2aa2 Citations

A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor.

J Biol Chem 280 31283-93 (2005)
Related entries: 2aa5, 2aa6, 2aa7, 2aax, 2ab2

Cited: 116 times
EuropePMC logo PMID: 15967794

Abstract

Ligand binding is the first step in hormone regulation of mineralocorticoid receptor (MR) activity. Here, we report multiple crystal structures of MR (NR3C2) bound to both agonist and antagonists. These structures combined with mutagenesis studies reveal that maximal receptor activation involves an intricate ligand-mediated hydrogen bond network with Asn770 which serves dual roles: stabilization of the loop preceding the C-terminal activation function-2 helix and direct contact with the hormone ligand. In addition, most activating ligands hydrogen bond to Thr945 on helix 10. Structural characterization of the naturally occurring S810L mutant explains how stabilization of a helix 3/helix 5 interaction can circumvent the requirement for this hydrogen bond network. Taken together, these results explain the potency of MR activation by aldosterone, the weak activation induced by progesterone and the antihypertensive agent spironolactone, and the binding selectivity of cortisol over cortisone.

Reviews - 2aa2 mentioned but not cited (1)

  1. Emergence and evolution of the renin-angiotensin-aldosterone system. Fournier D, Luft FC, Bader M, Ganten D, Andrade-Navarro MA. J Mol Med (Berl) 90 495-508 (2012)

Articles - 2aa2 mentioned but not cited (32)

