2apq Citations

Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure.

Nature 437 266-9 (2005)
Cited: 146 times
EuropePMC logo PMID: 16148936

Abstract

Amyloid or amyloid-like fibrils are elongated, insoluble protein aggregates, formed in vivo in association with neurodegenerative diseases or in vitro from soluble native proteins, respectively. The underlying structure of the fibrillar or 'cross-beta' state has presented long-standing, fundamental puzzles of protein structure. These include whether fibril-forming proteins have two structurally distinct stable states, native and fibrillar, and whether all or only part of the native protein refolds as it converts to the fibrillar state. Here we show that a designed amyloid-like fibril of the well-characterized enzyme RNase A contains native-like molecules capable of enzymatic activity. In addition, these functional molecular units are formed from a core RNase A domain and a swapped complementary domain. These findings are consistent with the zipper-spine model in which a cross-beta spine is decorated with three-dimensional domain-swapped functional units, retaining native-like structure.

Articles - 2apq mentioned but not cited (1)



Reviews citing this publication (25)

  1. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Chiti F, Dobson CM. Annu Rev Biochem 86 27-68 (2017)
  2. The amyloid state of proteins in human diseases. Eisenberg D, Jucker M. Cell 148 1188-1203 (2012)
  3. Recent atomic models of amyloid fibril structure. Nelson R, Eisenberg D. Curr Opin Struct Biol 16 260-265 (2006)
  4. Folding versus aggregation: polypeptide conformations on competing pathways. Jahn TR, Radford SE. Arch Biochem Biophys 469 100-117 (2008)
  5. Deposition diseases and 3D domain swapping. Bennett MJ, Sawaya MR, Eisenberg D. Structure 14 811-824 (2006)
  6. A polymer physics perspective on driving forces and mechanisms for protein aggregation. Pappu RV, Wang X, Vitalis A, Crick SL. Arch Biochem Biophys 469 132-141 (2008)
  7. The structural biology of protein aggregation diseases: Fundamental questions and some answers. Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AØ, Riekel C. Acc Chem Res 39 568-575 (2006)
  8. The supramolecular chemistry of β-sheets. Cheng PN, Pham JD, Nowick JS. J Am Chem Soc 135 5477-5492 (2013)
  9. Stability engineering of the human antibody repertoire. Rouet R, Lowe D, Christ D. FEBS Lett 588 269-277 (2014)
  10. Structure and Aggregation Mechanisms in Amyloids. Almeida ZL, Brito RMM. Molecules 25 E1195 (2020)
  11. Hacking the code of amyloid formation: the amyloid stretch hypothesis. Pastor MT, Esteras-Chopo A, Serrano L. Prion 1 9-14 (2007)
  12. The how's and why's of protein folding intermediates. Tsytlonok M, Itzhaki LS. Arch Biochem Biophys 531 14-23 (2013)
  13. Protein reconstitution and three-dimensional domain swapping: benefits and constraints of covalency. Carey J, Lindman S, Bauer M, Linse S. Protein Sci 16 2317-2333 (2007)
  14. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington's disease. Matlahov I, van der Wel PC. Exp Biol Med (Maywood) 244 1584-1595 (2019)
  15. Domain swapping in materials design. Nagarkar RP, Hule RA, Pochan DJ, Schneider JP. Biopolymers 94 141-155 (2010)
  16. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Front Bioeng Biotechnol 9 641372 (2021)
  17. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Gotte G, Menegazzi M. Front Immunol 10 2626 (2019)
  18. Understanding and predicting protein misfolding and aggregation: Insights from proteomics. Pallarès I, Ventura S. Proteomics 16 2570-2581 (2016)
  19. Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Garcia-Seisdedos H, Villegas JA, Levy ED. Angew Chem Int Ed Engl 58 5514-5531 (2019)
