2ar9 Citations

Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation.

Abstract

Caspases are responsible for the execution of programmed cell death (apoptosis) and must undergo proteolytic activation, in response to apoptotic stimuli, to function. The mechanism of initiator caspase activation has been generalized by the induced proximity model, which is thought to drive dimerization-mediated activation of caspases. The initiator caspase, caspase-9, exists predominantly as a monomer in solution. To examine the induced proximity model, we engineered a constitutively dimeric caspase-9 by relieving steric hindrance at the dimer interface. Crystal structure of the engineered caspase-9 closely resembles that of the wild-type (WT) caspase-9, including all relevant structural details and the asymmetric nature of two monomers. Compared to the WT caspase-9, this engineered dimer exhibits a higher level of catalytic activity in vitro and induces more efficient cell death when expressed. However, the catalytic activity of the dimeric caspase-9 is only a small fraction of that for the Apaf-1-activated caspase-9. Furthermore, in contrast to the WT caspase-9, the activity of the dimeric caspase-9 can no longer be significantly enhanced in an Apaf-1-dependent manner. These findings suggest that dimerization of caspase-9 may be qualitatively different from its activation by Apaf-1, and in conjunction with other evidence, posit an induced conformation model for the activation of initiator caspases.

Reviews - 2ar9 mentioned but not cited (1)

  1. Small Molecule Active Site Directed Tools for Studying Human Caspases. Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Chem Rev 115 12546-12629 (2015)

Articles - 2ar9 mentioned but not cited (25)

