of toxin neutralization in the HipBST toxin-antitoxin system of Legionella pneumophila. Zhen X, Wu Y, Ge J, Fu J, Ye L, Lin N, Huang Z, Liu Z, Luo ZQ, Qiu J, Ouyang S. Nat Commun 13 4333 (2022)
  89. Crystallization and X-ray analysis of all of the players in the autoregulation of the ataRT toxin-antitoxin system. Jurėnas D, Van Melderen L, Garcia-Pino A. Acta Crystallogr F Struct Biol Commun 74 391-401 (2018)
  90. Function inferences from a molecular structural model of bacterial ParE toxin. Barbosa LC, Garrido SS, Garcia A, Delfino DB, Marchetto R. Bioinformation 4 438-440 (2010)
  91. Characterization of Two Toxin-Antitoxin Systems in Deep-Sea Streptomyces sp. SCSIO 02999. Zhan W, Yao J, Tang K, Li Y, Guo Y, Wang X. Mar Drugs 17 E211 (2019)
  92. Crystal structure of toxin HP0892 from Helicobacter pylori with two Zn(II) at 1.8 Å resolution. Im H, Jang SB, Pathak C, Yang YJ, Yoon HJ, Yu TK, Suh JY, Lee BJ. Protein Sci 23 819-832 (2014)
  93. The Cysteine Protease MaOC1, a Prokaryotic Caspase Homolog, Cleaves the Antitoxin of a Type II Toxin-Antitoxin System. Klemenčič M, Halužan Vasle A, Dolinar M. Front Microbiol 12 635684 (2021)
  94. The Positively Charged Active Site of the Bacterial Toxin RelE Causes a Large Shift in the General Base pKa. Hiller DA, Dunican BF, Nallur S, Li NS, Piccirilli JA, Strobel SA. Biochemistry 59 1665-1671 (2020)
  95. A YoeB toxin cleaves both RNA and DNA. McGillick J, Ames JR, Murphy T, Bourne CR. Sci Rep 11 3592 (2021)
  96. A minimal model for gene expression dynamics of bacterial type II toxin-antitoxin systems. Kosmidis K, Hütt MT. Sci Rep 11 19516 (2021)
  97. An Auto-Regulating Type II Toxin-Antitoxin System Modulates Drug Resistance and Virulence in Streptococcus suis. Gu Q, He P, Wang D, Ma J, Zhong X, Zhu Y, Zhang Y, Bai Q, Pan Z, Yao H. Front Microbiol 12 671706 (2021)
  98. Functional annotation of a novel toxin-antitoxin system Xn-RelT of Xenorhabdus nematophila; a combined in silico and in vitro approach. Gautam LK, Yadav M, Rathore JS. J Mol Model 23 189 (2017)
  99. Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46-DNA binding. Roy M, Kundu A, Bhunia A, Das Gupta S, De S, Das AK. FEBS J 286 1174-1190 (2019)