  20. Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: new scaffolds for potential antitumor drugs. Gotte G, Laurents DV, Merlino A, Picone D, Spadaccini R. FEBS Lett 587 3601-3608 (2013)
  21. Structural basis of infectious and non-infectious amyloids. Baxa U. Curr Alzheimer Res 5 308-318 (2008)
  22. The Landscape of Intertwined Associations in Homooligomeric Proteins. Wodak SJ, Malevanets A, MacKinnon SS. Biophys J 109 1087-1100 (2015)
  23. Fold space unlimited. Sippl MJ. Curr Opin Struct Biol 19 312-320 (2009)
  24. Supersaturation-Dependent Formation of Amyloid Fibrils. Goto Y, Noji M, Nakajima K, Yamaguchi K. Molecules 27 4588 (2022)
  25. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Gotte G. Genes (Basel) 15 738 (2024)

Articles citing this publication (120)

  1. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D. Nature 447 453-457 (2007)
  2. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, Chan FK, Wu H. Cell 150 339-350 (2012)
  3. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Goldschmidt L, Teng PK, Riek R, Eisenberg D. Proc Natl Acad Sci U S A 107 3487-3492 (2010)
  4. Role of intermolecular forces in defining material properties of protein nanofibrils. Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME. Science 318 1900-1903 (2007)
  5. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J. Nat Struct Mol Biol 15 1255-1262 (2008)
  6. Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Jahn TR, Parker MJ, Homans SW, Radford SE. Nat Struct Mol Biol 13 195-201 (2006)
  7. Molecular basis for amyloid-beta polymorphism. Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D. Proc Natl Acad Sci U S A 108 16938-16943 (2011)
  8. Toxic fibrillar oligomers of amyloid-β have cross-β structure. Stroud JC, Liu C, Teng PK, Eisenberg D. Proc Natl Acad Sci U S A 109 7717-7722 (2012)
  9. Molecular basis for insulin fibril assembly. Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D. Proc Natl Acad Sci U S A 106 18990-18995 (2009)
  10. A native to amyloidogenic transition regulated by a backbone trigger. Eakin CM, Berman AJ, Miranker AD. Nat Struct Mol Biol 13 202-208 (2006)
  11. Bacterial inclusion bodies contain amyloid-like structure. Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R. PLoS Biol 6 e195 (2008)
  12. Towards a pharmacophore for amyloid. Landau M, Sawaya MR, Faull KF, Laganowsky A, Jiang L, Sievers SA, Liu J, Barrio JR, Eisenberg D. PLoS Biol 9 e1001080 (2011)
  13. The amyloid stretch hypothesis: recruiting proteins toward the dark side. Esteras-Chopo A, Serrano L, López de la Paz M. Proc Natl Acad Sci U S A 102 16672-16677 (2005)
  14. Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y. Proc Natl Acad Sci U S A 107 12854-12859 (2010)
  15. Candida albicans Als adhesins have conserved amyloid-forming sequences. Otoo HN, Lee KG, Qiu W, Lipke PN. Eukaryot Cell 7 776-782 (2008)
  16. Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. Wahlbom M, Wang X, Lindström V, Carlemalm E, Jaskolski M, Grubb A. J Biol Chem 282 18318-18326 (2007)
  17. Molecular dynamics analyses of cross-beta-spine steric zipper models: beta-sheet twisting and aggregation. Esposito L, Pedone C, Vitagliano L. Proc Natl Acad Sci U S A 103 11533-11538 (2006)
  18. β₂-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Liu C, Sawaya MR, Eisenberg D. Nat Struct Mol Biol 18 49-55 (2011)
  19. Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant. Domanska K, Vanderhaegen S, Srinivasan V, Pardon E, Dupeux F, Marquez JA, Giorgetti S, Stoppini M, Wyns L, Bellotti V, Steyaert J. Proc Natl Acad Sci U S A 108 1314-1319 (2011)
  20. Structured States of Disordered Proteins from Genomic Sequences. Toth-Petroczy A, Palmedo P, Ingraham J, Hopf TA, Berger B, Sander C, Marks DS. Cell 167 158-170.e12 (2016)