  1. Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Yin Q, Park HH, Chung JY, Lin SC, Lo YC, da Graca LS, Jiang X, Wu H. Mol Cell 22 259-268 (2006)
  2. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin. Wang CZ, Zhang CF, Chen L, Anderson S, Lu F, Yuan CS. Int J Oncol 47 1749-1758 (2015)
  3. 4.4 Å Resolution Cryo-EM structure of human mTOR Complex 1. Yang H, Wang J, Liu M, Chen X, Huang M, Tan D, Dong MQ, Wong CC, Wang J, Xu Y, Wang HW. Protein Cell 7 878-887 (2016)
  4. Carnosic Acid, a Natural Diterpene, Attenuates Arsenic-Induced Hepatotoxicity via Reducing Oxidative Stress, MAPK Activation, and Apoptotic Cell Death Pathway. Das S, Joardar S, Manna P, Manna P, Dua TK, Bhattacharjee N, Khanra R, Bhowmick S, Kalita J, Saha A, Ray S, De Feo V, Dewanjee S. Oxid Med Cell Longev 2018 1421438 (2018)
  5. Isolation and chemopreventive evaluation of novel naphthoquinone compounds from Alkanna tinctoria. Tung NH, Du GJ, Yuan CS, Shoyama Y, Wang CZ. Anticancer Drugs 24 1058-1068 (2013)
  6. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis. Han XD, Zhou ZW, Yang W, Ye HC, Xu YZ, Huang YF, Zhang T, Zhou SF. Drug Des Devel Ther 9 1063-1102 (2015)
  7. Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood. Mishra A, Dey S. Biomolecules 9 E740 (2019)
  8. Unleashing the power of meta-threading for evolution/structure-based function inference of proteins. Brylinski M. Front Genet 4 118 (2013)
  9. Evaluation of Anti-inflammatory and Regenerative Efficiency of Naringin and Naringenin in Degenerated Human Nucleus Pulposus Cells: Biological and Molecular Modeling Studies. Devraj VM, Vemuri SK, Banala RR, Gunda SK, Av GR, Gpv S. Asian Spine J 13 875-889 (2019)
  10. Myricitrin, a Glycosyloxyflavone in Myrica esculenta Bark Ameliorates Diabetic Nephropathy via Improving Glycemic Status, Reducing Oxidative Stress, and Suppressing Inflammation. Dua TK, Joardar S, Chakraborty P, Bhowmick S, Saha A, De Feo V, Dewanjee S. Molecules 26 E258 (2021)
  11. In silico and in vitro studies on the anti-cancer activity of andrographolide targeting survivin in human breast cancer stem cells. Wanandi SI, Limanto A, Yunita E, Syahrani RA, Louisa M, Wibowo AE, Arumsari S. PLoS One 15 e0240020 (2020)
  12. Deglycosylation of wogonoside enhances its anticancer potential. Wang CZ, Wan JY, Zhang CF, Lu F, Chen L, Yuan CS. J Cancer Res Ther 14 S594-S599 (2018)
  13. Ilimaquinone (Marine Sponge Metabolite) Induces Apoptosis in HCT-116 Human Colorectal Carcinoma Cells via Mitochondrial-Mediated Apoptosis Pathway. Surti M, Patel M, Redhwan A, Al-Keridis LA, Adnan M, Alshammari N, Reddy MN. Mar Drugs 20 582 (2022)
  14. Pepscan Approach for the Identification of Protein-Protein Interfaces: Lessons from Experiment. Rebollo A, Savier E, Tuffery P. Biomolecules 11 772 (2021)
  15. Impact of Qi-Invigorating Traditional Chinese Medicines on Diffuse Large B Cell Lymphoma Based on Network Pharmacology and Experimental Validation. Huang Q, Lin J, Huang S, Shen J. Front Pharmacol 12 787816 (2021)
  16. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents-Synthesis, In Vitro and In Silico Studies. Kornicka A, Gzella K, Garbacz K, Jarosiewicz M, Gdaniec M, Fedorowicz J, Balewski Ł, Kokoszka J, Ordyszewska A. Pharmaceuticals (Basel) 16 918 (2023)
  17. Molecular docking data of piperine with Bax, Caspase 3, Cox 2 and Caspase 9. Kirubhanand C, Selvaraj J, Rekha UV, Vishnupriya V, Nalini D, Mohan SK, Vijayalakshmi P, Rajalakshmi M, Ponnulakshmi R. Bioinformation 16 458-461 (2020)
  18. Pharmacological Mechanisms Underlying the Therapeutic Effects of Danhong Injection on Cerebral Ischemia. Qi Y, Zou Y, Chen L, Liu J, Zhang Y, Wang Z. Evid Based Complement Alternat Med 2021 5584809 (2021)
  19. Computation and molecular pharmacology to trace the anti-rheumatoid activity of Angelicae Pubescentis Radix. Zhang J, Wang R, Liang X, Bai HT, Li YL, Sun S, Zhang Q, Yang J. BMC Complement Med Ther 22 312 (2022)
  20. Discovering and Characterizing of Survivin Dominant Negative Mutants With Stronger Pro-apoptotic Activity on Cancer Cells and CSCs. Guo W, Ma X, Fu Y, Liu C, Liu Q, Hu F, Miao H, Zhang T, Liu Y, Han MH, You F, Yang Y, Zheng W. Front Oncol 11 635233 (2021)
  21. Exploration of Phaeanthine: A Bisbenzylisoquinoline Alkaloid Induces Anticancer Effect in Cervical Cancer Cells Involving Mitochondria-Mediated Apoptosis. Valsan A, Meenu MT, Murali VP, Malgija B, Joseph AG, Nisha P, Radhakrishnan KV, Maiti KK. ACS Omega 8 14799-14813 (2023)
  22. Molecular Docking and Simulation-Binding Analysis of Plant Phytochemicals with the Hepatocellular Carcinoma Targets Epidermal Growth Factor Receptor and Caspase-9. Mustafa G, Younas S, Mahrosh HS, Albeshr MF, Bhat EA. Molecules 28 3583 (2023)
  23. Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation. Tang L, Liu J, Xu X, Zhao J, Han X. Evid Based Complement Alternat Med 2022 9243348 (2022)
  24. Synthesis and appraisal of dalbergin-loaded PLGA nanoparticles modified with galactose against hepatocellular carcinoma: In-vitro, pharmacokinetic, and in-silico studies. Gautam AK, Kumar P, Maity B, Routholla G, Ghosh B, Chidambaram K, Begum MY, Al Fatease A, Rajinikanth PS, Singh S, Saha S, M R V. Front Pharmacol 13 1021867 (2022)
  25. The cancer preventive activity and mechanisms of prenylated resveratrol and derivatives. Zhou T, Jiang Y, Zeng B, Yang B. Curr Res Toxicol 5 100113 (2023)