  1. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. J Med Chem 55 6582-6594 (2012)
  2. Benchmarking sets for molecular docking. Huang N, Shoichet BK, Irwin JJ. J Med Chem 49 6789-6801 (2006)
  3. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Shibata S, Rinehart J, Zhang J, Moeckel G, Castañeda-Bueno M, Stiegler AL, Boggon TJ, Gamba G, Lifton RP. Cell Metab 18 660-671 (2013)
  4. Molecular docking screens using comparative models of proteins. Fan H, Irwin JJ, Webb BM, Klebe G, Shoichet BK, Sali A. J Chem Inf Model 49 2512-2527 (2009)
  5. Evaluation of DOCK 6 as a pose generation and database enrichment tool. Brozell SR, Mukherjee S, Balius TE, Roe DR, Case DA, Rizzo RC. J Comput Aided Mol Des 26 749-773 (2012)
  6. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O. PLoS Comput Biol 13 e1005905 (2017)
  7. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. Da C, Kireev D. J Chem Inf Model 54 2555-2561 (2014)
  8. Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Nehme A, Cerutti C, Dhaouadi N, Gustin MP, Courand PY, Zibara K, Bricca G. Sci Rep 5 10035 (2015)
  9. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. Park SJ, Kufareva I, Abagyan R. J Comput Aided Mol Des 24 459-471 (2010)
  10. Modeling disordered protein interactions from biophysical principles. Peterson LX, Roy A, Christoffer C, Terashi G, Kihara D. PLoS Comput Biol 13 e1005485 (2017)
  11. Pharmacophore-based similarity scoring for DOCK. Jiang L, Rizzo RC. J Phys Chem B 119 1083-1102 (2015)
  12. Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium. Rutten L, Mannie JP, Stead CM, Raetz CR, Reynolds CM, Bonvin AM, Tommassen JP, Egmond MR, Trent MS, Gros P. Proc Natl Acad Sci U S A 106 1960-1964 (2009)
  13. Protein structure prediction provides comparable performance to crystallographic structures in docking-based virtual screening. Du H, Brender JR, Zhang J, Zhang Y. Methods 71 77-84 (2015)
  14. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors. Baker ME, Chandsawangbhuwana C, Ollikainen N. BMC Evol Biol 7 24 (2007)
  15. Virtual screening as a strategy for the identification of xenobiotics disrupting corticosteroid action. Nashev LG, Vuorinen A, Praxmarer L, Chantong B, Cereghetti D, Winiger R, Schuster D, Odermatt A. PLoS One 7 e46958 (2012)
  16. Beyond the heterodimer model for mineralocorticoid and glucocorticoid receptor interactions in nuclei and at DNA. Pooley JR, Rivers CA, Kilcooley MT, Paul SN, Cavga AD, Kershaw YM, Muratcioglu S, Gursoy A, Keskin O, Lightman SL. PLoS One 15 e0227520 (2020)
  17. Getting Docking into Shape Using Negative Image-Based Rescoring. Kurkinen ST, Lätti S, Pentikäinen OT, Postila PA. J Chem Inf Model 59 3584-3599 (2019)
  18. Improving Docking Performance Using Negative Image-Based Rescoring. Kurkinen ST, Niinivehmas S, Ahinko M, Lätti S, Pentikäinen OT, Postila PA. Front Pharmacol 9 260 (2018)
  19. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Smith KP, Gifford KM, Waitzman JS, Rice SE. Proteins 83 25-36 (2015)
  20. Extensive Reliability Evaluation of Docking-Based Target-Fishing Strategies. Lapillo M, Tuccinardi T, Martinelli A, Macchia M, Giordano A, Poli G. Int J Mol Sci 20 E1023 (2019)
  21. Leveraging nonstructural data to predict structures and affinities of protein-ligand complexes. Paggi JM, Belk JA, Hollingsworth SA, Villanueva N, Powers AS, Clark MJ, Chemparathy AG, Tynan JE, Lau TK, Sunahara RK, Dror RO. Proc Natl Acad Sci U S A 118 e2112621118 (2021)
  22. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta. Li H, Lu L, Chen R, Quan L, Xia X, Lü Q. PLoS One 9 e94769 (2014)
  23. Atomistic simulations shed new light on the activation mechanisms of RORγ and classify it as Type III nuclear hormone receptor regarding ligand-binding paths. Saen-Oon S, Lozoya E, Segarra V, Guallar V, Soliva R. Sci Rep 9 17249 (2019)
  24. Exploring Binding Mechanisms in Nuclear Hormone Receptors by Monte Carlo and X-ray-derived Motions. Grebner C, Lecina D, Gil V, Ulander J, Hansson P, Dellsen A, Tyrchan C, Edman K, Hogner A, Guallar V. Biophys J 112 1147-1156 (2017)
  25. Matching protein surface structural patches for high-resolution blind peptide docking. Khramushin A, Ben-Aharon Z, Tsaban T, Varga JK, Avraham O, Schueler-Furman O. Proc Natl Acad Sci U S A 119 e2121153119 (2022)
  26. X-ray crystal structure of the ancestral 3-ketosteroid receptor-progesterone-mifepristone complex shows mifepristone bound at the coactivator binding interface. Colucci JK, Ortlund EA. PLoS One 8 e80761 (2013)
  27. Correlation between Virtual Screening Performance and Binding Site Descriptors of Protein Targets. Shamsara J. Int J Med Chem 2018 3829307 (2018)
  28. HuR-Dependent Editing of a New Mineralocorticoid Receptor Splice Variant Reveals an Osmoregulatory Loop for Sodium Homeostasis. Lema I, Amazit L, Lamribet K, Fagart J, Blanchard A, Lombès M, Cherradi N, Viengchareun S. Sci Rep 7 4835 (2017)
  29. Multifunctional Analysis of Chia Seed (Salvia hispanica L.) Bioactive Peptides Using Peptidomics and Molecular Dynamics Simulations Approaches. Aguilar-Toalá JE, Vidal-Limon A, Liceaga AM. Int J Mol Sci 23 7288 (2022)
  30. Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice. Bell RMB, Villalobos E, Nixon M, Miguelez-Crespo A, Murphy L, Fawkes A, Coutts A, Sharp MGF, Koerner MV, Allan E, Meijer OC, Houtman R, Odermatt A, Beck KR, Denham SG, Lee P, Homer NZM, Walker BR, Morgan RA. Mol Metab 48 101225 (2021)
  31. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein-Ligand Interaction Prediction. Zhang H, Saravanan KM, Zhang JZH. Molecules 28 4691 (2023)
  32. A novel in silico scaffold-hopping method for drug repositioning in rare and intractable diseases. Tanabe M, Sakate R, Nakabayashi J, Tsumura K, Ohira S, Iwato K, Kimura T. Sci Rep 13 19358 (2023)