  21. Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Juárez J, Taboada P, Mosquera V. Biophys J 96 2353-2370 (2009)
  22. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. Das P, King JA, Zhou R. Proc Natl Acad Sci U S A 108 10514-10519 (2011)
  23. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Teng PK, Eisenberg D. Protein Eng Des Sel 22 531-536 (2009)
  24. Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants. Khare SD, Dokholyan NV. Proc Natl Acad Sci U S A 103 3147-3152 (2006)
  25. Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. Hafner-Bratkovic I, Bester R, Pristovsek P, Gaedtke L, Veranic P, Gaspersic J, Mancek-Keber M, Avbelj M, Polymenidou M, Julius C, Aguzzi A, Vorberg I, Jerala R. J Biol Chem 286 12149-12156 (2011)
  26. Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Guo Z, Eisenberg D. Proc Natl Acad Sci U S A 103 8042-8047 (2006)
  27. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Macindoe I, Kwan AH, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M. Proc Natl Acad Sci U S A 109 E804-11 (2012)
  28. Arsenic(III) species inhibit oxidative protein folding in vitro. Ramadan D, Rancy PC, Nagarkar RP, Schneider JP, Thorpe C. Biochemistry 48 424-432 (2009)
  29. The structure of a polyQ-anti-polyQ complex reveals binding according to a linear lattice model. Li P, Huey-Tubman KE, Gao T, Li X, West AP, Bennett MJ, Bjorkman PJ. Nat Struct Mol Biol 14 381-387 (2007)
  30. Characterization of prion-like conformational changes of the neuronal isoform of Aplysia CPEB. Raveendra BL, Siemer AB, Puthanveettil SV, Hendrickson WA, Kandel ER, McDermott AE. Nat Struct Mol Biol 20 495-501 (2013)
  31. Functional amyloid: turning swords into plowshares. Otzen D. Prion 4 256-264 (2010)
  32. Frustration in the energy landscapes of multidomain protein misfolding. Zheng W, Schafer NP, Wolynes PG. Proc Natl Acad Sci U S A 110 1680-1685 (2013)
  33. Multisite aggregation of p53 and implications for drug rescue. Wang G, Fersht AR. Proc Natl Acad Sci U S A 114 E2634-E2643 (2017)
  34. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Mu XQ, Bullitt E. Proc Natl Acad Sci U S A 103 9861-9866 (2006)
  35. Prion fibrils of Ure2p assembled under physiological conditions contain highly ordered, natively folded modules. Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, Schütz A, Meier BH, Melki R, Böckmann A. J Mol Biol 394 108-118 (2009)
  36. Zebrafish ribonucleases are bactericidal: implications for the origin of the vertebrate RNase A superfamily. Cho S, Zhang J. Mol Biol Evol 24 1259-1268 (2007)
  37. Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures. Giraldo R. Proc Natl Acad Sci U S A 104 17388-17393 (2007)
  38. Common mode of DNA binding to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped form of a major cold shock protein from Bacillus caldolyticus. Max KE, Zeeb M, Bienert R, Balbach J, Heinemann U. FEBS J 274 1265-1279 (2007)
  39. Amyloid formation of growth hormone in presence of zinc: Relevance to its storage in secretory granules. Jacob RS, Das S, Ghosh S, Anoop A, Jha NN, Khan T, Singru P, Kumar A, Maji SK. Sci Rep 6 23370 (2016)
  40. Atomic structures of peptide self-assembly mimics. Makabe K, McElheny D, Tereshko V, Hilyard A, Gawlak G, Yan S, Koide A, Koide S. Proc Natl Acad Sci U S A 103 17753-17758 (2006)
  41. On the origin of the histone fold. Alva V, Ammelburg M, Söding J, Lupas AN. BMC Struct Biol 7 17 (2007)
  42. Trinucleotide repeats: a structural perspective. Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Front Neurol 4 76 (2013)