Reviews citing this publication (25)

  1. Life and death by death receptors. Guicciardi ME, Gores GJ. FASEB J 23 1625-1637 (2009)
  2. TRAIL signalling: decisions between life and death. Falschlehner C, Emmerich CH, Gerlach B, Walczak H. Int J Biochem Cell Biol 39 1462-1475 (2007)
  3. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Kantari C, Walczak H. Biochim Biophys Acta 1813 558-563 (2011)
  4. Apoptosome: a platform for the activation of initiator caspases. Bao Q, Shi Y. Cell Death Differ 14 56-65 (2007)
  5. Regulation of the Apaf-1-caspase-9 apoptosome. Bratton SB, Salvesen GS. J Cell Sci 123 3209-3214 (2010)
  6. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Wu CC, Bratton SB. Antioxid Redox Signal 19 546-558 (2013)
  7. The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Würstle ML, Laussmann MA, Rehm M. Exp Cell Res 318 1213-1220 (2012)
  8. Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. Allan LA, Clarke PR. FEBS J 276 6063-6073 (2009)
  9. Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Cell Mol Life Sci 67 1567-1579 (2010)
  10. Apaf-1: Regulation and function in cell death. Shakeri R, Kheirollahi A, Davoodi J. Biochimie 135 111-125 (2017)
  11. Mammalian initiator apoptotic caspases. Ho PK, Hawkins CJ. FEBS J 272 5436-5453 (2005)
  12. Caspase-9: structure, mechanisms and clinical application. Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Oncotarget 8 23996-24008 (2017)
  13. New insights into apoptosome structure and function. Dorstyn L, Akey CW, Kumar S. Cell Death Differ 25 1194-1208 (2018)
  14. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Sessler T, Healy S, Samali A, Szegezdi E. Pharmacol Ther 140 186-199 (2013)
  15. Mechanical aspects of apoptosome assembly. Shi Y. Curr Opin Cell Biol 18 677-684 (2006)
  16. Regulation of apoptosis: uncovering the binding determinants. Hinds MG, Day CL. Curr Opin Struct Biol 15 690-699 (2005)
  17. Structural features of caspase-activating complexes. Park HH. Int J Mol Sci 13 4807-4818 (2012)
  18. Caspase-2: controversial killer or checkpoint controller? Kitevska T, Spencer DM, Hawkins CJ. Apoptosis 14 829-848 (2009)
  19. The apoptosome: emerging insights and new potential targets for drug design. D'Amelio M, Tino E, Cecconi F. Pharm Res 25 740-751 (2008)
  20. Opportunities for structure-based design of protease-directed drugs. Mittl PR, Grütter MG. Curr Opin Struct Biol 16 769-775 (2006)
  21. The Role of Caspase-2 in Regulating Cell Fate. Vigneswara V, Ahmed Z. Cells 9 E1259 (2020)
  22. Caspase-containing complexes in the regulation of cell death and inflammation. Festjens N, Cornelis S, Lamkanfi M, Vandenabeele P. Biol Chem 387 1005-1016 (2006)
  23. Molecules that modulate Apaf-1 activity. Pérez-Payá E, Orzáez M, Mondragón L, Wolan D, Wells JA, Messeguer A, Vicent MJ. Med Res Rev 31 649-675 (2011)
  24. Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Dang DT. Front Chem 10 829312 (2022)
  25. Structural biology of the intrinsic cell death pathway: what do we know and what is missing? Lee EF, Fairlie WD. Comput Struct Biotechnol J 1 e201204007 (2012)

Articles citing this publication (41)

