2b74 Citations

Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.

Proc Natl Acad Sci U S A 102 16668-71 (2005)
Related entries: 2b6w, 2b6x, 2b6y, 2b6z, 2b70, 2b72, 2b73, 2b75, 2oe4

Cited: 101 times
EuropePMC logo PMID: 16269539

Abstract

Formation of a water-expelling nonpolar core is the paradigm of protein folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of some proteins. Hydration of the protein core has also been suggested as the mechanism of pressure-induced unfolding. We therefore are led to ask whether even the most nonpolar protein core is truly hydrophobic (i.e., water-repelling). To answer this question we probed the hydration of an approximately 160-A(3), highly hydrophobic cavity created by mutation in T4 lysozyme by using high-pressure crystallography and molecular dynamics simulation. We show that application of modest pressure causes approximately four water molecules to enter the cavity while the protein itself remains essentially unchanged. The highly cooperative filling is primarily due to a small change in bulk water activity, which implies that changing solvent conditions or, equivalently, cavity polarity can dramatically affect interior hydration of proteins and thereby influence both protein activity and folding.

Articles - 2b74 mentioned but not cited (2)

  1. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Collins MD, Hummer G, Quillin ML, Matthews BW, Gruner SM. Proc Natl Acad Sci U S A 102 16668-16671 (2005)
  2. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation. Ando N, Barstow B, Baase WA, Fields A, Matthews BW, Gruner SM. Biochemistry 47 11097-11109 (2008)


Reviews citing this publication (14)

  1. Water in nonpolar confinement: from nanotubes to proteins and beyond. Rasaiah JC, Garde S, Hummer G. Annu Rev Phys Chem 59 713-740 (2008)
  2. Computations of standard binding free energies with molecular dynamics simulations. Deng Y, Roux B. J Phys Chem B 113 2234-2246 (2009)
  3. Dewetting and hydrophobic interaction in physical and biological systems. Berne BJ, Weeks JD, Zhou R. Annu Rev Phys Chem 60 85-103 (2009)
  4. Water Determines the Structure and Dynamics of Proteins. Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Chem Rev 116 7673-7697 (2016)
  5. Lessons from the lysozyme of phage T4. Baase WA, Liu L, Tronrud DE, Matthews BW. Protein Sci 19 631-641 (2010)
  6. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Meersman F, Dobson CM, Heremans K. Chem Soc Rev 35 908-917 (2006)
  7. Water in protein hydration and ligand recognition. Maurer M, Oostenbrink C. J Mol Recognit 32 e2810 (2019)
  8. A review about nothing: are apolar cavities in proteins really empty? Matthews BW, Liu L. Protein Sci 18 494-502 (2009)
  9. High-pressure macromolecular crystallography and NMR: status, achievements and prospects. Fourme R, Girard E, Akasaka K. Curr Opin Struct Biol 22 636-642 (2012)
  10. High-pressure protein crystallography and NMR to explore protein conformations. Collins MD, Kim CU, Gruner SM. Annu Rev Biophys 40 81-98 (2011)
  11. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Lynch CI, Rao S, Sansom MSP. Chem Rev 120 10298-10335 (2020)
  12. Advances in high-pressure biophysics: status and prospects of macromolecular crystallography. Fourme R, Girard E, Kahn R, Dhaussy AC, Ascone I. Annu Rev Biophys 38 153-171 (2009)
  13. Cavitand Complexes in Aqueous Solution: Collaborative Experimental and Computational Studies of the Wetting, Assembly, and Function of Nanoscopic Bowls in Water. Ashbaugh HS, Gibb BC, Suating P. J Phys Chem B 125 3253-3268 (2021)
  14. Molecular dynamics of thermoenzymes at high temperature and pressure: a review. Abedi Karjiban R, Lim WZ, Basri M, Abdul Rahman MB. Protein J 33 369-376 (2014)

Articles citing this publication (85)