Reviews citing this publication (25)

  1. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Huang P, Chandra V, Rastinejad F. Annu Rev Physiol 72 247-272 (2010)
  2. Mechanisms of mineralocorticoid action. Fuller PJ, Young MJ. Hypertension 46 1227-1235 (2005)
  3. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombès M. Nucl Recept Signal 5 e012 (2007)
  4. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Rossier BC, Baker ME, Studer RA. Physiol Rev 95 297-340 (2015)
  5. Looking at nuclear receptors from a new angle. Helsen C, Claessens F. Mol Cell Endocrinol 382 97-106 (2014)
  6. The nuclear receptor superfamily and drug discovery. Moore JT, Collins JL, Pearce KH. ChemMedChem 1 504-523 (2006)
  7. Rapid actions of aldosterone in vascular health and disease--friend or foe? Skøtt O, Uhrenholt TR, Schjerning J, Hansen PB, Rasmussen LE, Jensen BL. Pharmacol Ther 111 495-507 (2006)
  8. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Buzón V, Carbó LR, Estruch SB, Fletterick RJ, Estébanez-Perpiñá E. Mol Cell Endocrinol 348 394-402 (2012)
  9. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. Baker ME, Funder JW, Kattoula SR. J Steroid Biochem Mol Biol 137 57-70 (2013)
  10. Mechanisms of ligand specificity of the mineralocorticoid receptor. Fuller PJ, Yao Y, Yang J, Young MJ. J Endocrinol 213 15-24 (2012)
  11. Structural and functional insights into nuclear receptor signaling. Jin L, Li Y. Adv Drug Deliv Rev 62 1218-1226 (2010)
  12. Production of protein complexes via co-expression. Kerrigan JJ, Xie Q, Ames RS, Lu Q. Protein Expr Purif 75 1-14 (2011)
  13. The evolution of progesterone receptor ligands. Madauss KP, Stewart EL, Williams SP. Med Res Rev 27 374-400 (2007)
  14. Aldosterone and Mineralocorticoid Receptor System in Cardiovascular Physiology and Pathophysiology. Cannavo A, Bencivenga L, Liccardo D, Elia A, Marzano F, Gambino G, D'Amico ML, Perna C, Ferrara N, Rengo G, Paolocci N. Oxid Med Cell Longev 2018 1204598 (2018)
  15. The mislabelling of deoxycorticosterone: making sense of corticosteroid structure and function. Vinson GP. J Endocrinol 211 3-16 (2011)
  16. Saponins as modulators of nuclear receptors. Zhang T, Zhong S, Li T, Zhang J. Crit Rev Food Sci Nutr 60 94-107 (2020)
  17. Comparison of agents that affect aldosterone action. Tamargo J, Solini A, Ruilope LM. Semin Nephrol 34 285-306 (2014)
  18. Structure of the glucocorticoid receptor, a flexible protein that can adapt to different ligands. Veleiro AS, Alvarez LD, Eduardo SL, Burton G. ChemMedChem 5 649-659 (2010)
  19. Novel interactions of the mineralocorticoid receptor. Fuller PJ. Mol Cell Endocrinol 408 33-37 (2015)
  20. Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness. Smith JA, Pati D, Wang L, de Kloet AD, Frazier CJ, Krause EG. Front Syst Neurosci 9 46 (2015)
  21. Structural determinants of activation of the mineralocorticoid receptor: an evolutionary perspective. Fuller PJ, Yao YZ, Yang J, Young MJ. J Hum Hypertens 35 110-116 (2021)
  22. Helix 3-helix 5 interactions in steroid hormone receptor function. Zhang J, Geller DS. J Steroid Biochem Mol Biol 109 279-285 (2008)
  23. Nonsteroidal Mineralocorticoid Receptor Antagonist Eliciting Cardiorenal Protection Is a New Option for Patients with Chronic Kidney Disease. Liu W, Yu S. Kidney Dis (Basel) 9 12-25 (2023)
  24. The aldosterone receptor--new insights? Fuller P. Expert Opin Investig Drugs 15 201-203 (2006)
  25. [Hypertension due to mutation of mineralocorticoid receptors]. Inaba S, Miyamori I. Nihon Naika Gakkai Zasshi 95 677-682 (2006)