  43. Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor. Baker MA, Hynson RM, Ganuelas LA, Mohammadi NS, Liew CW, Rey AA, Duff AP, Whitten AE, Jeffries CM, Delalez NJ, Morimoto YV, Stock D, Armitage JP, Turberfield AJ, Namba K, Berry RM, Lee LK. Nat Struct Mol Biol 23 197-203 (2016)
  44. Investigating the structural properties of amyloid-like fibrils formed in vitro from beta2-microglobulin using limited proteolysis and electrospray ionisation mass spectrometry. Myers SL, Thomson NH, Radford SE, Ashcroft AE. Rapid Commun Mass Spectrom 20 1628-1636 (2006)
  45. Insights into structure, stability, and toxicity of monomeric and aggregated polyglutamine models from molecular dynamics simulations. Esposito L, Paladino A, Pedone C, Vitagliano L. Biophys J 94 4031-4040 (2008)
  46. Nonnative protein polymers: structure, morphology, and relation to nucleation and growth. Weiss WF, Hodgdon TK, Kaler EW, Lenhoff AM, Roberts CJ. Biophys J 93 4392-4403 (2007)
  47. Investigating the mechanism of peptide aggregation: insights from mixed monte carlo-molecular dynamics simulations. Meli M, Morra G, Colombo G. Biophys J 94 4414-4426 (2008)
  48. Structural and oxygen binding properties of dimeric horse myoglobin. Nagao S, Osuka H, Yamada T, Uni T, Shomura Y, Imai K, Higuchi Y, Hirota S. Dalton Trans 41 11378-11385 (2012)
  49. Formation of a stable oligomer of beta-2 microglobulin requires only transient encounter with Cu(II). Calabrese MF, Miranker AD. J Mol Biol 367 1-7 (2007)
  50. Structural basis of the allosteric inhibitor interaction on the HIV-1 reverse transcriptase RNase H domain. Christen MT, Menon L, Myshakina NS, Ahn J, Parniak MA, Ishima R. Chem Biol Drug Des 80 706-716 (2012)
  51. Amyloid-like fibrils from a domain-swapping protein feature a parallel, in-register conformation without native-like interactions. Li J, Hoop CL, Kodali R, Sivanandam VN, van der Wel PCA. J Biol Chem 286 28988-28995 (2011)
  52. Computer Simulations of the Bacterial Cytoplasm. Frembgen-Kesner T, Elcock AH. Biophys Rev 5 109-119 (2013)
  53. Exclusion of the native alpha-helix from the amyloid fibrils of a mixed alpha/beta protein. Morgan GJ, Morgan GJ, Giannini S, Hounslow AM, Craven CJ, Zerovnik E, Turk V, Waltho JP, Staniforth RA. J Mol Biol 375 487-498 (2008)
  54. Supramolecular assembling systems formed by heme-heme pocket interactions in hemoproteins. Oohora K, Onoda A, Hayashi T. Chem Commun (Camb) 48 11714-11726 (2012)
  55. A hinge region cis-proline in ribonuclease A acts as a conformational gatekeeper for C-terminal domain swapping. Miller KH, Karr JR, Marqusee S. J Mol Biol 400 567-578 (2010)
  56. Breakdown of supersaturation barrier links protein folding to amyloid formation. Noji M, Samejima T, Yamaguchi K, So M, Yuzu K, Chatani E, Akazawa-Ogawa Y, Hagihara Y, Kawata Y, Ikenaka K, Mochizuki H, Kardos J, Otzen DE, Bellotti V, Buchner J, Goto Y. Commun Biol 4 120 (2021)
  57. Double domain swapping in bovine seminal RNase: formation of distinct N- and C-swapped tetramers and multimers with increasing biological activities. Gotte G, Mahmoud Helmy A, Ercole C, Spadaccini R, Laurents DV, Donadelli M, Picone D. PLoS One 7 e46804 (2012)
  58. The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition. Kövér KE, Bruix M, Santoro J, Batta G, Laurents DV, Rico M. J Mol Biol 379 953-965 (2008)
  59. Ribonuclease A suggests how proteins self-chaperone against amyloid fiber formation. Teng PK, Anderson NJ, Goldschmidt L, Sawaya MR, Sambashivan S, Eisenberg D. Protein Sci 21 26-37 (2012)
  60. The Aggregation Free Energy Landscapes of Polyglutamine Repeats. Chen M, Tsai M, Zheng W, Wolynes PG. J Am Chem Soc 138 15197-15203 (2016)
  61. Domain swapping and amyloid fibril conformation. van der Wel PC. Prion 6 211-216 (2012)