  1. The apoptosome activates caspase-9 by dimerization. Pop C, Timmer J, Sperandio S, Salvesen GS. Mol Cell 22 269-275 (2006)
  2. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. Legewie S, Blüthgen N, Herzel H. PLoS Comput Biol 2 e120 (2006)
  3. Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Qi S, Pang Y, Hu Q, Liu Q, Li H, Zhou Y, He T, Liang Q, Liu Y, Yuan X, Luo G, Li H, Wang J, Yan N, Shi Y. Cell 141 446-457 (2010)
  4. PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. Peterson QP, Goode DR, West DC, Ramsey KN, Lee JJ, Hergenrother PJ. J Mol Biol 388 144-158 (2009)
  5. A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Yu X, Acehan D, Ménétret JF, Booth CR, Ludtke SJ, Riedl SJ, Shi Y, Wang X, Akey CW. Structure 13 1725-1735 (2005)
  6. The Apaf-1*procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. Malladi S, Challa-Malladi M, Fearnhead HO, Bratton SB. EMBO J 28 1916-1925 (2009)
  7. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Guey B, Bodnar M, Manié SN, Tardivel A, Petrilli V. Proc Natl Acad Sci U S A 111 17254-17259 (2014)
  8. Procaspase-3 activation as an anti-cancer strategy: structure-activity relationship of procaspase-activating compound 1 (PAC-1) and its cellular co-localization with caspase-3. Peterson QP, Hsu DC, Goode DR, Novotny CJ, Totten RK, Hergenrother PJ. J Med Chem 52 5721-5731 (2009)
  9. Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Bao Q, Lu W, Rabinowitz JD, Shi Y. Mol Cell 25 181-192 (2007)
  10. The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3. Yuan S, Yu X, Asara JM, Heuser JE, Ludtke SJ, Akey CW. Structure 19 1084-1096 (2011)
  11. Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. Keller N, Mares J, Zerbe O, Grütter MG. Structure 17 438-448 (2009)
  12. Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. Elliott JM, Rouge L, Wiesmann C, Scheer JM. J Biol Chem 284 6546-6553 (2009)
  13. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, Shi Y. Proc Natl Acad Sci U S A 114 1542-1547 (2017)
  14. Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. Dang DT, Nguyen HD, Merkx M, Brunsveld L. Angew Chem Int Ed Engl 52 2915-2919 (2013)
  15. Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome. Hu Q, Wu D, Chen W, Yan Z, Yan C, He T, Liang Q, Shi Y. Proc Natl Acad Sci U S A 111 16254-16261 (2014)
  16. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition. Fang B, Boross PI, Tozser J, Weber IT. J Mol Biol 360 654-666 (2006)
  17. A near atomic structure of the active human apoptosome. Cheng TC, Hong C, Akey IV, Yuan S, Akey CW. Elife 5 e17755 (2016)
  18. Changes in Apaf-1 conformation that drive apoptosome assembly. Yuan S, Topf M, Reubold TF, Eschenburg S, Akey CW. Biochemistry 52 2319-2327 (2013)
  19. Caspase-9 cleavage, do you need it? Twiddy D, Cain K. Biochem J 405 e1-2 (2007)
  20. Structure and activation mechanism of the Drosophila initiator caspase Dronc. Yan N, Huh JR, Schirf V, Demeler B, Hay BA, Shi Y. J Biol Chem 281 8667-8674 (2006)
  21. A biochemical analysis of the activation of the Drosophila caspase DRONC. Dorstyn L, Kumar S. Cell Death Differ 15 461-470 (2008)
  22. Overexpression of caspase-9 triggers its activation and apoptosis in vitro. Druskovic M, Suput D, Milisav I. Croat Med J 47 832-840 (2006)