Articles citing this publication (58)

  1. Crystal structure of an ancient protein: evolution by conformational epistasis. Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW. Science 317 1544-1548 (2007)
  2. A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule. Fagart J, Hillisch A, Huyet J, Bärfacker L, Fay M, Pleiss U, Pook E, Schäfer S, Rafestin-Oblin ME, Kolkhof P. J Biol Chem 285 29932-29940 (2010)
  3. Strong and weak hydrogen bonds in the protein-ligand interface. Panigrahi SK, Desiraju GR. Proteins 67 128-141 (2007)
  4. A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity. Dietz JD, Du S, Bolten CW, Payne MA, Xia C, Blinn JR, Funder JW, Hu X. Hypertension 51 742-748 (2008)
  5. Finerenone Impedes Aldosterone-dependent Nuclear Import of the Mineralocorticoid Receptor and Prevents Genomic Recruitment of Steroid Receptor Coactivator-1. Amazit L, Le Billan F, Kolkhof P, Lamribet K, Viengchareun S, Fay MR, Khan JA, Hillisch A, Lombès M, Rafestin-Oblin ME, Fagart J. J Biol Chem 290 21876-21889 (2015)
  6. Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. Nascimento AS, Dias SM, Nunes FM, Aparício R, Ambrosio AL, Bleicher L, Figueira AC, Santos MA, de Oliveira Neto M, Fischer H, Togashi M, Craievich AF, Garratt RC, Baxter JD, Webb P, Polikarpov I. J Mol Biol 360 586-598 (2006)
  7. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Pujo L, Fagart J, Gary F, Papadimitriou DT, Claës A, Jeunemaître X, Zennaro MC. Hum Mutat 28 33-40 (2007)
  8. Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. Chadwick JA, Hauck JS, Lowe J, Shaw JJ, Guttridge DC, Gomez-Sanchez CE, Gomez-Sanchez EP, Rafael-Fortney JA. FASEB J 29 4544-4554 (2015)
  9. Characterization of the zebrafish (Danio rerio) mineralocorticoid receptor. Pippal JB, Cheung CM, Yao YZ, Brennan FE, Fuller PJ. Mol Cell Endocrinol 332 58-66 (2011)
  10. Mechanisms for the evolution of a derived function in the ancestral glucocorticoid receptor. Carroll SM, Ortlund EA, Thornton JW. PLoS Genet 7 e1002117 (2011)
  11. Vitamin D3 derivatives with adamantane or lactone ring side chains are cell type-selective vitamin D receptor modulators. Inaba Y, Yamamoto K, Yoshimoto N, Matsunawa M, Uno S, Yamada S, Makishima M. Mol Pharmacol 71 1298-1311 (2007)
  12. Nuclear hormone receptor signaling in amphioxus. Schubert M, Brunet F, Paris M, Bertrand S, Benoit G, Laudet V. Dev Genes Evol 218 651-665 (2008)
  13. Ligand dissociation from estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Sonoda MT, Martínez L, Webb P, Skaf MS, Polikarpov I. Mol Endocrinol 22 1565-1578 (2008)
  14. Conformation of the mineralocorticoid receptor N-terminal domain: evidence for induced and stable structure. Fischer K, Kelly SM, Watt K, Price NC, McEwan IJ. Mol Endocrinol 24 1935-1948 (2010)
  15. Ultrafast protein structure-based virtual screening with Panther. Niinivehmas SP, Salokas K, Lätti S, Raunio H, Pentikäinen OT. J Comput Aided Mol Des 29 989-1006 (2015)
  16. Structural basis of spirolactone recognition by the mineralocorticoid receptor. Huyet J, Pinon GM, Fay MR, Fagart J, Rafestin-Oblin ME. Mol Pharmacol 72 563-571 (2007)
  17. Identification of a highly potent vitamin D receptor antagonist: (25S)-26-adamantyl-25-hydroxy-2-methylene-22,23-didehydro-19,27-dinor-20-epi-vitamin D3 (ADMI3). Igarashi M, Yoshimoto N, Yamamoto K, Shimizu M, Ishizawa M, Makishima M, DeLuca HF, Yamada S. Arch Biochem Biophys 460 240-253 (2007)