  1. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Young T, Abel R, Kim B, Berne BJ, Friesner RA. Proc Natl Acad Sci U S A 104 808-813 (2007)
  2. An extended dynamical hydration shell around proteins. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M. Proc Natl Acad Sci U S A 104 20749-20752 (2007)
  3. Cavities determine the pressure unfolding of proteins. Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, Schlessman JL, Garcia AE, García-Moreno BE, Royer CA. Proc Natl Acad Sci U S A 109 6945-6950 (2012)
  4. Hydrophobicity of protein surfaces: Separating geometry from chemistry. Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG. Proc Natl Acad Sci U S A 105 2274-2279 (2008)
  5. Reorientation and allied dynamics in water and aqueous solutions. Laage D, Stirnemann G, Sterpone F, Rey R, Hynes JT. Annu Rev Phys Chem 62 395-416 (2011)
  6. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Deng Y, Roux B. J Chem Phys 128 115103 (2008)
  7. Static and dynamic correlations in water at hydrophobic interfaces. Mittal J, Hummer G. Proc Natl Acad Sci U S A 105 20130-20135 (2008)
  8. A dry ligand-binding cavity in a solvated protein. Qvist J, Davidovic M, Hamelberg D, Halle B. Proc Natl Acad Sci U S A 105 6296-6301 (2008)
  9. Size and sequence and the volume change of protein folding. Rouget JB, Aksel T, Roche J, Saldana JL, Garcia AE, Barrick D, Royer CA. J Am Chem Soc 133 6020-6027 (2011)
  10. Drying transition in the hydrophobic gate of the GLIC channel blocks ion conduction. Zhu F, Hummer G. Biophys J 103 219-227 (2012)
  11. Bubbles, gating, and anesthetics in ion channels. Roth R, Gillespie D, Nonner W, Eisenberg RE. Biophys J 94 4282-4298 (2008)
  12. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Jebbar M, Franzetti B, Girard E, Oger P. Extremophiles 19 721-740 (2015)
  13. Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules. Helms V. Chemphyschem 8 23-33 (2007)
  14. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography. Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM. J Mol Biol 367 752-763 (2007)
  15. Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift. Barstow B, Ando N, Kim CU, Gruner SM. Proc Natl Acad Sci U S A 105 13362-13366 (2008)
  16. Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. Kitahara R, Hata K, Li H, Williamson MP, Akasaka K. Prog Nucl Magn Reson Spectrosc 71 35-58 (2013)
  17. On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Davis JG, Rankin BM, Gierszal KP, Ben-Amotz D. Nat Chem 5 796-802 (2013)
  18. Role of cavities and hydration in the pressure unfolding of T4 lysozyme. Nucci NV, Fuglestad B, Athanasoula EA, Wand AJ. Proc Natl Acad Sci U S A 111 13846-13851 (2014)
  19. Dewetting transitions in protein cavities. Young T, Hua L, Huang X, Abel R, Friesner R, Berne BJ. Proteins 78 1856-1869 (2010)
  20. On the mechanism of cold denaturation. Graziano G. Phys Chem Chem Phys 16 21755-21767 (2014)
  21. Water penetration in the low and high pressure native states of ubiquitin. Day R, García AE. Proteins 70 1175-1184 (2008)
  22. Thermodynamics of water intrusion in nanoporous hydrophobic solids. Cailliez F, Trzpit M, Soulard M, Demachy I, Boutin A, Patarin J, Fuchs AH. Phys Chem Chem Phys 10 4817-4826 (2008)
  23. Past-future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics. Wang Y, Ribeiro JML, Tiwary P. Nat Commun 10 3573 (2019)
  24. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure. Girard E, Marchal S, Perez J, Finet S, Kahn R, Fourme R, Marassio G, Dhaussy AC, Prangé T, Giffard M, Dulin F, Bonneté F, Lange R, Abraini JH, Mezouar M, Colloc'h N. Biophys J 98 2365-2373 (2010)