  62. Domain swapping in p13suc1 results in formation of native-like, cytotoxic aggregates. Rousseau F, Wilkinson H, Villanueva J, Serrano L, Schymkowitz JW, Itzhaki LS. J Mol Biol 363 496-505 (2006)
  63. Self-consistent assignment of asparagine and glutamine amide rotamers in protein crystal structures. Weichenberger CX, Sippl MJ. Structure 14 967-972 (2006)
  64. Elucidation of the ribonuclease A aggregation process mediated by 3D domain swapping: a computational approach reveals possible new multimeric structures. Cozza G, Moro S, Gotte G. Biopolymers 89 26-39 (2008)
  65. Heme binding inhibits the fibrillization of amyloidogenic apomyoglobin and determines lack of aggregate cytotoxicity. Iannuzzi C, Vilasi S, Portaccio M, Irace G, Sirangelo I. Protein Sci 16 507-516 (2007)
  66. Minimalist design of water-soluble cross-beta architecture. Biancalana M, Makabe K, Koide S. Proc Natl Acad Sci U S A 107 3469-3474 (2010)
  67. Reversible thermal denaturation of a 60-kDa genetically engineered beta-sheet polypeptide. Lednev IK, Ermolenkov VV, Higashiya S, Popova LA, Topilina NI, Welch JT. Biophys J 91 3805-3818 (2006)
  68. Structure of the EMMPRIN N-terminal domain 1: dimerization via beta-strand swapping. Luo J, Teplyakov A, Obmolova G, Malia T, Wu SJ, Beil E, Baker A, Swencki-Underwood B, Zhao Y, Sprenkle J, Dixon K, Sweet R, Gilliland GL. Proteins 77 1009-1014 (2009)
  69. Water molecules as structural determinants among prions of low sequence identity. De Simone A, Dodson GG, Fraternali F, Zagari A. FEBS Lett 580 2488-2494 (2006)
  70. Stabilization, characterization, and selective removal of cystatin C amyloid oligomers. Östner G, Lindström V, Hjort Christensen P, Kozak M, Abrahamson M, Grubb A. J Biol Chem 288 16438-16450 (2013)
  71. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties. Zheng YQ, Yao ZF, Lei T, Dou JH, Yang CY, Zou L, Meng X, Ma W, Wang JY, Pei J. Adv Mater 29 (2017)
  72. Folding and fibril formation of the cell cycle protein Cks1. Bader R, Seeliger MA, Kelly SE, Ilag LL, Meersman F, Limones A, Luisi BF, Dobson CM, Itzhaki LS. J Biol Chem 281 18816-18824 (2006)
  73. OmpA can form folded and unfolded oligomers. Wang H, Andersen KK, Vad BS, Otzen DE. Biochim Biophys Acta 1834 127-136 (2013)
  74. Understanding the relevance of local conformational stability and dynamics to the aggregation propensity of an IgG1 and IgG2 monoclonal antibodies. Thakkar SV, Sahni N, Joshi SB, Kerwin BA, He F, Volkin DB, Middaugh CR. Protein Sci 22 1295-1305 (2013)
  75. A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M. Zavialov AV, Knight SD. Mol Microbiol 64 153-164 (2007)
  76. Comparison of the structural and functional properties of RNase A and BS-RNase: a stepwise mutagenesis approach. Ercole C, Colamarino RA, Pizzo E, Fogolari F, Spadaccini R, Picone D. Biopolymers 91 1009-1017 (2009)
  77. Enzymatically active fibrils generated by the self-assembly of the ApoA-I fibrillogenic domain functionalized with a catalytic moiety. Guglielmi F, Monti DM, Arciello A, Torrassa S, Cozzolino F, Pucci P, Relini A, Piccoli R. Biomaterials 30 829-835 (2009)
  78. Photoinduced fibrils formation of chicken egg white lysozyme under native conditions. Xie JB, Cao Y, Pan H, Qin M, Yan ZQ, Xiong X, Wang W. Proteins 80 2501-2513 (2012)
  79. The structure of a fibril-forming sequence, NNQQNY, in the context of a globular fold. Guo Z, Eisenberg D. Protein Sci 17 1617-1623 (2008)
  80. Polyalanine-independent conformational conversion of nuclear poly(A)-binding protein 1 (PABPN1). Winter R, Kühn U, Hause G, Schwarz E. J Biol Chem 287 22662-22671 (2012)
  81. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping. Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Protein Sci 24 366-375 (2015)