  18. Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators. Lusher SJ, Raaijmakers HC, Vu-Pham D, Dechering K, Lam TW, Brown AR, Hamilton NM, Nimz O, Bosch R, McGuire R, Oubrie A, de Vlieg J. J Biol Chem 286 35079-35086 (2011)
  19. Disruption of a key ligand-H-bond network drives dissociative properties in vamorolone for Duchenne muscular dystrophy treatment. Liu X, Wang Y, Gutierrez JS, Damsker JM, Nagaraju K, Hoffman EP, Ortlund EA. Proc Natl Acad Sci U S A 117 24285-24293 (2020)
  20. Met909 plays a key role in the activation of the progesterone receptor and also in the high potency of 13-ethyl progestins. Petit-Topin I, Turque N, Fagart J, Fay M, Ulmann A, Gainer E, Rafestin-Oblin ME. Mol Pharmacol 75 1317-1324 (2009)
  21. Deciphering modern glucocorticoid cross-pharmacology using ancestral corticosteroid receptors. Kohn JA, Deshpande K, Ortlund EA. J Biol Chem 287 16267-16275 (2012)
  22. Molecular determinants of the recognition of ulipristal acetate by oxo-steroid receptors. Petit-Topin I, Fay M, Resche-Rigon M, Ulmann A, Gainer E, Rafestin-Oblin ME, Fagart J. J Steroid Biochem Mol Biol 144 Pt B 427-435 (2014)
  23. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. Lusher SJ, Raaijmakers HC, Vu-Pham D, Kazemier B, Bosch R, McGuire R, Azevedo R, Hamersma H, Dechering K, Oubrie A, van Duin M, de Vlieg J. J Biol Chem 287 20333-20343 (2012)
  24. Preclinical pharmacology of AZD9977: A novel mineralocorticoid receptor modulator separating organ protection from effects on electrolyte excretion. Bamberg K, Johansson U, Edman K, William-Olsson L, Myhre S, Gunnarsson A, Geschwindner S, Aagaard A, Björnson Granqvist A, Jaisser F, Huang Y, Granberg KL, Jansson-Löfmark R, Hartleib-Geschwindner J. PLoS One 13 e0193380 (2018)
  25. Identification and characterization of a ligand-selective mineralocorticoid receptor coactivator. Rogerson FM, Yao YZ, Young MJ, Fuller PJ. FASEB J 28 4200-4210 (2014)
  26. 2-Methylene 19-nor-25-dehydro-1alpha-hydroxyvitamin D3 26,23-lactones: synthesis, biological activities and molecular basis of passive antagonism. Yoshimoto N, Inaba Y, Yamada S, Makishima M, Shimizu M, Yamamoto K. Bioorg Med Chem 16 457-473 (2008)
  27. Client binding shifts the populations of dynamic Hsp90 conformations through an allosteric network. Lopez A, Dahiya V, Delhommel F, Freiburger L, Stehle R, Asami S, Rutz D, Blair L, Buchner J, Sattler M. Sci Adv 7 eabl7295 (2021)
  28. The synthetic androgen methyltrienolone (r1881) acts as a potent antagonist of the mineralocorticoid receptor. Takeda AN, Pinon GM, Bens M, Fagart J, Rafestin-Oblin ME, Vandewalle A. Mol Pharmacol 71 473-482 (2007)
  29. Evolution of human, chicken, alligator, frog, and zebrafish mineralocorticoid receptors: Allosteric influence on steroid specificity. Katsu Y, Oka K, Baker ME. Sci Signal 11 eaao1520 (2018)
  30. Molecular evolution of the switch for progesterone and spironolactone from mineralocorticoid receptor agonist to antagonist. Fuller PJ, Yao YZ, Jin R, He S, Martín-Fernández B, Young MJ, Smith BJ. Proc Natl Acad Sci U S A 116 18578-18583 (2019)