  25. Origins of pressure-induced protein transitions. Chalikian TV, Macgregor RB. J Mol Biol 394 834-842 (2009)
  26. Water in the polar and nonpolar cavities of the protein interleukin-1β. Yin H, Feng G, Clore GM, Hummer G, Rasaiah JC. J Phys Chem B 114 16290-16297 (2010)
  27. Studying pressure denaturation of a protein by molecular dynamics simulations. Sarupria S, Ghosh T, García AE, Garde S. Proteins 78 1641-1651 (2010)
  28. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Imai T, Ohyama S, Kovalenko A, Hirata F. Protein Sci 16 1927-1933 (2007)
  29. Use of experimental crystallographic phases to examine the hydration of polar and nonpolar cavities in T4 lysozyme. Liu L, Quillin ML, Matthews BW. Proc Natl Acad Sci U S A 105 14406-14411 (2008)
  30. Calculation of absolute protein-ligand binding free energy using distributed replica sampling. Rodinger T, Howell PL, Pomès R. J Chem Phys 129 155102 (2008)
  31. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme. Maeno A, Sindhikara D, Hirata F, Otten R, Dahlquist FW, Yokoyama S, Akasaka K, Mulder FA, Kitahara R. Biophys J 108 133-145 (2015)
  32. Crystallographic study of hydration of an internal cavity in engineered proteins with buried polar or ionizable groups. Schlessman JL, Abe C, Gittis A, Karp DA, Dolan MA, García-Moreno E B. Biophys J 94 3208-3216 (2008)
  33. Determination of solvent content in cavities in IL-1beta using experimentally phased electron density. Quillin ML, Wingfield PT, Matthews BW. Proc Natl Acad Sci U S A 103 19749-19753 (2006)
  34. Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Caro JA, Wand AJ. Methods 148 67-80 (2018)
  35. Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis. Hamdane D, Argentini M, Cornu D, Myllykallio H, Skouloubris S, Hui-Bon-Hoa G, Golinelli-Pimpaneau B. J Biol Chem 286 36268-36280 (2011)
  36. How internal cavities destabilize a protein. Xue M, Wakamoto T, Kejlberg C, Yoshimura Y, Nielsen TA, Risør MW, Sanggaard KW, Kitahara R, Mulder FAA. Proc Natl Acad Sci U S A 116 21031-21036 (2019)
  37. Structural, energetic, and dynamic responses of the native state ensemble of staphylococcal nuclease to cavity-creating mutations. Roche J, Caro JA, Dellarole M, Guca E, Royer CA, García-Moreno BE, Garcia AE, Roumestand C. Proteins 81 1069-1080 (2013)
  38. Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Lerch MT, López CJ, Yang Z, Kreitman MJ, Horwitz J, Hubbell WL. Proc Natl Acad Sci U S A 112 E2437-46 (2015)
  39. UV-radiation induced disruption of dry-cavities in human γD-crystallin results in decreased stability and faster unfolding. Xia Z, Yang Z, Huynh T, King JA, Zhou R. Sci Rep 3 1560 (2013)
  40. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Fraux G, Coudert FX, Boutin A, Fuchs AH. Chem Soc Rev 46 7421-7437 (2017)
  41. A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels. Díaz-Franulic I, Raddatz N, Castillo K, González-Nilo FD, Latorre R. Proc Natl Acad Sci U S A 117 20298-20304 (2020)
  42. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. Mondal J, Ahalawat N, Pandit S, Kay LE, Vallurupalli P. PLoS Comput Biol 14 e1006180 (2018)
  43. Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution. Barnett JW, Sullivan MR, Long JA, Tang D, Nguyen T, Ben-Amotz D, Gibb BC, Ashbaugh HS. Nat Chem 12 589-594 (2020)
  44. Statistical survey of the buried waters in the Protein Data Bank. Carugo O. Amino Acids 48 193-202 (2016)
  45. Coupling of pressure-induced structural shifts to spectral changes in a yellow fluorescent protein. Barstow B, Ando N, Kim CU, Gruner SM. Biophys J 97 1719-1727 (2009)