  23. Regulation of caspase-9 activity by differential binding to the apoptosome complex. Saikumar P, Mikhailova M, Pandeswara SL. Front Biosci 12 3343-3354 (2007)
  24. CED-4 forms a 2 : 2 heterotetrameric complex with CED-9 until specifically displaced by EGL-1 or CED-13. Fairlie WD, Perugini MA, Kvansakul M, Chen L, Huang DC, Colman PM. Cell Death Differ 13 426-434 (2006)
  25. MicroRNA-224 Promotes Tumorigenesis through Downregulation of Caspase-9 in Triple-Negative Breast Cancer. Zhang L, Zhang X, Wang X, He M, Qiao S. Dis Markers 2019 7378967 (2019)
  26. Preparation of the caspase-3/7 substrate Ac-DEVD-pNA by solution-phase peptide synthesis. Peterson QP, Goode DR, West DC, Botham RC, Hergenrother PJ. Nat Protoc 5 294-302 (2010)
  27. Structural determinants of caspase-9 inhibition by the vaccinia virus protein, F1L. Yu E, Zhai D, Jin C, Gerlic M, Reed JC, Liddington R. J Biol Chem 286 30748-30758 (2011)
  28. Monoubiquitination and activity of the paracaspase MALT1 requires glutamate 549 in the dimerization interface. Cabalzar K, Pelzer C, Wolf A, Lenz G, Iwaszkiewicz J, Zoete V, Hailfinger S, Thome M. PLoS One 8 e72051 (2013)
  29. A systems biology analysis of apoptosome formation and apoptosis execution supports allosteric procaspase-9 activation. Würstle ML, Rehm M. J Biol Chem 289 26277-26289 (2014)
  30. Induction of apoptosis by total flavonoids from Scutellaria barbata D. Don in human hepatocarcinoma MHCC97-H cells via the mitochondrial pathway. Gao J, Lu WF, Dai ZJ, Lin S, Zhao Y, Li S, Zhao NN, Wang XJ, Kang HF, Ma XB, Zhang WG. Tumour Biol 35 2549-2559 (2014)
  31. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome. Rosier BJHM, Markvoort AJ, Gumí Audenis B, Roodhuizen JAL, den Hamer A, Brunsveld L, de Greef TFA. Nat Catal 3 295-306 (2020)
  32. The Biology of TRAIL and the Role of TRAIL-Based Therapeutics in Infectious Diseases. Shepard BD, Badley AD. Antiinfect Agents Med Chem 8 87-101 (2009)
  33. Caspase-9 CARD : core domain interactions require a properly formed active site. Huber KL, Serrano BP, Hardy JA. Biochem J 475 1177-1196 (2018)
  34. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome. Su TW, Yang CY, Kao WP, Kuo BJ, Lin SM, Lin JY, Lo YC, Lin SC. Structure 25 407-420 (2017)
  35. The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Fullstone G, Bauer TL, Guttà C, Salvucci M, Prehn JHM, Rehm M. Cell Death Differ 27 2828-2842 (2020)
  36. Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. Anson F, Thayumanavan S, Hardy JA. JACS Au 1 1240-1256 (2021)
  37. Rescuing neuronal cell death by RAIDD- and PIDD- derived peptides and its implications for therapeutic intervention in neurodegenerative diseases. Jang TH, Lim IH, Kim CM, Choi JY, Kim EA, Lee TJ, Park HH. Sci Rep 6 31198 (2016)
  38. Cucurbit[8]uril Reactivation of an Inactivated Caspase-8 Mutant Reveals Differentiated Enzymatic Substrate Processing. Dang DT, van Onzen AHAM, Dorland YL, Brunsveld L. Chembiochem 19 2490-2494 (2018)
  39. RAIDD mutations underlie the pathogenesis of thin lissencephaly (TLIS). Ha HJ, Park HH. PLoS One 13 e0205042 (2018)
  40. Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Sever AIM, Alderson TR, Rennella E, Aramini JM, Liu ZH, Harkness RW, Kay LE. Proc Natl Acad Sci U S A 120 e2310944120 (2023)
  41. Parallel G-quadruplex-mediated protein dimerization and activation. Thi Truong TT, Cao C, Dang DT. RSC Adv 10 29957-29960 (2020)