  82. The zipper groups of the amyloid state of proteins. Stroud JC. Acta Crystallogr D Biol Crystallogr 69 540-545 (2013)
  83. A folded and functional protein domain in an amyloid-like fibril. Sackewitz M, von Einem S, Hause G, Wunderlich M, Schmid FX, Schwarz E. Protein Sci 17 1044-1054 (2008)
  84. Efficient induction of nuclear aggresomes by specific single missense mutations in the DNA-binding domain of a viral AP-1 homolog. Park R, Wang'ondu R, Heston L, Shedd D, Miller G. J Biol Chem 286 9748-9762 (2011)
  85. RNase A oligomerization through 3D domain swapping is favoured by a residue located far from the swapping domains. Vottariello F, Giacomelli E, Frasson R, Pozzi N, De Filippis V, Gotte G. Biochimie 93 1846-1857 (2011)
  86. The impact of solubility and electrostatics on fibril formation by the H3 and H4 histones. Topping TB, Gloss LM. Protein Sci 20 2060-2073 (2011)
  87. Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A. Colombo G, Meli M, De Simone A. Proteins 70 863-872 (2008)
  88. Cooperativity among short amyloid stretches in long amyloidogenic sequences. Hu L, Cui W, He Z, Shi X, Feng K, Ma B, Cai YD. PLoS One 7 e39369 (2012)
  89. Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe. Ioffe VM, Gorbenko GP, Deligeorgiev T, Gadjev N, Vasilev A. Biophys Chem 128 75-86 (2007)
  90. Kinetic analysis provides insight into the mechanism of ribonuclease A oligomer formation. López-Alonso JP, Gotte G, Laurents DV. Arch Biochem Biophys 489 41-47 (2009)
  91. Characterization of the dimerization process of a domain-swapped dimeric variant of human pancreatic ribonuclease. Rodríguez M, Benito A, Ribó M, Vilanova M. FEBS J 273 1166-1176 (2006)
  92. Modular genetic design of multi-domain functional amyloids: insights into self-assembly and functional properties. Cui M, Qi Q, Gurry T, Zhao T, An B, Pu J, Gui X, Cheng AA, Zhang S, Xun D, Becce M, Briatico-Vangosa F, Liu C, Lu TK, Zhong C. Chem Sci 10 4004-4014 (2019)
  93. Multistep aggregation pathway of human interleukin-1 receptor antagonist: kinetic, structural, and morphological characterization. Krishnan S, Raibekas AA. Biophys J 96 199-208 (2009)
  94. A surface loop directs conformational switching of a lipoyl domain between a folded and a novel misfolded structure. Stott KM, Yusof AM, Perham RN, Jones DD. Structure 17 1117-1127 (2009)
  95. Formation of supramolecular structures of a native-like protein in the presence of amphiphilic peptides: Variations in aggregate morphology. Artemova N, Stein-Margolina V, Smirnova E, Gurvits B. FEBS Lett 586 186-190 (2012)
  96. Insights into the aggregation mechanism of RNA recognition motif domains in TDP-43: a theoretical exploration. Liu W, Li C, Shan J, Wang Y, Chen G. R Soc Open Sci 8 210160 (2021)
  97. Nanoscale Dynamics of Protein Assembly Networks in Supersaturated Solutions. Matsushita Y, Sekiguchi H, Wong CJ, Nishijima M, Ikezaki K, Hamada D, Goto Y, Sasaki YC. Sci Rep 7 13883 (2017)
  98. Comment Structural biology: fibres hinge on swapped domains. Miranker AD. Nature 437 197-198 (2005)
  99. Atomic insights into the genesis of cellular filaments by globular proteins. McPartland L, Heller DM, Eisenberg DS, Hochschild A, Sawaya MR. Nat Struct Mol Biol 25 705-714 (2018)
  100. Bioinformatic challenges for the next decade(s). Eisenberg D, Marcotte E, McLachlan AD, Pellegrini M. Philos Trans R Soc Lond B Biol Sci 361 525-527 (2006)
  101. Propensity for C-terminal domain swapping correlates with increased regional flexibility in the C-terminus of RNase A. Miller KH, Marqusee S. Protein Sci 20 1735-1744 (2011)
  102. Refolding of ribonuclease A monitored by real-time photo-CIDNP NMR spectroscopy. Day IJ, Maeda K, Paisley HJ, Mok KH, Hore PJ. J Biomol NMR 44 77-86 (2009)