  46. Ion hydration in nanopores and the molecular basis of selectivity. Carrillo-Tripp M, San-Román ML, Hernańdez-Cobos J, Saint-Martin H, Ortega-Blake I. Biophys Chem 124 243-250 (2006)
  47. Exploring structural and optical properties of fluorescent proteins by squeezing: modeling high-pressure effects on the mStrawberry and mCherry red fluorescent proteins. Laurent AD, Mironov VA, Chapagain PP, Nemukhin AV, Krylov AI. J Phys Chem B 116 12426-12440 (2012)
  48. Hydration of a hydrophobic cavity and its functional role: a simulation study of human interleukin-1beta. Somani S, Chng CP, Verma CS. Proteins 67 868-885 (2007)
  49. Temperature artifacts in protein structures bias ligand-binding predictions. Bradford SYC, El Khoury L, Ge Y, Osato M, Mobley DL, Fischer M. Chem Sci 12 11275-11293 (2021)
  50. Observation of complete pressure-jump protein refolding in molecular dynamics simulation and experiment. Liu Y, Prigozhin MB, Schulten K, Gruebele M. J Am Chem Soc 136 4265-4272 (2014)
  51. The effect of pressure on the hydration structure around hydrophobic solute: a molecular dynamics simulation study. Sarma R, Paul S. J Chem Phys 136 114510 (2012)
  52. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Hamajima Y, Nagae T, Watanabe N, Ohmae E, Kato-Yamada Y, Kato C. Extremophiles 20 177-186 (2016)
  53. Using free energy of binding calculations to improve the accuracy of virtual screening predictions. Malmstrom RD, Watowich SJ. J Chem Inf Model 51 1648-1655 (2011)
  54. Proximal charge effects on guest binding to a non-polar pocket. Suating P, Nguyen TT, Ernst NE, Wang Y, Jordan JH, Gibb CLD, Ashbaugh HS, Gibb BC. Chem Sci 11 3656-3663 (2020)
  55. Volumetric properties underlying ligand binding in a monomeric hemoglobin: a high-pressure NMR study. Dellarole M, Roumestand C, Royer C, Lecomte JT. Biochim Biophys Acta 1834 1910-1922 (2013)
  56. Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations. Wakai N, Takemura K, Morita T, Kitao A. PLoS One 9 e85852 (2014)
  57. Pressure-induced helix-coil transition of DNA copolymers is linked to water activity. Rayan G, Macgregor RB. Biophys Chem 144 62-66 (2009)
  58. Specific volume and adiabatic compressibility measurements of native and aggregated recombinant human interleukin-1 receptor antagonist: density differences enable pressure-modulated refolding. Seefeldt MB, Crouch C, Kendrick B, Randolph TW. Biotechnol Bioeng 98 476-485 (2007)
  59. Interface dynamics of microscopic cavities in water. Dzubiella J. J Chem Phys 126 194504 (2007)
  60. Molecular dynamics free energy calculations to assess the possibility of water existence in protein nonpolar cavities. Oikawa M, Yonetani Y. Biophys J 98 2974-2983 (2010)
  61. On the Origin of Microtubules' High-Pressure Sensitivity. Gao M, Berghaus M, Möbitz S, Schuabb V, Erwin N, Herzog M, Julius K, Sternemann C, Winter R. Biophys J 114 1080-1090 (2018)
  62. Cavity-creating mutations in Pseudomonas aeruginosa azurin: effects on protein dynamics and stability. Gabellieri E, Balestreri E, Galli A, Cioni P. Biophys J 95 771-781 (2008)
  63. Influence of the hydrostatic pressure and pH on the asymmetric 2-hydroxyketone formation catalyzed by Pseudomonas putida benzoylformate decarboxylase and variants thereof. Berheide M, Peper S, Kara S, Long WS, Schenkel S, Pohl M, Niemeyer B, Liese A. Biotechnol Bioeng 106 18-26 (2010)
  64. BetaVoid: molecular voids via beta-complexes and Voronoi diagrams. Kim JK, Cho Y, Laskowski RA, Ryu SE, Sugihara K, Kim DS. Proteins 82 1829-1849 (2014)
  65. Effects of Pressure and Temperature on the Atomic Fluctuations of Dihydrofolate Reductase from a Psychropiezophile and a Mesophile. Huang Q, Rodgers JM, Hemley RJ, Ichiye T. Int J Mol Sci 20 E1452 (2019)