  31. Divergent sequence tunes ligand sensitivity in phospholipid-regulated hormone receptors. Musille PM, Pathak M, Lauer JL, Griffin PR, Ortlund EA. J Biol Chem 288 20702-20712 (2013)
  32. Purification and characterization of recombinant human mineralocorticoid receptor. Clyne CD, Chang CY, Safi R, Fuller PJ, McDonnell DP, Young MJ. Mol Cell Endocrinol 302 81-85 (2009)
  33. Stephanthraniline A inhibits the proliferation and activation of T cells in vitro and in vivo. Chen F, Ni Y, Ye Y, Sun H, Li X, Xu S. Eur J Pharmacol 685 186-197 (2012)
  34. Discovery of novel oxazolidinedione derivatives as potent and selective mineralocorticoid receptor antagonists. Yang C, Shen HC, Wu Z, Chu HD, Cox JM, Balsells J, Crespo A, Brown P, Zamlynny B, Wiltsie J, Clemas J, Gibson J, Contino L, Lisnock J, Zhou G, Garcia-Calvo M, Bateman T, Xu L, Tong X, Crook M, Sinclair P. Bioorg Med Chem Lett 23 4388-4392 (2013)
  35. Mineralocorticoid receptor mutations differentially affect individual gene expression profiles in pseudohypoaldosteronism type 1. Fernandes-Rosa FL, Hubert EL, Fagart J, Tchitchek N, Gomes D, Jouanno E, Benecke A, Rafestin-Oblin ME, Jeunemaitre X, Antonini SR, Zennaro MC. J Clin Endocrinol Metab 96 E519-27 (2011)
  36. Metabolism of Oral Turinabol by Human Steroid Hormone-Synthesizing Cytochrome P450 Enzymes. Schiffer L, Brixius-Anderko S, Hannemann F, Zapp J, Neunzig J, Thevis M, Bernhardt R. Drug Metab Dispos 44 227-237 (2016)
  37. A new strategy for selective targeting of progesterone receptor with passive antagonists. Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G, Amazit L, Brion JD, Alami M, Lombès M, Loosfelt H, Rafestin-Oblin ME. Mol Endocrinol 27 909-924 (2013)
  38. A Natural Mutation in Helix 5 of the Ligand Binding Domain of Glucocorticoid Receptor Enhances Receptor-Ligand Interaction. Reyer H, Ponsuksili S, Kanitz E, Pöhland R, Wimmers K, Murani E. PLoS One 11 e0164628 (2016)
  39. Identification of spirooxindole and dibenzoxazepine motifs as potent mineralocorticoid receptor antagonists. Lotesta SD, Marcus AP, Zheng Y, Leftheris K, Noto PB, Meng S, Kandpal G, Chen G, Zhou J, McKeever B, Bukhtiyarov Y, Zhao Y, Lala DS, Singh SB, McGeehan GM. Bioorg Med Chem 24 1384-1391 (2016)
  40. Ligand structural motifs can decouple glucocorticoid receptor transcriptional activation from target promoter occupancy. Blind RD, Pineda-Torra I, Xu Y, Xu HE, Garabedian MJ. Biochem Biophys Res Commun 420 839-844 (2012)
  41. Role of Pro-637 and Gln-642 in human glucocorticoid receptors and Ser-843 and Leu-848 in mineralocorticoid receptors in their differential responses to cortisol and aldosterone. Mani O, Nashev LG, Livelo C, Baker ME, Odermatt A. J Steroid Biochem Mol Biol 159 31-40 (2016)
  42. System among the corticosteroids: specificity and molecular dynamics. Brookes JC, Galigniana MD, Harker AH, Stoneham AM, Vinson GP. J R Soc Interface 9 43-53 (2012)
  43. Biotransformation of the mineralocorticoid receptor antagonists spironolactone and canrenone by human CYP11B1 and CYP11B2: Characterization of the products and their influence on mineralocorticoid receptor transactivation. Schiffer L, Müller AR, Hobler A, Brixius-Anderko S, Zapp J, Hannemann F, Bernhardt R. J Steroid Biochem Mol Biol 163 68-76 (2016)