  103. Exposing the distinctive modular behavior of β-strands and α-helices in folded proteins. Wang H, Logan DT, Danielsson J, Oliveberg M. Proc Natl Acad Sci U S A 117 28775-28783 (2020)
  104. Formation and carbon monoxide-dependent dissociation of Allochromatium vinosum cytochrome c' oligomers using domain-swapped dimers. Yamanaka M, Hoshizumi M, Nagao S, Nakayama R, Shibata N, Higuchi Y, Hirota S. Protein Sci 26 464-474 (2017)
  105. Search for New Aggregable Fragments of Human Insulin. Swiontek M, Fraczyk J, Wasko J, Chaberska A, Pietrzak L, Kaminski ZJ, Szymanski L, Wiak S, Kolesinska B. Molecules 24 E1600 (2019)
  106. The multiple forms of bovine seminal ribonuclease: structure and stability of a C-terminal swapped dimer. Sica F, Pica A, Merlino A, Russo Krauss I, Ercole C, Picone D. FEBS Lett 587 3755-3762 (2013)
  107. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. Chatterjee D, Jacob RS, Ray S, Navalkar A, Singh N, Sengupta S, Gadhe L, Kadu P, Datta D, Paul A, Arunima S, Mehra S, Pindi C, Kumar S, Singru P, Senapati S, Maji SK. Elife 11 e73835 (2022)
  108. Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol. Hirota S, Ueda M, Hayashi Y, Nagao S, Kamikubo H, Kataoka M. J Biochem 152 521-529 (2012)
  109. Salt-regulated reversible fibrillation of Mycobacterium tuberculosis isocitrate lyase: Concurrent restoration of structure and activity. Shukla H, Kumar R, Sonkar A, Mitra K, Akhtar MS, Tripathi T. Int J Biol Macromol 104 89-96 (2017)
  110. Does domain swapping improve the stability of RNase A? Pearce FG, Griffin MD, Gerrard JA. Biochem Biophys Res Commun 382 114-118 (2009)
  111. Slow Evolution toward "Super-Aggregation" of the Oligomers Formed through the Swapping of RNase A N-Termini: A Wish for Amyloidosis? Gotte G, Butturini E, Bettin I, Noro I, Mahmoud Helmy A, Fagagnini A, Cisterna B, Malatesta M. Int J Mol Sci 23 11192 (2022)
  112. The formation of a novel supramolecular structure by amyloid of poly-L-glutamic acid. Bai F, Zeng C, Yang S, Zhang Y, He Y, Jin J. Biochem Biophys Res Commun 369 830-834 (2008)
  113. Unusual dimerization of a BcCsp mutant leads to reduced conformational dynamics. Carvajal AI, Vallejos G, Komives EA, Castro-Fernández V, Leonardo DA, Garratt RC, Ramírez-Sarmiento CA, Babul J. FEBS J 284 1882-1896 (2017)
  114. Crystal structure of the Mycoplasma arthritidis-derived mitogen in apo form reveals a 3D domain-swapped dimer. Liu L, Li Z, Guo Y, VanVranken SJ, Mourad W, Li H. J Mol Biol 399 367-376 (2010)
  115. Identification of a Steric Zipper Motif in the Amyloidogenic Core of Human Cystatin C and Its Use for the Design of Self-Assembling Peptides. Iłowska E, Barciszewski J, Jaskólski M, Moliński A, Kozak M, Szymańska A. Int J Mol Sci 23 5800 (2022)
  116. Mechanism of 3D domain swapping in bovine seminal ribonuclease. Spadaccini R, Ercole C, Graziano G, Wechselberger R, Boelens R, Picone D. FEBS J 281 842-850 (2014)
  117. Conversion of a monodispersed globular protein into an amyloid-like filament by appending an artificial peptide at the N-terminal. Sano K, Sasaki H, Shiba K. Protein Eng Des Sel 20 109-116 (2007)
  118. Is amyloid fibrillation related to 3D domain swapping for the C-terminal domain of SARS-CoV main protease? Yuan Z, Qu Z, Duan B, Wang T, Xu J, Xia B. Int J Biol Macromol 197 68-76 (2022)
  119. Osmolytes and crowders regulate aggregation of the cancer-related L106R mutant of the Axin protein. Garfagnini T, Levi-Kalisman Y, Harries D, Friedler A. Biophys J 120 3455-3469 (2021)
  120. The C-terminus hot spot region helps in the fibril formation of bacteriophage-associated hyaluronate lyase (HylP2). Shukla H, Singh SK, Singh AK, Mitra K, Akhtar MS. Sci Rep 5 14429 (2015)