  66. Flexibility of the Cu,Zn superoxide dismutase structure investigated at 0.57 GPa. Ascone I, Savino C, Kahn R, Fourme R. Acta Crystallogr D Biol Crystallogr 66 654-663 (2010)
  67. Pressure effects on collective density fluctuations in water and protein solutions. Russo D, Laloni A, Filabozzi A, Heyden M. Proc Natl Acad Sci U S A 114 11410-11415 (2017)
  68. Protein unfolded states populated at high and ambient pressure are similarly compact. Harish B, Gillilan RE, Zou J, Wang J, Raleigh DP, Royer CA. Biophys J 120 2592-2598 (2021)
  69. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics. Sun H, Wen J, Zhao Y, Li B, McCammon JA. J Chem Phys 143 243110 (2015)
  70. Dissecting the contributions of β-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Yang Z, Xia Z, Huynh T, King JA, Zhou R. Nanoscale 6 1797-1807 (2014)
  71. Structure determination from a single high-pressure-frozen virus crystal. Burkhardt A, Wagner A, Warmer M, Reimer R, Hohenberg H, Ren J, Fry EE, Stuart DI, Meents A. Acta Crystallogr D Biol Crystallogr 69 308-312 (2013)
  72. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Samuel PP, Case DA. Biochemistry 59 4093-4107 (2020)
  73. Determinants of neuroglobin plasticity highlighted by joint coarse-grained simulations and high pressure crystallography. Colloc'h N, Sacquin-Mora S, Avella G, Dhaussy AC, Prangé T, Vallone B, Girard E. Sci Rep 7 1858 (2017)
  74. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. Calvelo M, Lynch CI, Granja JR, Sansom MSP, Garcia-Fandiño R. ACS Nano 15 7053-7064 (2021)
  75. Photosynthetic diode: electron transport rectification by wetting the quinone cofactor. Martin DR, Matyushov DV. Phys Chem Chem Phys 17 22523-22528 (2015)
  76. The role of hydrophobicity in the cold denaturation of proteins under high pressure: A study on apomyoglobin. Espinosa YR, Caffarena ER, Grigera JR. J Chem Phys 150 075102 (2019)
  77. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase. Halalipour A, Duff MR, Howell EE, Reyes-De-Corcuera JI. Enzyme Microb Technol 103 18-24 (2017)
  78. Real-space imaging of periodic nanotextures in thin films via phasing of diffraction data. Shao Z, Schnitzer N, Ruf J, Gorobtsov OY, Dai C, Goodge BH, Yang T, Nair H, Stoica VA, Freeland JW, Ruff JP, Chen LQ, Schlom DG, Shen KM, Kourkoutis LF, Singer A. Proc Natl Acad Sci U S A 120 e2303312120 (2023)
  79. Structural implications of hydrogen-bond energetics in membrane proteins revealed by high-pressure spectroscopy. Freiberg A, Kangur L, Olsen JD, Hunter CN. Biophys J 103 2352-2360 (2012)
  80. A fluid handling system with finger-tightened connectors for biological studies at kiloatmosphere pressures. Urayama P, Frey EW, Eldridge MJ. Rev Sci Instrum 79 046103 (2008)
  81. Changes in the hydrophobic network of the FliGMC domain induce rotational switching of the flagellar motor. Nishikino T, Hijikata A, Kojima S, Shirai T, Kainosho M, Homma M, Miyanoiri Y. iScience 26 107320 (2023)
  82. Design of a standalone-type beryllium vessel for high-pressure protein crystallography. Suzuki Y, Tsukamoto M, Sakuraba H, Matsumoto M, Nagasawa M, Tamura K. Rev Sci Instrum 81 084302 (2010)
  83. Model atomistic protrusions favouring the ordering and retention of water. Pandey PR, Roy S. Phys Chem Chem Phys 16 15856-15865 (2014)
  84. On the Nature of Guest Complexation in Water: Triggered Wetting-Water-Mediated Binding. Suating P, Ernst NE, Alagbe BD, Skinner HA, Mague JT, Ashbaugh HS, Gibb BC. J Phys Chem B 126 3150-3160 (2022)
  85. Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP. Guerrero L, Ebrahim A, Riley BT, Kim M, Huang Q, Finke AD, Keedy DA. Commun Biol 7 59 (2024)