  44. Nuclear receptor engineering based on novel structure activity relationships revealed by farnesyl pyrophosphate. Goyanka R, Das S, Samuels HH, Cardozo T. Protein Eng Des Sel 23 809-815 (2010)
  45. A fragment-based docking simulation for investigating peptide-protein bindings. Liao JM, Wang YT, Wang YT, Lin CS. Phys Chem Chem Phys 19 10436-10442 (2017)
  46. Biological activity and ligand binding mode to the progesterone receptor of A-homo analogues of progesterone. Alvarez LD, Dansey MV, Martí MA, Bertucci PY, Di Chenna PH, Pecci A, Burton G. Bioorg Med Chem 19 1683-1691 (2011)
  47. Insight into the orientational versatility of steroid substrates-a docking and molecular dynamics study of a steroid receptor and steroid monooxygenase. Panek A, Świzdor A, Milecka-Tronina N, Panek JJ. J Mol Model 23 96 (2017)
  48. MDock: A Suite for Molecular Inverse Docking and Target Prediction. Ma Z, Zou X. Methods Mol Biol 2266 313-322 (2021)
  49. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods. Roos K, Hogner A, Ogg D, Packer MJ, Hansson E, Granberg KL, Evertsson E, Nordqvist A. J Comput Aided Mol Des 29 1109-1122 (2015)
  50. Structure-Based Drug Design of Mineralocorticoid Receptor Antagonists to Explore Oxosteroid Receptor Selectivity. Nordqvist A, O'Mahony G, Fridén-Saxin M, Fredenwall M, Hogner A, Granberg KL, Aagaard A, Bäckström S, Gunnarsson A, Kaminski T, Xue Y, Dellsén A, Hansson E, Hansson P, Ivarsson I, Karlsson U, Bamberg K, Hermansson M, Georgsson J, Lindmark B, Edman K. ChemMedChem 12 50-65 (2017)
  51. Detection and functional portrayal of a novel class of dihydrotestosterone derived selective progesterone receptor modulators (SPRM). Andrieu T, Mani O, Goepfert C, Bertolini R, Guettinger A, Setoud R, Uh KY, Baker ME, Frey FJ, Frey BM. J Steroid Biochem Mol Biol 147 111-123 (2015)
  52. Discovery of new selective glucocorticoid receptor agonist leads. Berger M, Rehwinkel H, Schmees N, Schäcke H, Edman K, Wissler L, Reichel A, Jaroch S. Bioorg Med Chem Lett 27 437-442 (2017)
  53. Discovery of novel non-steroidal reverse indole mineralocorticoid receptor antagonists. Ogawa AK, Bunte EV, Mal R, Lan P, Sun Z, Crespo A, Wiltsie J, Clemas J, Gibson J, Contino L, Lisnock J, Zhou G, Garcia-Calvo M, Jochnowitz N, Ma X, Pan Y, Brown P, Zamlynny B, Bateman T, Leung D, Xu L, Tong X, Liu K, Crook M, Sinclair P. Bioorg Med Chem Lett 26 2866-2869 (2016)
  54. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors. Dube N, Khan SH, Sasse R, Okafor CD. J Chem Inf Model 63 571-582 (2023)
  55. Mixed-model QSAR at the human mineralocorticoid receptor: predicting binding mode and affinity of anabolic steroids. Peristera O, Spreafico M, Smiesko M, Ernst B, Vedani A. Toxicol Lett 189 219-224 (2009)
  56. Genotypic variability in patients with clinical diagnosis of Bartter syndrome type 3. García-Castaño A, Gómez-Conde S, Gondra L, Herrero M, Aguirre M, de la Hoz AB, Castaño L, Renaltube group, Madariaga L. Sci Rep 13 12587 (2023)
  57. Molecular pathogenesis of renal pseudohypoaldosteronism type 1. Riepe FG. Expert Rev Endocrinol Metab 2 407-419 (2007)
  58. Novel 1,4-Dihydropyridine Derivatives as Mineralocorticoid Receptor Antagonists. Pérez-Gordillo FL, Serrano-Morillas N, Acosta-García LM, Aranda MT, Passeri D, Pellicciari R, Pérez de Vega MJ, González-Muñiz R, Alvarez de la Rosa D, Martín-Martínez M. Int J Mol Sci 24 2439 (2023)